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　 　 摘要:脊髓损伤(ＳＣＩ)的治疗一直是脊柱外科急需攻破的难题ꎬ随着学者对 ＳＣＩ 病理生理机制的深入研究ꎬ细
胞移植疗法为治疗 ＳＣＩ 带来希望ꎮ 骨髓间充质干细胞(ＢＭＳＣｓ)来源的外泌体作为细胞移植的焦点ꎬ可通过旁分泌

作用参与机体抗炎、抗细胞凋亡、促进轴突再生、减少胶质瘢痕生成等作用ꎮ 外泌体分子量较小不会引起排斥反

应ꎬ避免了移植 ＢＭＳＣｓ 带来的致瘤性、移植率低、伦理等问题ꎮ 基因修饰后的外泌体将对 ＳＣＩ 的治疗、恢复患者肢

体运动功能起到关键作用ꎬ这为未来治疗 ＳＣＩ 提供了新方向ꎮ
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　 　 脊髓损伤( ｓｐｉｎａｌ ｃｏｒｄ ｉｎｊｕｒｙꎬＳＣＩ)是导致患者

四肢瘫痪的常见原因ꎮ 据世界卫生组织统计ꎬ全球

每年有 ２５ 万 ~ ５０ 万个家庭受到 ＳＣＩ 的影响[１]ꎮ 引

起 ＳＣＩ 的常见原因有交通事故、高处坠落等ꎮ 昂贵

的费用和生活方式的改变给患者及家庭带来巨大的

经济负担和心理压力[２]ꎮ 因此攻克 ＳＣＩ 这一难题具

有重要的社会意义ꎮ 随着分子生物学技术的蓬勃发

展ꎬ学者提出了细胞移植、基因修饰治疗等新型方法

来促进神经的修复与再生ꎬ期望达到治疗 ＳＣＩ 的目

的[３]ꎮ 然而ꎬ目前尚无有效的治疗措施能够显著恢

复患者肢体感觉及运动功能[４]ꎮ
骨髓间充质干细胞( ｂｏｎｅ ｍａｒｒｏｗ ｍｅｓｅｎｃｈｙｍａｌ

ｓｔｅｍ ｃｅｌｌｓꎬＢＭＳＣｓ)不仅具有取材便捷、增殖快、多项

分化能力等优点ꎬ还可以跨胚层向其他胚层来源的

细胞分化ꎬ故在近年的科研研究中应用较为广泛ꎮ
研究发现ꎬＢＭＳＣｓ 可以治疗 ＳＣＩꎬ其作用机制可能是

通过旁分泌外泌体ꎬ进而传递生物因子完成细胞间

通信[５]ꎮ 外泌体是直径为 ４０ ~ １００ ｎｍ 的微小囊泡ꎬ
其相较 ＢＭＳＣｓ 更容易通过血脊髓屏障ꎬ同时也是

多种蛋白质、脂质、ＲＮＡ 的天然载体ꎮ 因此ꎬ外泌体
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可能是最具价值的旁分泌分子ꎮ 现就 ＢＭＳＣｓ 来源

的外泌体(ｅｘｏｓｏｍｅ ｄｅｒｉｖｅｄ ｆｒｏｍ ＢＭＳＣｓꎬＢＭＳＣｓ￣ｅｘｏ)
在 ＳＣＩ 中的研究进展予以综述ꎬ以增进学者对外泌

体移植治疗 ＳＣＩ 的认识ꎮ
１　 ＳＣＩ 概述及其病理生理学机制

１. １　 原发性损伤　 ＳＣＩ 包括原发性损伤、继发性损

伤两个阶段ꎮ 原发性损伤指脊椎受到剪切力、压缩

力等机械因素引发脊柱骨折或脱位、椎间盘移位以

及韧带断裂ꎬ脊髓瞬间受压导致轴突损伤、血管破

坏、细胞膜受损等[６]ꎮ 受外伤的机械强度决定了原

发性损伤的严重程度及范围ꎮ ＳＣＩ 后脊柱不稳也会

逐渐扩大原发性损伤的区域ꎮ 因此ꎬ通过手术方式

解除脊髓压迫以及内固定物的植入可以最大限度地

减少原发性损伤带来的损害ꎮ
１. ２　 继发性损伤 　 原发性损伤致使微环境发生

改变造成的一系列级联反应称为继发性损伤ꎬ主
要包括炎症反应、细胞凋亡、神经元脱髓鞘、胶质

瘢痕等[７￣８]ꎮ 继发性损伤在时间顺序上分为急性期

(４８ ｈ 以内)、亚急性期(２ ~ １４ ｄ)、过渡期(１４ ｄ 至

６ 个月)以及慢性期(６ 个月以上) [９]ꎬ因此继发性损

伤相较于原发性损伤呈不断发展的趋势且更为持

久ꎮ 其中ꎬ急性期的特征性表现为局部水肿、出血、
炎症细胞浸润、细胞毒性物质释放以及细胞坏死ꎬ这
一系列反应会导致神经元以及神经胶质细胞(如少

突胶质细胞)的坏死或凋亡ꎬ进而导致神经脱髓鞘

改变[６]ꎮ 在亚急性期ꎬ持续的局部水肿以及血管痉

挛会进一步造成局部缺血ꎮ 持续的炎症细胞浸润会

导致部分细胞的坏死ꎬ坏死后的细胞形成囊性空洞ꎮ
此外ꎬ星形胶质细胞增殖并使细胞外基质沉积在病

灶周围ꎮ 过渡期和慢性期的主要表现是轴突继续退

化ꎬ胶质瘢痕的形成阻碍细胞再生ꎮ 而周围囊性空

洞的结合也限制了轴突的再生及细胞的迁移ꎮ 针对

ＳＣＩ 的继发性损伤ꎬＧｒｉｆｆｉｎ 和 Ｂｒａｄｋｅ[１０]提出“７Ｒ”疗
法:①减轻继发性损伤ꎬ保护神经细胞(Ｒｅｄｕｃｔｉｏｎ)ꎻ
②细胞移植替换损伤的细胞(Ｒｅｐｌａｃｅｍｅｎｔ)ꎻ③去除

