A TR 2R

China Biotechnology, 2024, 44(6) : 41-52

DOI:10. 13523/j. c¢b. 2312051

(8] 72 J5T T 2 e S il 0 S0 BT 21 4E L BY
WLE R E R

1,2
Flit &

R F’Hﬁif’g\zﬁ"l’“*

(1 BHBERICY B 341000 2 SAEFHACES — HHR BEBE TAURIG IR A Tl BOH 341000)
(3 WM AN PR B T ST B 341000)
(4 BRI TN B AL T RB R S A% B 341000)
(5 BHIERHICE DRI IPRABA ST A0 B 341000)

WE AT 4T IR IRE 7 AR — KA, B AR T @mle TR Taamagie, 2R L
T AR 64 B M AR RS AT E MR KA A X B R LSRR 1) AR T 4a RS kAR A
R BAKAY R LB A BB TR A BE R R R, B TR T e e Sh b AR A
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LT AL 2 B TR T 4R — MR, T AR
i (hepatic stellate cell, HSC ) 1% fk 42 I £F 44k & 4E 1)
Friio HSC i BR T T 40 M 5 AT 52 4 B2 40 i (liver
sinusoidal endothelial cells, LSECs) Z [ii] , ##245 N A 474k
AR AP E MR AORE S o AT, — D7 T
AR LASS 530 Ty OB A A R 3% 46 HSC, 55—
T 4 1 P55 A0 ] ST 5 W 40 40 s TL-1 B A TL-6 il
HSC i#t—iifk, B4 1516 HSC (activated hepatic
stellate cell, aHSC ) BE A& 38 i 4> Wb 5 1k 4 K A F B
(transforming growth factor B, TGF-B) 4E:;: B B iH LIRS,
SCRE 5 Ak A WL R 2T 4 4 it 73 98 1AL R ) 2R 1 (type T
collagen, COL-I) | MI# i Ji 25 H ( type Mcollagen, COL-TI)
o1 WL Bh 2 B3 ( a-smooth muscle actin, a-SMA )
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B RS T am sk bk BFARLEAL AL

AL SR o

S JFEL,aHSC AT i 5 4 A B 1 AL U i )
(tissue inhibitor of metalloproteinase ; TIMP ) 4338 AR fefi
RIS . B2 AE HSC 45 G A% -5 4i B Ak BAS T AR
BT RSN, WWE 1,

[] 7555 T 4 il ( mesenchymal stem cells, MSCs) & —
KAWL RE M ZRE T 400, K iz 0 A T8
B8 5 B S RS R BT, MSCs il IE
ARG AL, 08 3 4% Fh 7 g AT £F ik, Hok
JEHLA AL : (1) 43 W 2 2 K I F (hepatocyte
growth factor, HGF ) 5 i 983 TR %€ [H 7 o ( tumor necrosis
factor-oc, TNF-oc ) #1350 1T 40 0 389 4 O 19 o L o) g
(2) MISCis;it 1:F 240 ff 1] 3 fih 58 73 0 PR~ L2 410 1) 9 92 200 i
FROE 5 5 (3) MSCs T i ] aHSC 35 KAl o T2k s
JFEHRE s (4) MSCs 1] 5 5] 734 Ay A 48 2 A0 1 )
JIFARML . BB AR MSCs 75 T IES 75 Th JE B HE A4y 7 3%,
{ELPSI AT 68 1 S50 P i g P R0 B L 1) 4 K 4 i) R
FEFE LR T MSCs [ RIS o
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Fig.1 The molecular mechanism of liver fibrosis occurrence

[a] 75 J5& T 41 Jig A b 44 ( mesenchymal stem cell
exosomes , MSC-exos ) Y& J7 B 1 g fift e b ad [n] {8, 7 JHF
2R 4EAR YT 5, 5 MSCs A H, MSC-exos E"J‘fﬁﬁ’ﬁl‘]@
T =M E G R T B 5 EA MSCs AR R Y
SEYIRESN AT /IMA R S AR S g S S By TR A
DLl B 5 Heu, o AR A T AN A AE

— A BEATR IR B B XU 5 B3 J , MSC-exos 5% T HL
e T WULF 4e AL A1, L mT 1R S 25 ¥ B A Bip [ 36 97 I 2F
Ytk ST MSC-exos & HAF QI 2 AL H, 1B H | XS
MSC-exos 357 I 25 4k Ak B9 B TS AS T8 B, (A5 20— 20
RIE . AP, MSC-exos IGYTHEFYEAL W AFTE BRI , tnfr
TEFE IR aHSC Ry 55 /MR 7 B AR L 28 2 BB 7 8 1%
BRAR S IR AR e . R, FE 3 DL MSC-exos
TBYTITETHEAL g 32080, %5 |32 MSC-exos $2 AR 22 57
HYE R PO ETHE LI S MSC-exos 1697 AT LT 4EALRY
AL TR HEA TR

