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[ Abstract ]

critical syndrome with a high mortality rate. At present, there is no effective treatment strategy, and the

Acute lung injury ( ALI)/acute respiratory distress syndrome ( ARDS) is a clinically

prognosis of most patients is poor. At present, research has found that mesenchymal stem cell-derived
exosomes ( MSC-Exos) have functions ,such as inhibiting excessive lung inflammation, suppressing alveolar
cell apoptosis, promoting epithelial cell regeneration and alleviating mitochondrial damage. This article

reviews the possible mechanisms about how MSC-Exos improves ALI/ARDS, providing new therapeutic

approaches for ALL/ARDS.
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