导致损伤进一步发展的因素(Ｒｅｍｏｖａｌ)ꎻ④诱导神

经元细胞再生(Ｒｅｇｅｎｅｒａｔｉｏｎ)ꎻ⑤补充神经元修复与

再生所需营养支持(Ｒｅｓｕｐｐｌｙ)ꎻ⑥神经元轴突髓鞘

再生(Ｒｅｍｙｅｌｉｎａｔｉｏｎ)ꎻ⑦针对神经可塑性的康复策

略(Ｒｅｈａｂｉｌｉｔａｔｉｏｎ)ꎮ 因此如何人为干预继发性损

伤ꎬ抑制并改善继发性损伤的进程是 ＳＣＩ 能否被

攻破的关键ꎮ
２　 ＢＭＳＣｓ 及外泌体概述

ＢＭＳＣｓ 具有多个方向分化的能力ꎬ如诱导分化

成软骨细胞、成骨细胞、脂肪细胞等ꎬ在特定的体外培

养条件下ꎬＢＭＳＣｓ 甚至可以跨胚层向外胚层来源的神

经元、胶质细胞以及神经干细胞分化[１１]ꎮ ＢＭＳＣｓ 可

表达细胞表面标志物 ＣＤ９０、ＣＤ７３ 等ꎬ且不表达 ＣＤ４５、
ＣＤ３４、ＣＤ１９、ＣＤ７９ａ 以及人类白细胞抗原 ＤＲ 等ꎮ

外泌体是具有双层脂质膜结构的微小囊泡ꎬ在
电镜下形态呈“杯状” [１２]ꎮ 外泌体最常见表达的标

志蛋白有四跨膜蛋白 ＣＤ９、ＣＤ６３、ＣＤ８１、ＴＳＧ１０１ 等ꎮ
目前获取外泌体的方法有超速离心法、密度梯度离

心法、磁珠免疫法、超滤离心法等ꎬ其中超速离心法被

认为是获得外泌体最有效的方法[１３]ꎮ 外泌体含有各

种蛋白质、脂质和遗传物质[如微 ＲＮＡ(ｍｉｃｒｏＲＮＡꎬ
ｍｉＲＮＡ / ｍｉＲ) 、信使 ＲＮＡ、ＤＮＡ 以及长链非编码

ＲＮＡ] [１４]ꎮ 这些外泌体￣ＲＮＡ 可以被靶细胞摄取ꎬ经
翻译生成蛋白质ꎬ因此外泌体作为一种天然载体ꎬ是
细胞间相互通信的重要媒介ꎮ
３　 ＢＭＳＣｓ￣ｅｘｏ 治疗 ＳＣＩ 的机制

３. １　 ＢＭＳＣｓ￣ｅｘｏ 在 ＳＣＩ 中的抗炎作用　 ＳＣＩ 后受损

节段的血脊髓屏障受到破坏ꎬ血液中的中性粒细胞

渗透到受伤的脊髓组织中ꎬ引发炎症反应ꎬ释放细胞

因子、蛋白酶ꎬ使得小胶质细胞激活[７ꎬ１５]ꎮ 小胶质细

胞被激活后可释放炎症因子[如白细胞介素( ｉｎｔｅｒ￣
ｌｅｕｋｉｎꎬＩＬ)￣１β 和肿瘤坏死因子￣α ( ｔｕｍｏｒ ｎｅｃｒｏｓｉｓ
ｆａｃｔｏｒ￣αꎬＴＮＦ￣α)]ꎬ进一步加剧 ＳＣＩ[１６]ꎮ 因此ꎬ减少

损伤局部炎症因子的释放ꎬ促进抗炎性细胞因子的

表达可能是 ＳＣＩ 恢复功能的有效方法ꎮ Ｆａｎ 等[１７]在

体外实验中用脂多糖诱导 ＰＣ１２ 细胞ꎬ随后应用

ＢＭＳＣｓ￣ｅｘｏ 处理脂多糖诱导的 ＰＣ１２ 细胞ꎬ结果发现

ＢＭＳＣｓ￣ｅｘｏ 减少促炎性细胞因子 ＴＮＦ￣α 及 ＩＬ￣１β 的

分泌ꎬ增加了 ＩＬ￣１０ 和 ＩＬ￣４ 等抗炎性细胞因子的生

成ꎻ体内研究中通过定期向大鼠尾静脉注射ＢＭＳＣｓ￣ｅｘｏ
发现ꎬＢＭＳＣｓ￣ｅｘｏ 显著改善了 ＳＣＩ 后大鼠的后肢运

动功能ꎻ实验过程中还发现ꎬＢＭＳＣｓ￣ｅｘｏ 通过抑制

Ｔｏｌｌ 样受体 ４ /髓样分化蛋白 ８８ /核因子 κＢ 信号通

路减少小胶质细胞的激活ꎬ减少 ＳＣＩ 后炎症介质的

释放ꎬ从而恢复 ＳＣＩ 大鼠的运动功能ꎮ 此外ꎬ植入特

定的非编码单链 ＲＮＡ 分子(ｍｉＲＮＡ)可使外泌体更

好地在 ＳＣＩ 中发挥抗炎功能ꎮ
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Ｚｈａｎｇ 等[１８]在体外实验中用 ＢＭＳＣｓ￣ｅｘｏ 处理脂

多糖诱导的小胶质细胞ꎬ发现 ＢＭＳＣｓ￣ｅｘｏ 不仅抑制

了促炎性细胞因子的表达ꎬ也抑制了核因子 κＢ 通

路中核因子 κＢ 抑制蛋白激酶复合物 α / β 的磷酸化

以及 ｐ６５ 的表达ꎮ 同时他们还发现ꎬ在小胶质细胞

中 ｍｉＲ￣１８１ｃ 表达升高ꎬ故制备过表达 ｍｉＲ￣１８１ｃ 的

ＢＭＳＣｓ￣ｅｘｏ 进行大鼠体内实验ꎬ并采用酶联免疫吸附

试验证实ꎬ与 ＢＭＳＣｓ￣ｅｘｏ 相比ꎬ注入过表达 ｍｉＲ￣１８１ｃ
的 ＢＭＳＣｓ￣ｅｘｏ 有效降低了 ＴＮＦ￣α 和 ＩＬ￣１β 水平ꎬ且
此效应可被人第 １０ 号染色体缺失的磷酸酶及张

