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Research progress on the impact of aging on immune system and its intervention mechanism
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[Abstract ] With the aging trend of the global population, the incidence of aging-related diseases is increasing, and aging-re-
lated issues have received more and more attention. The immune system is the body’s most important defense system-and it undergoes
gradual changes as we age. How to delay the pathological changes caused by aging and reduce the incidence of aging-related diseases
through immune regulation is an ongoing research topic in the field of life sciences. This article systematically expounds the influence of
aging on the immune system from three aspects: T cell development, immune aging, and inflammatory aging. Theoretical support is
provided for the mechanism of immune system intervention in the aging process, through epigenetic regulation, application of engi-
neered immune cells CAR T cells, elimination of senescent T cells, regulation of mitochondrial function, regulation of aging pathways
and thymus transplantation. From the impact of inflammatory aging on important tissues and organs such as the heart and lungs, the re-
view explains the mechanism of inflammatory aging on the body, and explores the new progress in the research on the relationship be-
tween the immune system and aging, to propose a new concept of enhancing the immune function and quality of life of the elderly.
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oA AR o A TR R e s Ak, D
HZFEARERKRMEENTEEART RERNDN
g, TEHRERZ AR TRABEN, AXEE
HEEXNT AR E R E KT 00 oh ik %R
T BURE BB B T BUOLH M — 4734

1 RERSE T A

1.1 THEMEEFIhEE

111 MRFTéasmesi T4HBAETHET >
EEBEI MR E KA, RGN T 40 KR H T
Y Z (T cell receptor, TCR) 2~ % apT % g Fn
OT 4H A, yOT 400 IR L ¥k N5 fn 2 T 41
LEREER ,aBT AW AH HEEZALHEBEL S
4 (major histocompatibility complex, MHC) # £ 1y &
BRTRE,ZEN SRR AR AT EEHM,
FEMBFET R0 ED,

T % fo A8 28 f, CD4 2 CD8 Kk 34 o TA M, 7 4
DN( WP ) 48 f, DN 348 f2 DL CD44 #1 CD25 #y
Kk A 4 % .DN1 ¥ (CD44" CD257 ), DN2 #i
(CD44*CD25" ), DN3 #i (CD44™ CD25" ) #1 DN4 #f
(CD44°CD257 )/, DN3 #i6y T 48t % @ TCR # B
MREEH, 5 a BRI T 4 M Z K (pre-
TCR) ,DN4 1 89 T 41 jg ¥t — % 2 ft. s CD4"CD8* T
M, e T M EHE o b, R K BB TCR, 3 FF
thkk CD3Y, S MU ERERMAEEE LR
CD4" 3% CD8" FH M T 40 fla , ¥t NS A 88 8 KB 1EF
112 FABGT mM—noT fate. ST 40 it
ERERAAFTREEZMEA, ERERZENMES
AL BN, TR RAERE, A ENEE R
PR AR R T yOT 4 A ALt
RENER SRR RN, 07T, I &2
AR RAET R Ve B AL E ST
MK ES R,

5 ofT 4 8/, yT 4 i F F @ it MHC %
FIRANGE, yOT 4 j 7 iR A1 B9 1% £ & 28 L (thy-
mic epithelial cells, TECs) % & 8 skint-1, % T g iz
s R T 2 EEL V1Y ST 48 i 73R 5 MHC
A% 4F MICA 2 MICB, £ 8T 48 #fL 7 A 4K % T
il A R BB R BT

RAE NST R AE RS, Ih g A0 B & #IE MR A
HEYE R AR B2 AT B kT ST ML MR
W AlE s B RA M H R, AN, 5 TCR &
SRV AE R BT HH, "5 2F 5 £ yOT 4
Mo ¥ 5 W TCR 7 5 #t — ¥ (3 £ & IL-17 0
~OT17 48 Jf A ') Sox13 #1 Maf 7 # 3@ 3t T ¥

ST A8 48 i F By TCR 15 5, 3K 50 ydT17 i & b o
KEERY  BRATTHRE TN RL R |2
MAEMBEME,EEXRHEARNT BERZRS
BEARGET MR, W RN R REENLERA
B EE LA,

2 HELRERGNER

21 RESTHRNENL ZXRBLEZALY
TR X—RAHERIEEREEL, RERERE
EFWE Mz —ERREA, MREFERSMN T
A4 B, 3 /N BOHY 3 i 48 B8 ( hematopoietic stem
cells, HSCs) 3L Ak B 40 L ok B 6 0 T 1%, B
WEFNRF R T 48 248 20 8 (early T lineage
progenitors, ETPs) By # & ¥ /A | 3 & 3 05 3 78 o
5 B PR AR, 8 1o AT 3 e