1 MSC-exos FJIEBI 5 X E

1.1 5[ MSC-exos IREVHIR ERMWEZ

L1 $REU7 % Wl TR G 8 7 AR $ 0 MSC-
exos I FETERRAE OB | &4 AAIK LA B P I A4 7 6 55 4l J3E
BARAE R AR, LAk B T 28 B ik AR R
IR RS IR R R R QW%%E’%?&M@
BT A T 0 S WA A4 43 8 R A AR 1 R B gy
aEhol, ﬁ?ﬁf%ﬁ&ﬂtﬂ&ﬁ?%%ﬁifﬁiﬁé@B?Zﬁ~z5
FETH AEAAFAE A (i A SR i A i, IR AT
WFFT R, A6 (P 22 3 3 50 B IR I3y 1) 78 o T 240

ML b W & ( adipose-derived mesenchymal stem cell
exosomes , AD-MSC-exos ) I}, \ Western blot 5 37 2 41 iy
{CEERIN A B, 547 2 h A3 h 22 HUR B L0 AR HE,
471 h 2119 AD-MSC-exos i J& f5 #5 , #ER SR o
BRI UL, B T 4RI 251, B0 I ALAS [ % S IR A Fr) 42
BAAT 2 . GOR R T R B R IR A IR B
B R A A BEFEE S B, X AR [ 2k U8 1)
FEAATHNIAMA 3 25, 166G SR IBOETE SIS A 4l 2 15 7 da
A RMARICR A T B SR IR iy L, XA TR RE A
b8 R RC A 5] S Oy 20T 1 0 1 15 31 14 S0 A 4l
JE A Rk B R . B AT, O B — RSB A
Gy B ITEIE G A SM MRS, BT DLBE XA R
AR B AN [, SR FHRH L A4 Bk s Be 5 4 JOk LA 2
ANTF SR o AN [R) SR IBO : EBR m 3 1,
1.1.2 5|# MSC-exos M R ZFWHME X R
TR ¥R 5 R0 )Y 25 S Ah, MSCs By 37 07 A K
MSC-exos A [A) L BEFZ M MSC-exos £EHL .

(1) MSCs i3e 055 Frab 35 A WF5E R B, 18
S R B O BAR R, 28 3D Bi5%1% MSCs P42 MSC-
exos g 2D HE IR (1 20 1, 3R B MSCs 75 3D 1 774
T RESF B BT £ MSC-exos, i% 2l MSC-exos [ BRI 58 5
I R A1 T — A B A 2, A B R B,
KAV ARG F7 MSCs F A 20 41 i 73200 14 v 35 1 240 i
P71 (0 IL-10 \TGF-B 25 ), T S 52 Wil I 417 9] 78 Joit
411 it 48 fifs 4 54 ( human umbilical cord mesenchymal
stem cell exosomes, Huc-MSC-exos ) H# miRNA [ 3
PR TR, EEURRIR R B, RG22
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Table 1 Advantages and disadvantages of different extraction methods for extracellular vesicles

BT s B SCHRA TR
BB NRSNASGERE, RS B BB BT K [13-14]
SRS b
SRR s 52 AR RSN BORAT SMBRPYER 0 9035 52 pH [15-16]
AT R
R WL BRI R AT I S B AR U, A BRI RE [17-18]
AR 55T E SR R 1 WK W S A [1920]
BRI A A
FROPHEBLG SRR FERET S BESN RSEIE e A SR B R [18,21]

SHBR TR0 MSC-exos 7 A, 30 23532 Wi FC PN ¥R 4 1 T
B B B EZ R PR A, Al BT Ak B 5 A 4 A AR
AR 3 PR B 56 1 22 5 ] MSC-eos HRIR™
25 EFTIR, XF MSC-exos HYFRIR, 75 75 & MSCs 15 77 45
HIFT AL BR5

(2) MSC-exos SRR A BF 5T A BL, H5 A [ B 2
MSCs FFi 1% G0 55 F i b, Il 18] 58 52 T 20 g ( human
umbilical cord mesenchymal stem cells , Huc-MSCs) 4= K
R JFH L FEARRER IO T, Hor B i S A H
QR HABRN R 1 4 % 5T 5 RIS B e S ™
AR, TR BT TR B E e
WFFE B, A fd R 2 0 5 2 B Hue-MSC-exos 5
HREI] 58 5T 40 2 40 W8 #A (bone marrow mesenchymal
stem cell exosomes, BM-MSC-exos ) i}, Huc-MSC-exos JG
P I 4l B 54 T BM-MSC-exos, 1fi H., Huc-
MSC-exos X 545 R B 6 I7 ORI T BM-MSC-exos,
P Hue-MSC-exos 3 A /5 {67 H &1 R 197
5o XALIIE ], MSC-exos LG T HEH 75 10 47 75 5L
fi] P ( BI5 H A MSC-exos 3697 4 LU, HE Al MSC-exos 1k
BAARBIRIBIT AR EEAL) o Akl L, #£ MSC-exos
TRIT IR 2 AL 75 T s i AF TR S B R . I 4ROk,
MSC-exos 597 I A7 1E 0 ] PE X — BL 4 2 i 15 2114
LIRS, % TF A MSCs-exos 75 H2 BUHCR Al
PERIRTT SR T 47 25 5%, % MSCs-exos I4IUSTRYT