力蛋白同源基因转染的小胶质细胞逆转ꎮ 因此得

出结论ꎬ过表达 ｍｉＲ￣１８１ｃ 的 ＢＭＳＣｓ￣ｅｘｏ 通过抑制

人第 １０ 号染色体缺失的磷酸酶及张力蛋白同源

基因及核因子 κＢ 信号通路减少脊髓微环境炎症ꎬ
改善 ＳＣＩ 大鼠的运动功能ꎮ Ｌｉ 等[１９]将巨噬细胞与

ＢＭＳＣｓ￣ｅｘｏ 共培养产生外泌体巨噬细胞发现ꎬ外泌

体巨噬细胞移植后降低了损伤局部促炎性细胞因子

(诱导型一氧化氮合酶、ＴＮＦ￣α、趋化因子受体 ７)的
表达ꎬ同时增加了抑制性炎症因子 (精氨酸酶￣１、
ＣＤ２０６、ＩＬ￣１０)的表达ꎬ表明外泌体巨噬细胞的移植

提供了炎症抑制的微环境ꎮ 且电生理分析也证实了

外泌体巨噬细胞治疗后运动诱发电位的幅度显著增

加ꎮ 总之ꎬ外泌体巨噬细胞可以改善 ＳＣＩ 后的感觉

和运动功能ꎮ
３. ２　 ＢＭＳＣｓ￣ｅｘｏ 在 ＳＣＩ 中的抗细胞凋亡作用 　
神经元以及少突胶质细胞的凋亡是导致 ＳＣＩ 后神经

功能出现损伤的重要原因ꎮ 细胞凋亡是一种由胱天

蛋白酶( ｃａｓｐａｓｅ)介导的细胞程序性死亡ꎬ主要由

Ｂ 细胞淋巴瘤 /白血病￣２(Ｂ￣ｃｅｌｌ ｌｙｍｐｈｏｍａ / ｌｅｕｋｅｍｉａ￣２ꎬ
Ｂｃｌ￣２)家族的蛋白控制ꎬ其中抗凋亡蛋白 Ｂｃｌ￣２ 和与

之形似的促凋亡蛋白 Ｂｃｌ￣２ 相关 Ｘ 蛋白是细胞凋亡

过程中常见的标志物[２０]ꎮ 有研究表明ꎬＳＣＩ 促进了

促凋亡蛋白 Ｂｃｌ￣２ 相关 Ｘ 蛋白、活化型 ｃａｓｐａｓｅ￣３ 和

ｃａｓｐａｓｅ￣９ 的分泌ꎬ同时抑制了抗凋亡蛋白 Ｂｃｌ￣２ 的

分泌[２０￣２１]ꎮ Ｌｉ 等[２２]通过定期向 ＳＣＩ 大鼠体内注射

ＢＭＳＣｓ￣ｅｘｏꎬ证实了脊髓神经元中的 Ｂｃｌ￣２ 表达明显

增加ꎬＢｃｌ￣２ 相关 Ｘ 蛋白、ｃａｓｐａｓｅ￣３、ｃａｓｐａｓｅ￣９ 等表达

明显降低ꎻ此外还通过蛋白质印迹法验证了 β 联蛋

白和 Ｔ 细胞因子 ４ 表达的增加ꎬ表明 ＢＭＳＣｓ￣ｅｘｏ 激

活了 Ｗｎｔ / β 联蛋白经典信号通路ꎬ证实 ＢＭＳＣｓ￣ｅｘｏ
可以抑制 ＳＣＩ 后细胞凋亡ꎬ促进脊髓功能的恢复ꎮ

周细胞是包括脊髓在内的微血管基底膜细胞ꎬ也
是神经血管的组成部分ꎮ 周细胞的破坏影响了中枢

神经系统功能的完整性ꎮ Ｚｈｏｕ 等[２３]在体内实验中将

培养的周细胞先通过 γ 干扰素(ｉｎｔｅｒｆｅｒｏｎ￣γꎬＩＦＮ￣γ)
及 ＴＮＦ￣α 预处理ꎬ随后使用 Ｌｉｐｏｆｅｃｔａｍｉｎｅ ３０００ 将脂

多糖输入周细胞并定期加入腺苷三磷酸ꎬ通过对照

实验证实了 ＢＭＳＣｓ￣ｅｘｏ 对周细胞的保护作用ꎻ蛋白质

印迹分析表明ꎬ复合刺激提高了周细胞中的 ｃａｓｐａｓｅ￣１
和 ＩＬ￣１β 水平ꎬ反映了周细胞的凋亡ꎬ而 ＢＭＳＣｓ￣ｅｘｏ
逆转了这些变化ꎬ表明通过基因编辑技术可以更好

地发挥抗细胞凋亡作用ꎮ
活性氧是脊髓缺血再灌注后神经损伤的另一个

主要介质ꎮ 缺血再灌注触发活性氧的过度生成ꎬ导
致细胞蛋白、脂质和 ＤＮＡ 的严重损伤ꎬ并导致细胞

凋亡和坏死ꎮ 许多酶在细胞中产生活性氧ꎬ但还原

型烟酰胺腺嘌呤二核苷酸磷酸氧化酶家族是目前已

知的唯一仅用于产生活性氧的酶家族ꎮ Ｚｈａｏ 等[２４]

通过携带 ｍｉＲ￣２５ 的慢病毒转染 ＢＭＳＣｓꎬ随后经超速

离心获得外泌体ꎬ采用实时聚合酶链反应发现转染

后的 ＢＭＳＣｓ￣ｅｘｏ 内 ｍｉＲ￣２５ 水平显著升高ꎻ在体内实

验中ꎬ他们通过给大鼠注射 ｍｉＲ￣２５￣ＢＭＳＣｓ￣ｅｘｏ 发现ꎬ
与注射 ＢＭＳＣｓ￣ｅｘｏ 相比ꎬ其不仅降低了脊髓缺血再

灌注损伤大鼠模型体内的 ＩＬ￣１β 及 ＴＮＦ￣α 水平ꎬ且
抑制还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶 ４ 的

表达ꎮ 证实过表达 ｍｉＲ￣２５ 的 ＢＭＳＣｓ￣ｅｘｏ 通过降低

还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶 ４ 的水平

调控活性氧ꎬ减轻脊髓缺血后的细胞凋亡ꎬ起到对脊

髓功能的保护作用ꎮ
３. ３　 ＢＭＳＣｓ￣ｅｘｏ 促进 ＳＣＩ 后神经元细胞及轴突的

再生　 髓鞘是神经元轴突外维持信号转导的磷脂

膜ꎬ对于维持轴突的完整性必不可少ꎮ ＳＣＩ 的直接

损伤以及局部微环境的改变导致了轴突的脱髓鞘ꎬ
有学者认为少突胶质细胞的坏死和凋亡可能是导致

轴突脱髓鞘的主要原因[２５]ꎮ 因此如何抑制少突胶

质细胞的凋亡ꎬ促进其生成转化可能是轴突再生的

关键ꎮ Ｌｉ 等[２６]向 ＳＣＩ 大鼠尾静脉注射 ｍｉＲ￣１３３ｂ 修

饰的 ＢＭＳＣｓ￣ｅｘｏꎬ发现其降低了 ＲｈｏＡ / Ｒｈｏ 激酶通

路中的 ＲｈｏＡ 蛋白水平ꎬ显著减少了神经细胞的死

亡ꎻ下调的 ＲｈｏＡ 蛋白激活了胞外信号调节激酶 １ / ２
的磷酸化ꎬ保护神经元免于凋亡ꎬ促进了 ＳＣＩ 后大鼠

运动功能的恢复ꎮ 且基因修饰后的 ＢＭＳＣｓ￣ｅｘｏ 激活了
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信号转导及转录活化因子 ３ 和环腺苷酸反应元件结

合蛋白通路ꎬ促进了轴突的再生ꎮ Ｈｕａｎｇ 等[２７] 制备

了 ｍｉＲ￣４９４￣ＢＭＳＣｓ￣ｅｘｏ 用以验证其对轴突再生的影

响ꎬ使用神经丝蛋白 Ｈ 及胶质纤维酸性蛋白双标记

免疫荧光观察 ＳＣＩ 后 ４ 周轴突再生和星形胶质细胞

活化情况ꎮ 结果显示ꎬＳＣＩ 对照组存在大量轴突细

胞和星形胶质细胞的凋亡ꎬｍｉＲ￣４９４￣ＢＭＳＣｓ￣ｅｘｏ 组

神经丝蛋白阳性细胞数量明显多于 ＢＭＳＣｓ￣ｅｘｏ 组和

ＳＣＩ 对照组ꎬ胶质纤维酸性蛋白阳性细胞数量明显

少于 ＢＭＳＣｓ￣ｅｘｏ 组和 ＳＣＩ 对照组ꎬ提示 ｍｉＲ￣４９４￣
ＢＭＳＣｓ￣ｅｘｏ 组大鼠轴突细胞数量较其他各组显著增

加ꎬ星形胶质细胞数量显著减少ꎮ 此外ꎬＨｕａｎｇ 等[２７]

的电生理研究结果也与大鼠 ＢＢＢ 评分结果相符ꎬ证
实了 ｍｉＲ￣４９４￣ＢＭＳＣｓ￣ｅｘｏ 能够有效促进 ＳＣＩ 大鼠神

经功能的恢复ꎮ
尼氏小体是神经元功能的标志物ꎬ神经元特

异性核蛋白可用于反映神经元的再生情况ꎮ Ｊｉａ
等[２８]应用脊髓打击器构建 ＳＣＩ 大鼠模型ꎬ用携带

音猬因子(Ｓｏｎｉｃ ｈｅｄｇｅｈｏｇꎬＳＨＨ)基因的慢病毒构建

ＳＨＨ￣ＢＭＳＣｓ￣ｅｘｏꎬ通过实验证实了 ＳＨＨ￣ＢＭＳＣｓ￣ｅｘｏ
中 ＳＨＨ 蛋白水平显著升高ꎮ 随后体内注射 ＳＨＨ￣
ＢＭＳＣｓ￣ｅｘｏ 并对脊髓组织进行尼氏染色、免疫组织

化学、免疫荧光等ꎮ ２８ ｄ 时尼氏染色结果表明ꎬ
ＳＨＨ￣ＢＭＳＣｓ￣ｅｘｏ 组脊髓前角尼氏小体数量显著增

加ꎻ免疫荧光染色结果表明ꎬＳＨＨ￣ＢＭＳＣｓ￣ｅｘｏ 组脊

髓神经元特异性核蛋白阳性神经元细胞数量更多ꎬ
胶质纤维酸性蛋白细胞数量较少ꎮ 实验结果说明ꎬ
ＳＨＨ￣ＢＭＳＣｓ￣ｅｘｏ 促进了神经元细胞的修复再生ꎬ从
而改善运动功能ꎮ