ZENRY R T @A H WD (CD™
CDO2L"e") 217 T %} ( CD44"" CD62L"" ) 5 H.
B, AT 7 CDA'T 4 M ¥, & % PD-1 An
CDI53 B9 T %8 j % FF 15 3 & M K -T (SA-T) % M,
TCR KB P B Z T T F ¥ V3 B T SA-T 48 g
WAt K A R o B4 CDATT 4
BB ERENR, 2RI CDA'T 4 o RS H
FH, 7F W SA-T %0 i #% {3 S 28 g 7= & % A 20 g T
FWRATHR,AFEXENRRAREFAZN
B, EHmil Ko wKIE @B E TR
HF, &N F A x4k & A ( senescence-associ-
ated secretory phenotype, SASP), 7& SA-T % g #,
SASP Rk 5 T WM KW 4 THWRLFA — W
MK

FELBRP TARRBRR . H— T 488 4
Mt EANBES K, F T AP &R KEMEER
(ROS) 35 , & b B {t (OXPHOS) & F [ (%, NF-
kB JE M An, 5 A2 8 B AR OE R A T 7R A e
HF iy A e s 2 =, fig B B 2 1k ( Fatty acid oxida-
tion, FAO) % Z 40 vE sh 32 4 7 & &, 12 3k 20
W E 5 IR A R e ROR R R BB AL A
BTH = o g A R B R S B
WHE W ROS A, A & B 4 Lo A & B B &
PR, R R g, RTTREE TRE YR
EERHABEAZTHARES, AFEERANNIT
BH R

THEEMMRENKER, REE LTS
THRAFTRS MEATHARREERAEE, 2R
REFHLZ, THMEZELHIARBESRG, KX
WEE B — P WE, RER BT R, R R K
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T, ERAQ THRAZRZENFRATHE,T A1
HUER — D EEH L,
22 FEMRNBEXNRERENEIE K W%
HERGREAGRRET TRENE A, FHLR
BT RA R, EE 0 DL @ F . DNA B4
HEABEAM EH RNA B e REals, =
FEaf P AR e LR K, BAR G HEm I K
B, REAEHRE T Ak A KN BEN
H, XA B REF e TGRS R
B B O Rk R AL SR, R R
FEFHAE,
FNEERAZER ARG LE  EXHT AL
AU ETMESTHSETESHARAT., U
JE R E 5 28 AR B S #5400 By ], TGF-B 77 Notch B
1K 4 5 3% 7% SMAD4 71 RBPJ, 3 — 3 3% v& 22 4% 40 Jig
BE S E S E BT, IXRe! " MR
ML (DCs) 89 K & b % 2| & Wkt 0y 12, B B F
IL-3( Nfil3) % 5 #7 1d2 #7 %] Zeb2, 72 41 kb 4 ¥ 7%
FERBFEEEA, SR kb AWETLEER,H
BE R R m ™, BRKE AR T REX
RPFEER, UNK@mAh, EXEZHFHTF
A, AE B H2A X322 % LB MYSMI 3 3t fF 41
HAKI9 22 &5, 4& 1d2 £H B3 F4 5 N3
S (RHE 12 B R4 NK 4 g 2
TR FHEEN T 88 %%, &2 R #E %
BEERCERR, SRAERZEEL T2 NEELR
FRRKMEETF, RERMARERAFWIERZ—
X7 $|, — % @A B T & RAVR AR E 8RR
A ERERERNMWREXX SRS MHERK, X
sl TRERENEIFAR,

3 HEHRIE

31 RURBUS REZHXEHTLLEF
Rl THEEO TR AR F T, H IR
WA THE RXEEBEHTENE, ZEREE
REENERZ —, RUEREEMFLFNEE D0
EREANY R EEONEERAAREZE A
Ho F 3 5 AL IR 25 ] B 4 L Y 5 T E R 00
AR AL A A T M A A B AR R LR A
B2 Rk g e L R A ey R B R O T, AL
B LR FERASRE, RER B2 ¥ K,
R G2 R R 5 AE SRR R O\ AR B AR
RAAABGBERS, RAKRERZLED,
BRI TR M ey HLA T LU 4 D B
i, (R 3ROR AT DL B A AL R M AR B

R P A R AR R I R A B RORE, DA RBE B
B RN, R ARRRUEREE Q8 %EL, 8
M ERAR TR AED RN EFRARMEF R
WOEREIRY BB EREIEHN TR, 254
WEFH R EEERRE, FHA(ROS)H u, ¥
7% Nod % & 3(NLRP3) , 5| & 3 E Bk R, A i
F 5, QDNA #1473 , Fr 4% b DNA F 4k ik
DNA #1%5 & JZ (DNA damage response, DDR) , 7 %
T DNA EH|HFEHR, FRAMKE, REUM
t DDR 3 7E 4 By T8 3k 20 3 & A6 36 dm , A Bl 3R 1
g OFTwpELER, TEOREEETEZN
dpE A REETE MW KEREF S
MEF W FammmEah, Tamst ko,
WHFHR, RAZEXT ;@9 M H FER, (2% H
FEBUEREIRNREREFTREZMER, KR
RAM W EEREEZ L RBEFFRREFAT
FEP,