ZE L ik, MSC-exos B 7= fBR T 52 H 7 15 Fl
O AIARSCAN , — @ B EE I T H kA MSCs K%
I 07 AL PR ORI . 28R, 0 T AN [A) MSCs, H 20
ZUrE T A — B2 BN M M 5 Al AN T
22 BT 2 200 451 403 25 1 D0, 31X BVF 2 5 i) MSC-
exos MHEHL, H A, i JC—Fh PR | & &% & 9% Hoid

T RAAFRREA B S WA SR T ¥ o R I, 3205 1T 114
WFFEATS Bk EE

1.2 MSCs-exos X F

1.2.1 A%z irE  EHPR2EE 2 (International
Society for Extracellular Vesicles,ISEV)2018 EH#LE T 4k
RS AE BB AR S B SR (1) BARAE: B3
ANPHPEE A B (AL 1B R A 1 i
BEE ED) AL ASBIYEE B BAR S . SMIBA R A
JbR SPGB I H CD9 CD63 [ CD8I, LI K& % i i
1 HSP70  Alix [ TSG101 ; SMbMA B P 11 Bbr a5 ) 4 4%
AN A% E1 Histone 3 | i /K AR EE 1 GM130 1P J5 1)
H A Calnexin, (2) MASRAE : F LB A48 K URLIE
B4R (nanoparticle tracking analusis, NTA ) WLZ2 4 b {4
W R/NSTEA . (3) BAR% e A : O o
%% (transmission electron microscope , TEM ) /3 #f #p i 14
TEAS , RN R FTIE SO [ US54, v e A IR
HL TR BE Iy, 320 5 M 20 A 4R v @QNTA IR: 42 7y
i, INIMASKI AR 43 AT W {E A 40 ~ 100 nm ;) Western blot
G, A AR [ 5 B B ik

1.2.2 f 5] MSC-exos #£ £ & 7 W £ 2+ HAHIC
AR, L2 XS FEHUA) Hue-MSC-exos 4748 F Fi 4127
A Hrit &30, Hue-MSCs 5 Huc-MSC-exos [a] 4 — & [ /5
PERNZE S o [R] BT T DA e W 3% A D Wb A iy S
F Hue-MSCs"™ #6752, SN 17 16 5 s 5 A
MSCs FHICHYEE F1ST, ATAE o 5 H A A 1A 22 S 1 4 2
Mo A MFERY], AR MSC-exos 7E1RYT CCl, 31
JHFET AEAR I B A 7 8 ABAF ARG Y7 T X — BN ZE 5+ o
Hpr, AD-MSC-exos 312 55 53 20 g A1 i 0 i JH- 448
BB R T 2T 44, T Hue-MSC-exos J i3 4T 2 15 JH ik
LT 4Efe . AN [R] MSC-exos YR Y7 [F]— % , HoAl
i) b 422 St [ 42 6, AN [) R 5 MSC-exos HI AT REFF
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TER R SE S R o 25 E TR, S A 3R J5 MSC-exos
I 17 6 L e PR 68 s o A 1620 TR L JIEE 45 4 s A2 0 A
WE(E > 40 ~ 100 nm % /0 3 ASPHMESE I FURT 1A P4
BEETAREY) Sb, S0 T IR B bR A, R
MSCs K AFTE R R e PEbR S W) o B H AT B T WA A
[Fi] | S B0 M B 5 5 (0] LR AN BB T B 8. B, O T 3K
15 4l B H i MSC-exos S 5T 35 BT b 1 fif H: R AE ¢
PE, XA ] SR 5 MSC-exos ¢ 5 PE AR i 4T #R 58 02 4
B,

2 MSC-exos &7 FF A4 BB FEEVLE

MSC-exos PRI 1Z | S J5t M AR S Jo U 1k
EARABRE) Z . BT R A 4R R 2R
LR 7% , MSC-exos 1T FFEF4EAL B ML o SR B2 AR
HHET, HGy7 E2 5 LUTF o5 (1) @it B & R
(MSC-exos NS & A A 4 i RNA 4 i 5+ S 551
FETAE ) AR (2) 8 i 34 2 25 Wy 9 75 =X )
e REVEM . AR X MSC-exos BL#EAE FHALI K MSC-
exos [ EAE AT B4h .