水凝胶具有极好的生物相容性ꎬ可被应用于治

疗 ＳＣＩ 后的细胞生长和组织恢复ꎮ 负载 ＢＭＳＣｓ￣ｅｘｏ
的水凝胶可以发挥协同治疗作用并促进肢体功能恢

复ꎮ Ｆａｎ 等[２９]制备了甲基丙烯酸酯化水凝胶(ＧＭ)
和聚吡咯(ＰＰｙ)水凝胶组成的外泌体双层网状水凝

胶(ＧＭ / ＰＰｙ / ｅｘｏｓｏｍｅꎬＧＭＰＥ)ꎬ外泌体与水凝胶非

共价结合不影响外泌体的结构和生物活性ꎮ 随后在

ＧＭＰＥ 水凝胶上培养神经元细胞并深究作用的信号

通路ꎮ 结果表明ꎬＧＭＰＥ 水凝胶通过人第 １０ 号染色

体缺失的磷酸酶及张力蛋白同源基因 /磷脂酰肌醇￣
３￣激酶 /蛋白激酶 Ｂ /哺乳动物雷帕霉素靶蛋白通路

抑制靶蛋白磷酸化ꎬ使磷酸化的哺乳动物雷帕霉素

靶蛋白水平显著降低ꎬ从而促进轴突的生长和神经

突触网络的形成ꎬ进而治疗 ＳＣＩꎬ促进肢体的功能恢

复ꎮ Ｌｕ 等[３０]发现ꎬＢＭＳＣｓ￣ｅｘｏ 通过抑制核因子 κＢ
信号通路调节 ｐ６５ 因子的表达ꎬ抑制周细胞的异常

迁移ꎬ维持血脊髓屏障的稳定性ꎬ进而帮助轴突再生

以及神经功能的恢复ꎮ
３. ４　 ＢＭＳＣｓ￣ｅｘｏ 减少 ＳＣＩ 后胶质瘢痕的形成 　
ＳＣＩ 后形成瘢痕组织ꎬ瘢痕组织包括成纤维瘢痕和

胶质瘢痕ꎮ 从结构上ꎬ瘢痕组织可分为核心区和外

周区ꎮ 核心区以围绕毛细血管的血管周围细胞ꎬ即
周细胞堆积形成的成纤维瘢痕为主[３１]ꎻ外周区以反

应性星形胶质细胞和反应性小胶质细胞聚集所构成

的胶质瘢痕为主ꎮ 胶质瘢痕的特征性表现是反应性

星形胶质细胞聚集在损伤周围ꎬ形成复杂的网状突

起ꎻ另一重要特征是细胞外基质成分的表达增加ꎬ主
要指反应性星形胶质细胞的分泌抑制了轴突生长所

需的硫酸软骨素蛋白多糖(ｃｈｏｎｄｒｏｉｔｉｎ ｓｕｌｆａｔｅ ｐｒｏｔｅｏ￣
ｇｌｙｃａｎｓꎬＣＳＰＧｓ)的沉积[３２]ꎮ 胶质瘢痕的功能具有两

面性ꎬＳＣＩ 早期瘢痕形成物理屏障ꎬ限制了炎症细胞

的浸润ꎬ将损伤局限在一定的范围ꎬ起保护未损伤组

织的作用ꎻ在 ＳＣＩ 中后期ꎬ瘢痕阻碍了轴突的再生、延
长、融合ꎬ限制了功能的恢复[３１]ꎮ Ｌｕｏ 等[３３]制备过表

达 Ｇ 蛋白偶联受体激酶 ２ 相互作用蛋白 １(Ｇ ｐｒｏｔｅｉｎ￣
ｃｏｕｐｌｅｄ ｒｅｃｅｐｔｏｒ ｋｉｎａｓｅ ２ ｉｎｔｅｒａｃｔｉｎｇ ｐｒｏｔｅｉｎ １ꎬＧＩＴ１)
的 ＢＭＳＣｓ￣ｅｘｏ 进行体内注射ꎬ随后将脊髓组织进行免

疫荧光实验ꎬ选用 ＣＳ５６ 反映反应性星形胶质细胞分

泌的 ＣＳＰＧｓꎬ发现 ２８ ｄ 时 ＧＩＴ１￣ＢＭＳＣｓ￣ｅｘｏ 组 ＣＳＰＧｓ
显著下降ꎬ且与假手术组相比ꎬＧＩＴ１￣ＢＭＳＣｓ￣ｅｘｏ 组

ＣＳＰＧｓ 增加量远低于 ＢＭＳＣｓ￣ｅｘｏ 组和磷酸盐缓冲液

组ꎬ提示 ＧＩＴ１￣ＢＭＳＣｓ￣ｅｘｏ 抑制了胶质瘢痕的形成ꎻ
大鼠运动功能评分也证实ꎬ与 ＢＭＳＣｓ￣ｅｘｏ 组和磷酸

盐缓冲液组相比ꎬＧＩＴ１￣ＢＭＳＣｓ￣ｅｘｏ 组大鼠运动功能

显著恢复ꎮ Ｌｉｕ 等[３４] 研究表明ꎬＢＭＳＣｓ￣ｅｘｏ 可以抑

制 Ａ１ 型反应性星形胶质细胞和小胶质细胞的活

化ꎻ免疫荧光分析结果显示ꎬＧＩＴ１￣ＢＭＳＣｓ￣ｅｘｏ 可减

少 ＣＳＰＧｓ 的沉积ꎬ抑制胶质瘢痕形成ꎬ促进轴突再

生ꎬ从而恢复 ＳＣＩ 后神经功能ꎮ
４　 小　 结

ＢＭＳＣｓ￣ｅｘｏ 参与 ＳＣＩ 病理生理机制中的各个环

节ꎬ其主要作用是通过信号通路调控细胞因子ꎬ进而

抑制炎症反应、防止细胞凋亡、促进轴突再生、控制
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胶质瘢痕等ꎮ 这些功能相辅相成ꎬ共同协助恢复肢

体感觉及运动功能ꎮ 通过对外泌体的深入研究ꎬ发
现 ＢＭＳＣｓ￣ｅｘｏ 具有低免疫原性、易通过血脊髓屏障、
低致瘤性等优点ꎮ 然而ꎬ大部分的实验来源于动物

实验ꎬ对于人体的研究ꎬ还有待进一步探索ꎮ 目前ꎬ
ＢＭＳＣｓ￣ｅｘｏ 调控 ＳＣＩ 各个环节的具体病理生理机制

尚未完全明确ꎻ且由于 ＳＣＩ 病理生理机制的复杂性ꎬ
对于全身注射及局部注射ꎬ哪种方式能更有效地

提高外泌体浓度、更好地发挥外泌体的治疗效果

仍有待商榷ꎮ 因此ꎬ了解 ＢＭＳＣｓ￣ｅｘｏ 治疗 ＳＣＩ 的具

体机制是未来合理使用 ＢＭＳＣｓ￣ｅｘｏ 治疗 ＳＣＩ 的前提

和基础ꎮ
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ｉｎｈｉｂｉｔｉｎｇ ｐｅｒｉｃｙｔｅ ｐｙｒｏｐｔｏｓｉｓ[Ｊ]. Ｎｅｕｒａｌ Ｒｅｇｅｎ Ｒｅｓꎬ２０２２ꎬ１７(１):
１９４￣２０２.