RUEFLZWREAETHRMER G KB, KK
EFERNEEER, h4 8 ETREREIE X
HERUEZESARBEE LY HNELRE,
32 RMEFEBWNALABREHEN
321 AMEXAAMGH A 2020 £ AT RF
#(2019-nCoV) & % A 2k, B H # AL Ak 7\ % 09 &
#H R M E RIENRRE” A IL-6 Fn C KB
A ( C-reactive protein, CRP) By K -F & B # 5, # it
FEL o 4 flL OB F T Jf 9 0 2 S8 A0 3R E R 2k L By i
7 77 N, A3 IL-6 4R (IL-6R) = IL-6 By & 57 [
o, ATk E " E R H AR

COVID-19 A H 30 /™ & itk B 40 g o 2 e An
MR A ER PR A R T S
20 JL T A R B AP R OE RRL, R EL 48 LR D & WA
w0 RE RN R E AR EY, COVID-19 &
# W 7 £ SARS-CoV-2 #F f M 8y CD4™ T 48 jo A0
CD8"T 2H ffl % & BL 25, 9K T 40 fL 3 15 T 40 i R BL B9
WTEEERE T COVID-19 th = & #, CD8'T 4 M,
S OB = COVID-19 B| A2 10 JE 47 45 th — b %
FEHLH Y,

F4E AT COVID-19 % 3L % F e by 5 &M,
BHXOREZTER AN ZZAE W EER
B, FEAMKE A T E (Interferon, TFN) p 2
Z ARG F G H B R B R B, SARS-CoV H 1
H 1AL IFN R RL, < B % 16 F 8 CD8™ T 41 il K.
BA R E, FEMXE 1A IFN R 58 5
BEREWFERTHEEX BN 2N, FEE
42 A3 SARS-CoV-2 g 5 B M3 7



<314 . P25 5 A REh 2023 4F 3 A 56 36

322 AsMEEAAemGSa  HERENDRN
NERETEEEAAN, R EENCHE, OJE
R A MR EF BEFAEKE T,
T B 40 fA R RL, SF R 3k TR B B 4 e A i
T G B TL-17 7T 5 00 JIE B 4F 4 e e
Bk ga o 7= A B LA KB F B(TGFB) , fL % ) & &
K ¥ (VEGF) A1 & 40 j. /- % 10(1L-10) , {2 3 #
&R DL RCR S B R

BE & 4 B 38 K00 Y 1) AT b, R B A
FEFRE, FBCERR, BRCEREDE S, X
FERBRECEEHAEHRAEEEL AR EFQ
JEH & A E % 3% AT & B E % 40l & CD8' T
Y, REAREFEER AT, B RS ERF S
SR 4,2 38 Ao B T B — 5 B R LA A 3 7 A
REZRWBE,

DL HILAE 28 ) ,95% DL i o 4 A BOR B
Jok 36 BERE AV BT 3, R B Bk B A B e B B B, i AR
EHEWNBFFTRE, W R M, RAKMEZIR
i I, Bl AL fL 3R 38 AR LR 5 R B
7 AN I =5 &R AR R O bl A
JOt AL S B T 56 T R A (R 3R 4 e B - A A
MR, T E R R T A B R R
24~96 h, B Ly6c = B S A% 40 j M\ o 7R 2O\ B o
0 E AR, B R R BB T A A F, e IL-
23, K 3 55 K 0y yOT 2 g 7= A& 1L-17A, IL-17A 3# it
CXC # Ak B 7% 5 o Wb 40 f 7 3, 0 38 14 0R 7 B
TEASHATEAZ LG SN T

4 G RGEEN T BibLH

4.1 RNBHEATREINE Wil 05 %
BENTRAEDEREES W, EXTHARAE
B A B A T P R, R B M CD8T T 4 A A 4
MET @M HEI T 4ty A8 o ek Wk
A A, dn g E AL 4 E B H3K4me3 546 R 2, DL K
%) M 4 & & H3K27me3 0 ),

S AR K B9 DNA F AL 7T DL 3 7 o A
KT KA B R R R, At
A A EE AN CDA T %M & &, Bk
DNA b B4 3 K 7 T 0 3t & W A5
P Mk B DNA W B E T @A F
FEHEI, N EEEGITRET HOEKRE,
42 IRERGREMEM—CARTHBMEE #4&
LR Z K (chimeric antigen receptor, CAR) 52 — F# Gk
AEE, AR AR BT g B (scFv) i
Mo B A A, DR & CD3z th W12 515 &