2.1 MSC-exos Hiz{ERHLE

2.1.1 4% HSC L 5678 HSC G b 54 5H 2
JFET b AR, aHSC REREE 3 43 W5 TGF-B 4k FF
HARAARES | SCREHE A0 Ay LISGET 4k 200 A 43 006 K S 2
HNIEJTL, e R SR IR AR ik . R, DL HSC S 4 A5,
PR FL IR A S G B R P AT 4E LR I 2 — o TE
DEN/ CCl, 75 514 i 45 4 Ak /N B AL | AD-MSC-exos
A0 HSC {5 £k 0 8 950 20 e A e 5 A 5
BT 2 It e FH 2 A, 8 50 RO B, 4 i o 58 47
Uik, A TSI, K BM-MSC-exos 44 A CCI,
P K BUF£F 4E A Y J5 , Wt il g% o Wni3a | B-
catenin 2557 (4 2635 N, COL-I 1 a-SMA 3k
1%, iX Z2HH BM-MSC-exos i@ i F ¥l Wnt/B-catenin {5 5
A8 FISC I At i i AP 2T 4 A

2.1.2 {H AR R AT B WFSR R B, MSC-
exos REIA I PRAP 52450 19 JFF 4 A S T S o 0 1 B A1 o 4
AR DR AP JE RS 7 FH kS 27 Ak . R 58 N B R
I, 4 Huc-MSC-exos V& I7 Ji , FFET b/ BUH 40 A ) 4
A O JA T B b, 5 R R A SR B
URIAYT A H , Hue-MSC-exos H A 5T B (. (1 41 480 fk AN
JRAP P o A 525 W], AD-MSC-exos 3 1f T
JAPEPA TR Bax FF i T 4047 8 12 Caspase-3 £
Ik SN TR Bel 2 Y ERaA, (0 JH- 20 i 0 oD,

T ke 3 PR AL [RIRE M, e 58 45 BT 5t 3iE
ST MSC-exos T fig i i miR-21-5p B 240 ] PIK3R1
s PI3K/AKT 5538 #& 40 i BRL KB4 T
SR, WA BF5E 48 Y, MSC-exos R 4101 JH- 240 M 95 T, 1B
XA 3 B R VR R AR R . I, MSC-exos
S 5 HAT O AR AR A 15— 2 BRI EIE 5

2.1.3 FEEmAmEAEL  FEEXIMBIADTR
AR, R B 22 (ARG 6 W], MSC-exos ]38 £ I 45
I I 200 L R A R TG S AR SR o Tian 251 5%
R MSCs B L AL AEAR JOFE BEE ke T o0 Wb
HIZN B, Huc-MSC-exos 114 miR-148a i@ 1 ##$5 STAT3
FRIRPNE] M1 B4R R B A0 I IR aE M2 RUHT R B g
ZAR MY, R T 300 T A AL R . RIRE M, Hu 267 o %
B, ok B AN AMA ) miR-142-5p ] 3@ i CTSB {15 B
IV £4H R AL A A e I 21 Ak Akt g

2.1.4 WO RREILA L4 tb it i KA Z Pl
25, B, CAKEVFE R, MSC-exos 1] 38 i3 J /1
JRE BT AR DT 2 38 4R 4 Ak . A BF5E R B, AD-MSC-
exos A L& p38 MAPK/NF- kB 3& %, fii /MR F4H 4
o-SMA A1 COL- T Bt A8 ARG 308 11 e 38 FIF£F AL . Ma
s l40) B 2 s % R, BM-MSC-exos ' circCDK13 3 51t
miR-17-5p/KAT2B %4 PI3K/AKT Fl NF-«B {5 =58
B, A B D TR A A B A S A4 R T AR AT
o [FIREHL, BEAS T A0 BT IE AL LU0 et % 2K 1
25 7KK Hp s, & B, Hue-MSC-exos H 1) miR-373
AL S 2 B R TR, DT e T D e

2.1.5 HAHLHE  BR T _LRE WAL, i — Lk
BRALH], N5 T HSC BT A4 LSECs B 40 I 45 1k
EIEUCE A etk rh de B — e EN .

AR B, A WEH IR S AL ) 4 (glutathione
peroxidase 4, GPX4 ) VE A R AE.T- 1 3¢ Bl ] 4 R - 76 )
BERFLT Al ke 35 — R AE . 1 /DN BRI £F 4k f A 7
w1, Huc-MSC-exos il 138 3% BECN1 #j14] xCT/GPX4 5
BEAETIFE S HSC AR IE - DA SE BT £F 4 A i %, it
A, B WA IR B M 9 T o AT BEAE MSC-exos P 15 1Y
HSC UL B4R . ERYI I & B, LSECs B
A 1M A8 Ak AT 75 5 g B I G AR (R I A
SERME RO, BI697 M 4F 4Efb B9 B 22 #0845, Hue-
MSC-exos o1 7 A 112 & ¥ 5 M IKEE 9X (ubiquitin
specific peptidase 9X, USPOX) 7E{A P AMa 56 Hh 1 £ B HH
M LSECs T 40 i 5 6 AE o 78k — 25 058 ik
A, Hue-MSC-exos i 173 336 3% USPOX ik LSECs & 4 Iff.
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2.2 MSC-exos B E B /E A (A EE R X AW AKX iE
TR 41k)

MSC-exos MU A HEA MSCs Hit £ 4EL 1 A4
YT , 340 PR AT A 2 M R B v AR 1 8 T B T
LR AEARIR YT BB AR o T S AP IMAAE S R AR
5 AE U [R) 25 W s I 27 AR TR 7 Pt i EE B
YERL.