[２４] 　 Ｚｈａｏ ＬꎬＪｉａｎｇ ＸꎬＳｈｉ Ｊꎬｅｔ ａｌ. Ｅｘｏｓｏｍｅｓ ｄｅｒｉｖｅｄ ｆｒｏｍ ｂｏｎｅ ｍａｒｒｏｗ
ｍｅｓｅｎｃｈｙｍａｌ ｓｔｅｍ ｃｅｌｌｓ ｏｖｅｒｅｘｐｒｅｓｓｉｎｇ ｍｉｃｒｏＲＮＡ￣２５ ｐｒｏｔｅｃｔ ｓｐｉｎａｌ
ｃｏｒｄｓ ａｇａｉｎｓｔ ｔｒａｎｓｉｅｎｔ ｉｓｃｈｅｍｉａ[ Ｊ] . Ｊ Ｔｈｏｒａｃ Ｃａｒｄｉｏｖａｓｃ Ｓｕｒｇꎬ
２０１９ꎬ１５７(２):５０８￣５１７.

[２５] 　 Ｆａｎ ＢꎬＷｅｉ ＺꎬＹａｏ Ｘꎬｅｔ ａｌ. Ｍｉｃｒｏｅｎｖｉｒｏｎｍｅｎｔ Ｉｍｂａｌａｎｃｅ ｏｆ Ｓｐｉ￣
ｎａｌ Ｃｏｒｄ Ｉｎｊｕｒｙ[Ｊ] . Ｃｅｌｌ Ｔｒａｎｓｐｌａｎｔꎬ２０１８ꎬ２７(６):８５３￣８６６.

[２６] 　 Ｌｉ ＤꎬＺｈａｎｇ ＰꎬＹａｏ Ｘꎬｅｔ ａｌ. Ｅｘｏｓｏｍｅｓ Ｄｅｒｉｖｅｄ Ｆｒｏｍ ｍｉＲ￣１３３ｂ￣
Ｍｏｄｉｆｉｅｄ Ｍｅｓｅｎｃｈｙｍａｌ Ｓｔｅｍ Ｃｅｌｌｓ Ｐｒｏｍｏｔｅ Ｒｅｃｏｖｅｒｙ Ａｆｔｅｒ Ｓｐｉｎａｌ
Ｃｏｒｄ Ｉｎｊｕｒｙ[Ｊ] . Ｆｒｏｎｔ Ｎｅｕｒｏｓｃｉꎬ２０１８ꎬ１２:８４５.
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ｈｉｓｔｏｎｅ ｏｃｔａｍｅｒ ｔｒａｎｓｌｏｃａｔｅ ＤＮＡ[Ｊ] . Ｎａｔ Ｃｏｍｍｕｎꎬ２０１８ꎬ９(１):
１３３０.

[６１] 　 Ｌａｗｌｏｒ Ｌꎬ Ｙａｎｇ ＸＢ. Ｈａｒｎｅｓｓｉｎｇ ｔｈｅ ＨＤＡＣ￣ｈｉｓｔｏｎｅ ｄｅａｃｅｔｙｌａｓｅ
ｅｎｚｙｍｅｓꎬｉｎｈｉｂｉｔｏｒｓ ａｎｄ ｈｏｗ ｔｈｅｓｅ ｃａｎ ｂｅ ｕｔｉｌｉｓｅｄ ｉｎ ｔｉｓｓｕｅ ｅｎｇｉ￣
ｎｅｅｒｉｎｇ[Ｊ] . Ｉｎｔ Ｊ Ｏｒａｌ Ｓｃｉꎬ２０１９ꎬ１１(２):２０.

[６２] 　 Ｃｈｕｎｇ ＣＬꎬＳｈｅｕ ＪＲꎬＣｈｅｎ ＷＬꎬｅｔ ａｌ. Ｈｉｓｔｏｎｅ ｄｅａｃｅｔｙｌａｓｅ ｉｎｈｉｂｉｔｏｒ
ｍ￣ｃａｒｂｏｘｙｃｉｎｎａｍｉｃ ａｃｉｄ ｂｉｓ￣ｈｙｄｒｏｘａｍｉｄｅ ａｔｔｅｎｕａｔｅｓ ｐｌａｓｍｉｎｏｇｅｎ
ａｃｔｉｖａｔｏｒ ｉｎｈｉｂｉｔｏｒ￣１ ｅｘｐｒｅｓｓｉｏｎ ｉｎ ｈｕｍａｎ ｐｌｅｕｒａｌ ｍｅｓｏｔｈｅｌｉａｌ
ｃｅｌｌｓ[Ｊ] . Ａｍ Ｊ Ｒｅｓｐｉｒ Ｃｅｌｌ Ｍｏｌ Ｂｉｏｌꎬ２０１２ꎬ４６(４):４３７￣４４５.

[６３] 　 Ｃｈｅｎ ＷＬꎬＳｈｅｕ ＪＲꎬＨｓｉａｏ ＣＪꎬｅｔ ａｌ. Ｈｉｓｔｏｎｅ ｄｅａｃｅｔｙｌａｓｅ ｉｎｈｉｂｉｔｏｒ
ｉｍｐａｉｒｓ ｐｌａｓｍｉｎｏｇｅｎ ａｃｔｉｖａｔｏｒ ｉｎｈｉｂｉｔｏｒ￣１ ｅｘｐｒｅｓｓｉｏｎ ｖｉａ ｉｎｈｉｂｉｔｉｎｇ
ＴＮＦ￣ａｌｐｈａ￣ａｃｔｉｖａｔｅｄ ＭＡＰＫ / ＡＰ￣１ ｓｉｇｎａｌｉｎｇ ｃａｓｃａｄｅ[ Ｊ] . Ｂｉｏｍｅｄ
Ｒｅｓ Ｉｎｔꎬ２０１４ꎬ２０１４:２３１０１２.

[６４] 　 Ｔｕｃｋｅｒ ＴＡꎬ Ｊｅｆｆｅｒｓ Ａꎬ Ａｌｖａｒｅｚ Ａꎬ ｅｔ ａｌ. Ｐｌａｓｍｉｎｏｇｅｎ ａｃｔｉｖａｔｏｒ
ｉｎｈｉｂｉｔｏｒ￣１ ｄｅｆｉｃｉｅｎｃｙ ａｕｇｍｅｎｔｓ ｖｉｓｃｅｒａｌ ｍｅｓｏｔｈｅｌｉａｌ ｏｒｇａｎｉｚａｔｉｏｎꎬ
ｉｎｔｒａｐｌｅｕｒａｌ ｃｏａｇｕｌａｔｉｏｎꎬａｎｄ ｌｕｎｇ ｒｅｓｔｒｉｃｔｉｏｎ ｉｎ ｍｉｃｅ ｗｉｔｈ ｃａｒｂｏｎ
ｂｌａｃｋ / ｂｌｅｏｍｙｃｉｎ￣ｉｎｄｕｃｅｄ ｐｌｅｕｒａｌ ｉｎｊｕｒｙ [ Ｊ] . Ａｍ Ｊ Ｒｅｓｐｉｒ Ｃｅｌｌ
Ｍｏｌ Ｂｉｏｌꎬ２０１４ꎬ５０(２):３１６￣３２７.