M, 5 K # 4 F 4 CD28,CD137,CD134 % & |
FAEEEBBEAK T @A KENKEL CARNT 4
BB scFy AR E R HETE, LT
KA MHC #h 7 R p0#0E ™, NK 40 4 8 3t 5 % 40
MR RIAN NKG2D RA| X A EX WM, F
HLOCAR-T A e T #rE 4 LR L F
NKG2D, B HE KW HEETH A, E, BET
2 T 20 3R 7 3% 2% 40 i & T W9 NKG2D B 1R 7% e %
HU R FE BT R AT,
BEEWLTNATEXARER, BAAHR
FEMRIOHAA AN, ERENARERET A
FHMT A REERN, REFFENERE
THARKBRUARFEREDE, 2 W, #T
AR A A KB E R EE AR,
43 FBEHREETHRE FEAEZARLHHAES
SIRAEGETR, FEAARINERARIE
WgE=E, THARERRERN KT AERH, X —
HESHANEXT @ARNFEZZ NG, BT xR
TV S LT DA R s
—MFERERA SRR RTE L
R, ERTFENEE AT AM,; 7 — M R EA
R R LR SR ST A R A R
FEmFap, AT T aREZELN
AATHRERN, KEXRERZARNE N,
HAEERA UNRERZE, TRLEREE SR
EAHR,
4.4 ZRIKTNEEET &R Rt T4 e ny & A
ENEFEFHEERXEE, SN E NP
S E R A (ROS), 5 20 DNA 4717, 3 fr X 3 %
PEWT S R BE 3 b B 46 45 fn 4B, mtDNA % 3
ROS &, 4 T 15 & 1655 B 1L oh fik , 3 — b 3 58
7 ROS ty B, & WM& R ROS 1 IMEN 55
ST, k& p53/p21YM Fa Rb/pl6™ @ 42, & B
Je 3 S a2 B 4 L)
SRAEGEER LS HESTN T AR,
M TREER AN CDAT 4 M, kB HE AW
CD4™T 41 g o 4 B v 1 B W o B9 o B T 75 4 R iR
BB X R SR — B A R E
EEEARETH AR LR, HFE R
B AR Bt T 4 AR — 2 A
fER BT RIERE,
45 FEHEXESERAT ZHABRWEIEA
& DNA 145 K 5L 3F A8k i B-F FL A 4 B ( se-
nescence-associated-B-gal, SA-B-gal ) 7& I 3 7% | 40}
JA B & A K B4 B (cyclin-dependent kinase,
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CDK) 4 4] 5 p16™* Fu p21 By 18 3 fn 5 % 4 %
NWERPEEMXFRLE TGRS, p53 &
M FEWHEALT 2 8 E KK, T Akt & p21 2
P53 % T4 ML K P oL F B T T 77 4, AMPK
Ity p38 15 T th T 1T 30 3 kL e B Pk | 40 R 3
MBI ERET R, TFNREF T T AN
FH

e TR BN BELENFFE T RANKE,
#n [ p38 A PD-1 ¥ DL 3 58 4m g 3 78, 41 % p38
MAPK & 5t ¥ LLiF S F £ CD8" T 4 ety &
MR EsE R E MY BRA LG T EEE
Z MR, KB R E BT R,
4.6 MIRRFEAE X & MAR /D RUEAT MRR AL AL, T DA
IEANRT @R ESE LT 2, /NR M %z
WA, FAHMBREETE X LRGN AEH R
i, vl T 19 R o B 1 AR B A Ay Ak Bk PA MR R R
BT FR, BWRLE MESEEEA G E TR
RKUELTHBRE, SRt Tamtzm AR F
REMRZHERBIILE™ , BR FE%AHH
BRBEAEEN, UK EEEANT 4010 A
ARA, WHEERN RIERE BT F &,

B —F RN Z#ET T 20 AL 2 88 (pro T)
MM EmREAA, Pro T éﬁlﬂﬁﬁfﬁ)ﬁ,ﬁi)@}ﬁm
CD4 B[P CDS 2 HET A EH % pro T
RS T MR T @Ay EAD ) B
pro T il AN %llEﬁ,%’ﬁ%z%~*/Fﬁ'ﬁﬁT<%o

5 g5 EY

REELFANEZR S, HEHXIKRERE
WeE XM ERFERRKTEEANETRE, L%
I HERE WEREHNZEFRET AH,

MR K HI N R R E S REFA
X AR A G R ey EE R H, MR A L
BEEAMBRE RN, BEEEA BT
EXEE, AXAHQTEENLERANYH,H
MEAN A ERITT RERENERAINE, 247 T A
Mk TRz RET A B TATHE, &0 CAR-T
BT e m B T, B BRAS AT R R R
Pty ity wE, BAEMMATHRMELERERES
WAE ERBHEAHHAR LR, ALLAAE S
WIEZ R REN T R F R, REEFABRKN
# AT,
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