S 55 FH G PR A 5% 34 Sk 7R B8 DU IH R ( Obeticholic
acid, OCA ) W] 417 il JE V25 K5 14 g I 1 JiF %€ ( nonalcoholic
steatohepatitis, NASH) JT£F 4 {b . SR M7, 75 I R 32 56 T
gEHp, AR AR OGS B AU FE R ) 1T NASH i

W EF A
A s
ﬁﬁ@”ﬂ#ﬂiﬂ@%’ﬂ%%

® @ ﬂﬁi’x"ﬂiﬁlﬁ*ﬂ
® ®
QO D

NE-ee HothR

o
FEER %

LFAEAATRARTT IR S oh ke X 2
& ( Farinoid X receptor, FXR) 75 & JE Fl iz o i) = 635
FHEUFFBEXT OCA Fy W] Ko V52 B, DA TS S0 P ot 58 )
PR AT R W MSC-exos 1y 24 1 24 ]
o EIRMI . LA Huc-MSC-exos 2 251 48 1A, 3 i 7k
AR OCA #6785 2 AMIMA D Gl 0% FXR 5 518
i i P B i T g A o R 1
5 Huc-MSC-exos 8¢ OCA HUMIESTFAA LY, SMIAA A T 1Y
OCA 35 16 75 M 38 27 A 5 T A 1>

25 BT SNIMAAE R K AR5 Bk, AL A B B
HUGE I AELRBE ) i i 2 S 25 b ik i 7, 52
THIFEF AR RCR AR IL T FLlw R T (L, DLIRT 2.

WAl s st g
S ey

E 2 MSC-exos iafr FFAHEULIER AR R EENE

Fig.2 The mode of action and potential mechanisms of mesenchymal stem cell exosomes

in the treatment of liver fibrosis

3 RS MSC-exos & f7 BT A %L L 1K
REE

FSRBFFEFE W], MSC-exos BEREIR 5 [ B HRE vl 3%
JFEFHEAL, SURBATE R AR 25 136 3 AR, B PR B 2F i Ak
2y ais i B LG s W R R . e, M
MSC-exos B, P K FLAT BRLAZ 7 Wit 40 it 1 LI 259 g oA
PEANBA R A T X R P RN A LE A
SRR E R I 1 R YRR . ok, A
HSC 24 5 TE 3 JIF I A B B8 40 M 1) 15% , it K BRI/ B
19 HSC 3] o JF 200 i S 5501 5% ~ 8% 1 8% ~10%
I HAELT AL B ol 1 28 15% . |k ml 0, 78
NI HSC i o e 3% &5 E ik 7

T IFETHEAL L AR . — 5 T, MSC-exos JGI% T80 (4L
I J}F JE 5 75— J7 1, B MSC-exos 1T 8% 2 JIFAIE, i T
HSC & HUARAIG, JCikAE aHSC JH] [l & S A7 23R JT e
JE XA RE 2 S EUT A L, 23 5 MSC-exos
HL aHSC HRE S ™ o BRIEZ Ah, MSC-exos 22} i
AN AR — D MERT, DR, fifp R L 3 ) R 4
P DU AT EA A TR SR 2 — o T4k, WH ST Bk
S B, MSC-exos I 24 1y 1 ik R A& Wi 45 07 57 A0 AT
ZRHEAR T TSR I, X L O I AT 4E AR R T 4R 4 TR
M o
3.1 MSC-exos REEE TRIAEMFTEN (RS
1@ aHSC #E/7)
VEZHIFEIRGE 1 n] T4 aHSC A&, 1 a)
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VIR SR 1 3% R 1 16 W BORS S R H R ik e
1] CD44 ()35 BH Jii iR ( hyaluronic acid, HA ) " F1# i) fi
B R E R T2 A/ -6 iR K T EE E-6
BARIR 4 BRI, 3 6 I A0 6 W 11 i % 288 1 22 BTG R
SR @R AR, JCE AR A 0 e T Y. (H2
UTAER  TEVR YT LT 4EAL Ty T AL ] aHSC 55 S Mg 2
(CNE e

CA DI IR BT, DI T A Je 7 R g 4 1y ik
e it aHSC A 1) Bk HSTP1 Jf X% H i 47 %008 ,
Bl 5 K HSTPT 5 4MMA & A2 I 1) Lamp2b fill 5, P
A il ot SR TR AR XM R AT B . B Js F
530, 2 HSTP1 f&1fi i) Huc-MSC-exos AJ 45 SR 455
aHSC , AT ke 2 P 2F 4 4L o You 2% BF 5 to 2 W,
B A(vitamin A, VA) ii 45 AD-MSC-exos 45
G EZES G VE N R AT ) aHSC, b4k, R4 fe 1)
FAR 90% 75 & VA T AR 1 SN A 5 T & 7 62 7y 4
MM L, BT B LA 4L AR L G # 3, iXdE
S R BRI N E R BT L TRl AR
i, Zhang %" o BF 55 BEIF T — Fl IR 5T 1 (liposome,
Lip) FIAMBAAR P A 52 P AT HE 5 25 R G0, % R G I)
BRI VA 184, L aHSCs S8 i, 76 0038 T 45 4 4k
J7 RO AR 3 T 8T