[６５] 　 Ｓｈｅｎｄｅｒｏｖ ＫꎬＣｏｌｌｉｎｓ ＳＬꎬＰｏｗｅｌｌ ＪＤꎬｅｔ ａｌ. Ｉｍｍｕｎｅ ｄｙｓｒｅｇｕｌａｔｉｏｎ
ａｓ ａ ｄｒｉｖｅｒ ｏｆ ｉｄｉｏｐａｔｈｉｃ ｐｕｌｍｏｎａｒｙ ｆｉｂｒｏｓｉｓ [ Ｊ] . Ｊ Ｃｌｉｎ Ｉｎｖｅｓｔꎬ
２０２１ꎬ１３１(２):ｅ１４３２２６.

[６６] 　 Ｈｕａｎｇ ＷＪꎬＴａｎｇ ＸＸ. Ｖｉｒｕｓ ｉｎｆｅｃｔｉｏｎ ｉｎｄｕｃｅｄ ｐｕｌｍｏｎａｒｙ ｆｉｂｒｏｓｉｓ[Ｊ].
Ｊ Ｔｒａｎｓｌ Ｍｅｄꎬ２０２１ꎬ１９(１):４９６.

[６７] 　 Ｗｏｓｅｎ ＪＥꎬＭｕｋｈｏｐａｄｈｙａｙ ＤꎬＭａｃａｕｂａｓ Ｃꎬｅｔ ａｌ. Ｅｐｉｔｈｅｌｉａｌ ＭＨＣ
Ｃｌａｓｓ ＩＩ Ｅｘｐｒｅｓｓｉｏｎ ａｎｄ Ｉｔｓ Ｒｏｌｅ ｉｎ Ａｎｔｉｇｅｎ Ｐｒｅｓｅｎｔａｔｉｏｎ ｉｎ ｔｈｅ
Ｇａｓｔｒｏｉｎｔｅｓｔｉｎａｌ ａｎｄ Ｒｅｓｐｉｒａｔｏｒｙ Ｔｒａｃｔｓ[Ｊ] . Ｆｒｏｎｔ Ｉｍｍｕｎｏｌꎬ２０１８ꎬ
９:２１４４.

[６８] 　 Ｍｕｔｓａｅｒｓ ＳＥꎬＰｒｅｌｅ ＣＭꎬＢｒｏｄｙ ＡＲꎬｅｔ ａｌ. Ｐａｔｈｏｇｅｎｅｓｉｓ ｏｆ ｐｌｅｕｒａｌ
ｆｉｂｒｏｓｉｓ[Ｊ] . Ｒｅｓｐｉｒｏｌｏｇｙꎬ２００４ꎬ９(４):４２８￣４４０.

[６９] 　 Ｔｏｎｇ ＺＨꎬ Ｓｈｉ ＨＺ. Ｓｕｂｐｏｐｕｌａｔｉｏｎｓ ｏｆ ｈｅｌｐｅｒ Ｔ ｌｙｍｐｈｏｃｙｔｅｓ ｉｎ
ｔｕｂｅｒｃｕｌｏｕｓ ｐｌｅｕｒｉｓｙ [ Ｊ] . Ｔｕｂｅｒｃｕｌｏｓｉｓ ( Ｅｄｉｎｂ)ꎬ２０１３ꎬ９３ (３ ):
２７９￣２８４.

[７０] 　 Ｙｅ ＺＪꎬＹｕａｎ ＭＬꎬＺｈｏｕ Ｑꎬｅｔ ａｌ. Ｄｉｆｆｅｒｅｎｔｉａｔｉｏｎ ａｎｄ ｒｅｃｒｕｉｔｍｅｎｔ ｏｆ
Ｔｈ９ ｃｅｌｌｓ ｓｔｉｍｕｌａｔｅｄ ｂｙ ｐｌｅｕｒａｌ ｍｅｓｏｔｈｅｌｉａｌ ｃｅｌｌｓ ｉｎ ｈｕｍａｎ Ｍｙｃｏ￣
ｂａｃｔｅｒｉｕｍ ｔｕｂｅｒｃｕｌｏｓｉｓ ｉｎｆｅｃｔｉｏｎ [ Ｊ] . ＰＬｏＳ Ｏｎｅꎬ２０１２ꎬ７ ( ２ ):
ｅ３１７１０.

[７１] 　 Ｌｉ ＸꎬＺｈｏｕ ＱꎬＹａｎｇ ＷＢꎬｅｔ ａｌ. Ｐｌｅｕｒａｌ ｍｅｓｏｔｈｅｌｉａｌ ｃｅｌｌｓ ｐｒｏｍｏｔｅ
ｅｘｐａｎｓｉｏｎ ｏｆ ＩＬ￣１７￣ｐｒｏｄｕｃｉｎｇ ＣＤ８ ＋ Ｔ ｃｅｌｌｓ ｉｎ ｔｕｂｅｒｃｕｌｏｕｓ ｐｌｅｕ￣
ｒａｌ ｅｆｆｕｓｉｏｎ[Ｊ] . Ｊ Ｃｌｉｎ Ｉｍｍｕｎｏｌꎬ２０１３ꎬ３３(４):７７５￣７８７.

[７２] 　 Ｏｕｙａｎｇ ＷꎬＫｏｌｌｓ ＪＫꎬＺｈｅｎｇ Ｙ. Ｔｈｅ ｂｉｏｌｏｇｉｃａｌ ｆｕｎｃｔｉｏｎｓ ｏｆ Ｔ
ｈｅｌｐｅｒ １７ ｃｅｌｌ ｅｆｆｅｃｔｏｒ ｃｙｔｏｋｉｎｅｓ ｉｎ ｉｎｆｌａｍｍａｔｉｏｎ[ Ｊ] . Ｉｍｍｕｎｉｔｙꎬ
２００８ꎬ２８(４):４５４￣４６７.

[７３] 　 Ｂｕｒｍａｎ ＡꎬＫｒｏｐｓｋｉ ＪＡꎬＣａｌｖｉ ＣＬꎬ ｅｔ ａｌ. Ｌｏｃａｌｉｚｅｄ ｈｙｐｏｘｉａ ｌｉｎｋｓ
ＥＲ ｓｔｒｅｓｓ ｔｏ ｌｕｎｇ ｆｉｂｒｏｓｉｓ ｔｈｒｏｕｇｈ ｉｎｄｕｃｔｉｏｎ ｏｆ Ｃ / ＥＢＰ ｈｏｍｏｌｏｇｏｕｓ
ｐｒｏｔｅｉｎ[Ｊ] . ＪＣＩ Ｉｎｓｉｇｈｔꎬ２０１８ꎬ３(１６):ｅ９９５４３.
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[２７]　 Ｈｕａｎｇ ＷꎬＬｉｎ ＭꎬＹａｎｇ Ｃꎬ ｅｔ ａｌ. Ｒａｔ Ｂｏｎｅ Ｍｅｓｅｎｃｈｙｍａｌ Ｓｔｅｍ

Ｃｅｌｌ￣Ｄｅｒｉｖｅｄ Ｅｘｏｓｏｍｅｓ Ｌｏａｄｅｄ ｗｉｔｈ ｍｉＲ￣４９４ Ｐｒｏｍｏｔｉｎｇ Ｎｅｕ￣
ｒｏｆｉｌａｍｅｎｔ Ｒｅｇｅｎｅｒａｔｉｏｎ ａｎｄ Ｂｅｈａｖｉｏｒａｌ Ｆｕｎｃｔｉｏｎ Ｒｅｃｏｖｅｒｙ ａｆｔｅｒ
Ｓｐｉｎａｌ Ｃｏｒｄ Ｉｎｊｕｒｙ [ Ｊ] . Ｏｘｉｄ Ｍｅｄ Ｃｅｌｌ Ｌｏｎｇｅｖꎬ ２０２１ꎬ ２０２１:
１６３４９１７.

[２８] 　 Ｊｉａ ＹꎬＬｕ ＴꎬＣｈｅｎ Ｑꎬｅｔ ａｌ. Ｅｘｏｓｏｍｅｓ ｓｅｃｒｅｔｅｄ ｆｒｏｍ ｓｏｎｉｃ ｈｅｄｇｅ￣
ｈｏｇ￣ｍｏｄｉｆｉｅｄ ｂｏｎｅ ｍｅｓｅｎｃｈｙｍａｌ ｓｔｅｍ ｃｅｌｌｓ ｆａｃｉｌｉｔａｔｅ ｔｈｅ ｒｅｐａｉｒ ｏｆ ｒａｔ
ｓｐｉｎａｌ ｃｏｒｄ ｉｎｊｕｒｉｅｓ[Ｊ] . Ａｃｔａ Ｎｅｕｒｏｃｈｉｒ(Ｗｉｅｎ)ꎬ２０２１ꎬ１６３(８):
２２９７￣２３０６.

[２９] 　 Ｆａｎ ＬꎬＬｉｕ ＣꎬＣｈｅｎ Ｘꎬｅｔ ａｌ. Ｅｘｏｓｏｍｅｓ￣Ｌｏａｄｅｄ Ｅｌｅｃｔｒｏｃｏｎｄｕｃｔｉｖｅ
Ｈｙｄｒｏｇｅｌ Ｓｙｎｅｒｇｉｓｔｉｃａｌｌｙ Ｐｒｏｍｏｔｅｓ Ｔｉｓｓｕｅ Ｒｅｐａｉｒ ａｆｔｅｒ Ｓｐｉｎａｌ Ｃｏｒｄ
Ｉｎｊｕｒｙ ｖｉａ Ｉｍｍｕｎｏｒｅｇｕｌａｔｉｏｎ ａｎｄ Ｅｎｈａｎｃｅｍｅｎｔ ｏｆ Ｍｙｅｌｉｎａｔｅｄ Ａｘｏｎ
Ｇｒｏｗｔｈ[Ｊ] . Ａｄｖ Ｓｃｉ (Ｗｅｉｎｈ)ꎬ２０２２ꎬ９(１３):ｅ２１０５５８６.

[３０] 　 Ｌｕ Ｙꎬ Ｚｈｏｕ Ｙꎬ Ｚｈａｎｇ Ｒꎬ ｅｔ ａｌ. Ｂｏｎｅ Ｍｅｓｅｎｃｈｙｍａｌ Ｓｔｅｍ Ｃｅｌｌ￣
Ｄｅｒｉｖｅｄ Ｅｘｔｒａｃｅｌｌｕｌａｒ Ｖｅｓｉｃｌｅｓ Ｐｒｏｍｏｔｅ Ｒｅｃｏｖｅｒｙ Ｆｏｌｌｏｗｉｎｇ Ｓｐｉｎａｌ

Ｃｏｒｄ Ｉｎｊｕｒｙ ｖｉａ Ｉｍｐｒｏｖｅｍｅｎｔ ｏｆ ｔｈｅ Ｉｎｔｅｇｒｉｔｙ ｏｆ ｔｈｅ Ｂｌｏｏｄ￣Ｓｐｉｎａｌ
Ｃｏｒｄ Ｂａｒｒｉｅｒ[Ｊ] . Ｆｒｏｎｔ Ｎｅｕｒｏｓｃｉꎬ２０１９ꎬ１３:２０９.

[３１] 　 Ｇöｒｉｔｚ ＣꎬＤｉａｓ ＤＯꎬＴｏｍｉｌｉｎ Ｎꎬｅｔ ａｌ. Ａ ｐｅｒｉｃｙｔｅ ｏｒｉｇｉｎ ｏｆ ｓｐｉｎａｌ
ｃｏｒｄ ｓｃａｒ ｔｉｓｓｕｅ[Ｊ] . Ｓｃｉｅｎｃｅꎬ２０１１ꎬ３３３(６０３９):２３８￣２４２.
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