25 TR, i 2 TR B R B i MSC-exos, {iff
Z ELA5 R 8 20 1 B ) BB 7, 32 T B2 R MSC-exos R
I7 LR 2 AL AR, 3 X 5 B2 95 6 b HE TR 7 B 4L TR
M
3.2 MSC-exos BEEH AR N FAEFF LN (RZ 5

IMEERZIHE)

H HITH 0 S A 38 24 J5 10k LA T 22 56 4 [l e 42
oM F, HERBIEZY S M AE 1o 7 gy W 2 AL
T 4 Ty 20K 245 ) 4 1 BT Sl Ak e S b A ]
] FE2 T I 41 06 A 8 S R S 408 105 255 ] 00 i
AR SN 251 5 SN A A (4L A 200 R R 77 b 27 e e i L
B, TG L 53 WA 7+ 1) 286 2 24 90 1) S A, Lt e
Dy sOMELASEA T N T, PR iz 2 24 0y = 35 58 AN
o A ZTMFR R, ZEM =R R, 2L AR A
FEE P AT [1] — 24 ) 2 2 R A T I B, 8 R R
TR Al 3G 0 2k 2540 7 IR, a4 i LA TR A
R e T 3, ST A I A 2R 2 o 1 R R R BT £F
AEALS TR B i T 2T 4 AL U207 T ) 5 £,
T BBAEAR ARG | e S PR AN A 2 24 2 AR 28 1%, My
JFEF AR YT IR LR —2E

3.3 MSC-exos BAE R ERIN AN BAEF A4 (1R
SN FEE)

MSC-exos T B UE 5% il Bl - 2F i Ak , 4K 1 R 3L 7™
SR, AEEER T 5 5 0 PR FH 5 T 52 B RR . H b3
1) EL 45 PN, MSC-exos 425Uy 30 (HU BBk A 32 U |
MSCs K5 77773 I Ab 8% J ok 15 55 25 8 52 i) MSC-exos
7 5l g R 4, B AT AR 5
MSC-exos $EHUATRIER , e FR A 7 48, Lhak 2| SR s A
e 52l R I A AR T A, T B R BT A L R
HBARHATE B MSC-exos A A [ HEBUT 3 T £F
YRR T8 L MSC-exos JRYT I S, HEE T 2411
&R SE  FRETEASK REEAG RHIESK
3.4 MSC-exos BESZ5WIE =TT 484k

AR, A WFFE N 01 & B, MSC-exos T 573254
WA A, (E BT £F 4 fb g ) 15 20— 2B 48, X ki
J& MSC-exos {RY7 IFEF 40— KT R M .

FUAT, S At E (rupatadine , RUP) [N B #4702 4k
fLREI W 12 W58, i iE , 55 BM-MSC-exos LAl A
JYHELL G RUP J697 AT 48 m LIRS R eS8 Ab 1 ,
PRI IFLF 4L . Ellakany % SR & B, 5
MSC-exos B MM ( praziquantel , PZQ ) HLH RS A L,
PIETBRATR YT ATk — 25yl TR 25 i 8500 5 0 o 9
AR BT AT AL RIRE b, P WA AR G A 2
TR JOCA Joo 58 e o [ A e B B 5 Vi 7 1 2 AR A0
Pl FRTIR, 55 MSC-exos % 2454 A T
FH L, MSC-exos B G 25 WA T7 RURTE ML . A, MSC-
exos WG 25 WA 9T T Z8 ATl Ja SR 4T dE AR 16 9T B 4t
%%,

3.5 MSC-exos B EF &I EE 4L

MSC-exos N7 WAL $5IE 4 5% RNA 2K 1153 Fl Aig i
S | 3K B A3 (o L EL A A 5 4 B 00 58 15 R0 AH BV TG
PEETY . BRSSP T g AE RS RNA X T
iy e HoA FEEAERTT . AW, R g
RNA 2 — &M MSC-exos J7 , P 4E4LRE 1 5L
VPR 81— 48T
3.5.1 /N RNA {545 4h b R = AT 4F 4 b Tl
RNA (microRNA ,miRNA) F%22 RNA R4 11 5% 5% 1
TG, 55 4 ML ) mRNA 455 5 AT 5 30 mRNA R i 5§
RELWT 25 11 5 B 0%, DTG 2 5 400 e 398 2 200 L0 1 L ) ol
R 0 S A B B AR Y L R T
FW], miRNA 38 3 9] 5 56 D8]l 2 1 53 3% 3K TR 458 T 4 4
feitEFE
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5 AD-MSC-exos HUAAYTAH EL , 13 63k miR-122 1)
AD-MSC-exos BEfEM i HSC 154k 98> B R TURY, S RE
LAY 7 A 5 miR-122 5 HSC (] (Y3 (5, 32
F 2 R BE Ty, (P RT 2T 4L g A5 Bk — A 4R
T [RIREHD , 3 F2 3K miR-181-5p 1) AD-MSC-exos 7
WYL 4EAL T7 T LA T AD-MSC-exos BUAHIATF ™,
3.5.2 Ik RNA 4 b R B8 HIR
RNA (circular RNA , circRNA) ZE& PR 732 365k
BEA AT HAB R A (Y RNA B AR E M R Sk
HAE T W 7 o MK % A9 UE R % W, cireRNA
£ MSC-exos {7 4L Pl EEZAE ] .

1E CCL, i /N AR 4R AL LA | 28 mmu-cire-
0000623 & 1fiif) AD-MSC-exos H35 JH-£T 4 A6 11 BORA
T AD-MSC-exos 1Y HIGST , HAL KR iE 1 9775 miR-
125/ATGAD & 42 fi iF W 305, iF T ol 58 JH &1 4k
™ BOREAWFIE I8 & B, i #63K cireCDKI3 ) BM-
MSC-exos 75 2§ 3 A £F 4k b7 207 it A7 Br 42 71
25 LR, 5 MSC-exos BLIMGEYT AH L, 42 9E 2 5 RNA
B MSC-exos 7EJFFEF 4EALIRYT 7 1HI YT 408K 0 3%, iX
WP AEA IR P AR A TR R

3.6 MSC-exos BX & H At 77 VIFEAT A 4L

MSC-exos [ T LA LM & 75 b, i A HiAth iz 42 e
BEAC LAY AE F , 40 MSC-exos 13 ik HGF F1 MSC-exos
Fisab PSS

Yu 2 F5r 2200, 55 335 HGF (E AD-MSCHGF-
exos ) ) AD-MSC-exos fiEf& = ALB.CK-18 il HNF4a 35
5, I HHIP R T8 WL MSC-exos 1647, [lFEHL, 28 v
T Z (interferon gamma-y, IFN — ) T4 FH ) BM-MSC-
exos REHPIEAZ AFIEAHLN 3 st ity ™ .

25 Bk il 1t 73 B MSC-exos 1697 BT 21 4EAL 7 TH
AFAE HIBELET , G5 MSC-exos R ZGBE SR 7= H /N S 42 ]
aHSC RE J3 5555 (IR, 2R BOAS [R] 7 XA R B A ) At i
M3 EALASTTF£F 4E AL BE 7, J2 H il MSC-exos 1E i
7L EAL LA SRS A PR TE 2 a5 LA, H AT A 48
ZHFEFR W], 5 MSC-exos BLIIA YT AH L, MSC-exos Tk
B HA T G TT AT R RO B 3 X AT 4
FRIRTT AL 7R R, H3k 2y A By X A L ZH 2R
ARG BAEE R H AT R EM R, SR
R TG AR YT 4 R MSC-exos JRTT ATFLTAEAL Y 5
w2,

x2 ETBAATTIES MSC-exos HHTF 4K BE 1 B SR g
Table 2 Strategies for improving the anti liver fibrosis ability of MSC exos based on combination therapy
Tk 1e& EIRUALN BATrik DIRIESTAES
FEH TR Lin %:58] Huc-MSC-exos
A PRHLE aHSC Ay E a3 e 01 aHSC fE ), (4N IBRTE HSC J& [ & 4, i
You (3] AD-MSC-exos
Ea exe UM RE S 18 5 — 4T
Zhang 2104 BM-MSC-exos
BEGHR Ashour %18 BM-MSC-exos 2R SNBARAREE HOA Ry, (R A2 BoR , 8 53d 42 25 MSC-exos 19282y
RO, W] B SR AR ARG YT A
$EOoT - - PR INBEE HO R RIGOR , SRR MSC-exos 32T 20 ( BAH IR A $R 1K
%) MSCs 537 0730 B b P14 Ko, 38 ik 2 w35 S 4 7= i,
A BGE ) RE
KA25%  Didamoony %5 %) BM-MSC-exos FE Al il PAF/RIPK3 1 TGF-B1/hedgehog {55538 i , LK R HL R |
Bk, 3 M GE 41 i ik
Ellakany 2t [70] BM-MSC-exos i s ] BM-MSC-exos 3458 T N SR I8 97 R0
Ashour 28] BM-MSC-exos REBER E2YI T SNk ) B BT LN k= % NE R SR & STTIE A= AN A
YAy ik
Agizsoltani %155 Huc-MSC-exos L NRAiEN PG FXR 5538 B, 48 98 240 MO AR BT i
Zhang 4:(64] BM-MSC-exos FE 5 MSC-exos [ R  B W5, 95020 40 i A1 35 55 TR, 32F 1 el 35
2144k
3L & 34k 7] Huc-MSC-exos iF ik miR373  ihFik miR-373 T LX2 4l TGF-BR2 FiAFIK 548
Lou 417 AD-MSC-exos % miR-122 B4fi 4 miR-122 84 J5 ) AD-MSC-exos 1l HSC i £k s 20 i J5t

DURR A A2 2 1k
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VEN 1E# PIRTIIEN HARJr ik BLE 5 %
Qu %:L76] AD-MSC-exos % miR-181-5p &4 1l STAT3/Bel-2/Beclin 1 342140 [ W , 35 T8 42 2T 2 Ak
Zhu %[78] AD-MSC-exos % mmu-circ- P miR-125/ATG4D &2k B W , o s AT 214k 1k
0000623 &
Ma Z[40] BM-MSC-exos J3 2635 circCDK13 33553k cirecCDK13 #) BM-MSC-exos jifi 1+ miR-17-5p/KAT2B %
P MFGES 23k i35 I 21 44k
HoA gy =X Yu 27 AD-MSC-exos i$ ik HGF SN ASE ALB ,CK-18 Fil HNFAa 3635 F 1, a-SMA [35i5F
W TR T 44k
Takeuchi 2% BM-MSC-exos IFN-y Tiiih 3 22 TFN-y TAL B |, 61200 5 I 40 A BT A 18 a0k i 6 4R B
B g Hue-MSC-exos a-2,6-MEK TEMEIAG BT, BEREH f] HSC 3 £k SLAE 98 2 T 4i a4
LA 1B T, SE AR A7 ZE A T T2 0 1 5 T 20 iy 5
B

MSC-exos #5417 K H A4 ML 1 A= ) 70 1 FFAE 240
I TR 55 2 A, 32 T A VR T 22 R 1) — TR SR et
AV Z 058 Tk B K S8 MSC-exos [ $1 41 4k 1L 45
Pk, RN TR &AE R4y R mns I, BRE
W9 N A MSC-exos 3697 FF£F 4E AL B HLT#EAT T K
ST (EIFBCA R MSC-exos 16T J7 U [A] % He
179326, MeAh, A 58 N GURF B0 32 220 7E MSC-
exos AN[A ) EL— R B 75 b AR NEMR AR A6
AARIGE . MSCs 155 7 2RI IS [F) S5 e (1 2 Bk
RIS BE R Z P DL AT MSC-exos 167 JIF
LR AEA R FP AR BELAS, 00 4207 0 2% I OH i — 28 1 i
TS

PRI, X6 b3 1], 45 4 B P Ah BE T MSC-exos
BT AEAL WIS, A SCEH IREEIR TRL RN, B
5e, VIARTE) £ BE 43 B MSC-exos BRI, 58 17N T 3R 1%
S RE sy RSN, AR H 5 TR — O 1 b
12 S, 25 RO ) 20 5 S s \MSCs 8557 172X
JIT b B 5 AR ] 1) 22 57 o HAK, i 2k X MSC-exos %8
FEIT o3 A, B2 AE A A 6] MSC-exos 71 1 2 fi MK
WS A (G [ R AU 45 48] RL A28 43 A I Dy 40 ~ 100
nm Z/0 3 AR A B 1L ABAEEABRREY)
Hb, AT RE B A AR FE S VR B sl bR i . FR IR, X DL
MSC-exos JG97 HFEF 4i 4k 7 X LR T 1 645, 35 B
WFFEN SR T f# MSC-exos 1677 i1 4E 4L 1 T 5 B
o BT, 3853 Bt MSC-exos VR YT JH-2F 2 4k 18 3] 9 BHL
i3, 4 1 $2 7 MSC-exos JRI7 AR 4EAL DL TR mE , AT
NI A MSC-exos 597 LR 4EAL ST I FE N B $ 4L
Ty TR, W A AT R TR 2

SR, MSC-exos W AHIRYAZ 25 Z2 A, FHN |
SCIHRAE RN, JCEE HERI KL I i MSC-exos 557
L 4ifeid # b B MR i 2 5 b o XA
PR B R 25 RE IR 1) BE Jy 55 26 (] L, B K SO
FEAL T AR AN (B T7 5 5 451 T w5 S S HE R, MSC-
exos TEIAYT T 4EAL 7 Th1 8 A7 15 LAF [ RBUARE figé ke, D
MSC-exos iA77 I 4EAL RO 25 2557 i 45 25 0 s 2 IR 4
B HE R TR A SE . RIS LA AR,
TS BT 5% 55 1 PR R AR 1 AN 55 77, Sl MSC-exos ¥
I7 T ETAEACAABR B, 285 AT R PO JE 2 i R AR o
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Abstract Liver fibrosis is a major problem in the treatment of liver disease. Mesenchymal stem cells can

be used to treat liver fibrosis, but are limited by their potential carcinogenicity, and the large number of cells

required for transplantation. In recent years, mesenchymal stem cell exosomes have become a research hotspot

due to their smaller size, lower immunogenicity and non-carcinogenicity. However, the clinical application of

mesenchymal stem cell exosomes is limited for the following reasons. First, there is a lack of standard and

uniform methods for extracting and identifying exosomes from different types of mesenchymal stem cells. Second,

the mechanism of mesenchymal stem cell exosomes to treat liver fibrosis is not clear. Finally, mesenchymal stem

cell exosome therapy has some problems such as weak ability to target aHSC, low exosome production, low drug

loading ability and low delivery efficiency. In view of the above reasons, the factors causing the difference in

exosome extraction effect of common mesenchymal stem cells, the mechanism of mesenchymal stem cell exosomes

ameliorating liver fibrosis and its optimization strategy were reviewed, providing new understanding and new ideas

for the treatment of liver fibrosis by mesenchymal stem cell exosomes.
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