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摘要：肝衰竭是临床一类急危重症肝病。 骨髓间充质干细胞（ＢＭ⁃ＭＳＣｓ）具有向肝细胞分化、促进肝细胞再生，以
及抑制肝细胞凋亡、坏死和炎性反应等作用，有助于修复受损的肝组织，改善肝功能，成为当前肝衰竭细胞治疗策

略中极具应用潜力的一种新选择。
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　 　 肝脏作为机体重要器官，在调控代谢、消化、解
毒与免疫等方面发挥重要功能。 据统计全球每年

１００ 多万人因肝病及其相关并发症死亡。 各种损肝

因素导致的肝细胞大量坏死，肝脏功能严重障碍或

失代偿都可能诱发肝衰竭，临床表现为黄疸、凝血功

能障碍、肝肾综合征、肝性脑病、腹水等。 肝衰竭因

进展迅速、缺乏特效治疗药物，病死率高达 ５０％ ～
８０％。 原位肝移植虽被证明是肝衰竭最有效的治疗

方法，但因肝衰竭疾病进展迅速、肝源稀缺、费用高

昂等限制了肝移植在临床推广应用。 肝细胞再生是

决定肝衰竭预后的关键性因素。 通过促进肝细胞再

生不仅可以改善患者预后和远期生存，相对于肝移

植具有更低费用等优势，而且更容易被患者接受，避
免原位肝移植后长期应用免疫抑制剂相关风险和经

济负担。 干细胞可被诱导分化成肝细胞［１］，发挥抗

炎、抗纤维化等作用，因此有望延缓肝脏疾病进展甚
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至实现肝病治愈。 骨髓间充质干细胞（ｂｏｎｅ ｍａｒｒｏｗ⁃
ｄｅｒｉｖｅｄ ｍｅｓｅｎｃｈｙｍａｌ ｓｔｅｍ ｃｅｌｌｓ，ＢＭ⁃ＭＳＣｓ）是一类起

源于中胚层的代表性成体干细胞，可定向分化为肝

细胞、心肌细胞、神经细胞和骨细胞等多种细胞。 基

于 ＢＭ⁃ＭＳＣｓ 的生物学特性及其可通过多种方式促

进肝细胞损伤修复这一潜能，ＢＭ⁃ＭＳＣｓ 将有望成为

肝衰竭细胞治疗中一种极具应用潜力的新选择。

１　 骨髓间充质干细胞的特性与优势

ＭＳＣｓ 是一类多能干细胞，具有向多种细胞分化

的能力。 因具有扩增能力高、基因组稳定性好、不易

引发免疫排斥反应、取材方便等优势，近年来被研究

用于治疗终末期肝病。 ＢＭ⁃ＭＳＣｓ 是发现最早且应用

最多的 ＭＳＣｓ［２］，与脂肪和脐带血来源的 ＭＳＣｓ 相比，
具有免疫调节、抗炎和组织修复能力强等优势，而且

将 ＭＳＣｓ 与外周血单个核细胞共培养发现，相比后两

种 ＭＳＣｓ，ＢＭ⁃ＭＳＣｓ 对单个核细胞增殖的抑制能力更

强，更有利于改善肝衰竭免疫炎性损伤，而且 ＢＭ⁃
ＭＳＣｓ 可表达更多的血管内皮生长因子、细胞程序性

死亡配体 １，提示在促进血管生长和组织细胞修复等

方面更具优势［３］。 通过分化为肝细胞，ＢＭ⁃ＭＳＣｓ 能

够改善肝衰竭患者终末期肝病模型（ｍｏｄｅｌ ｆｏｒ ｅｎｄ⁃
ｓｔａｇｅ ｌｉｖｅｒ ｄｉｓｅａｓｅ，ＭＥＬＤ）评分、白蛋白水平和凝血功

能等［４］。 ＢＭ⁃ＭＳＣｓ 还通过大量分泌可溶性因子、细
胞外囊泡和 ｍｉｃｒｏＲＮＡ 等方式抑制细胞凋亡、坏死，缓
解肝脏炎性反应、纤维化和氧化应激等，对抗肝衰竭

免疫炎性损伤，促进肝细胞再生与功能修复［５］。 不仅

如此，ＢＭ⁃ＭＳＣｓ 还具有低免疫原性优势［６］，可降低免

疫排斥反应，为临床异体应用 ＢＭ⁃ＭＳＣｓ 提供参考。

２　 骨髓间充质干细胞治疗肝衰竭的机制

积极去除诱因、抑制免疫炎性反应、促进肝细胞

再生及改善细胞再生微环境等成为肝衰竭治疗成功

的重要保障。 ＭＳＣｓ 可通过免疫调节和旁分泌机制

发挥抗炎、抗纤维化、抗氧化应激和抗凋亡作用，促
进肝细胞再生和组织损伤修复。
２􀆰 １　 骨髓间充质干细胞抑制免疫炎性损伤

炎性坏死的程度与范围是决定肝衰竭严重程度

和预后转归的关键因素。 ＣＤ４７⁃信号调节蛋白 α
（ｓｉｇｎａｌ ｒｅｇｕｌａｔｏｒｙ ｐｒｏｔｅｉｎ α，ＳＩＲＰα）信号通路在维持

免疫稳态、抑制组织炎性损伤中发挥重要作用［７］。

ＢＭ⁃ＭＳＣｓ 通过增加 ＣＤ４７ 和 ＳＩＲＰα 表达， 激活

Ｈｅｄｇｅｈｏｇ ／ ＳＭＯ ／ Ｇｌｉ１ 信号通路，促进巨噬细胞 ＧＬＩ
家族锌指蛋白 １（ＧＬＩ ｆａｍｉｌｙ ｚｉｎｃ ｆｉｎｇｅｒ １，Ｇｌｉ１）和

Ｎｏｔｃｈ１ 胞内结构域核易位，抑制 ＮＩＭＡ 相关激酶 ７ ／
ＮＯＤ 样受体热蛋白结构域相关蛋白 ３（ＮＯＤ⁃ｌｉｋｅ ｒｅ⁃
ｃｅｐｔｏｒ ｔｈｅｒｍａｌ ｐｒｏｔｅｉｎ ｄｏｍａｉｎ ａｓｓｏｃｉａｔｅｄ ｐｒｏｔｅｉｎ ３，
ＮＬＲＰ３）炎性小体活性，减轻肝脏炎性反应［８］。 同

时 Ｈｅｄｇｅｈｏｇ ／ ＳＭＯ ／ Ｇｌｉ１ 通路的激活也有助于促进细

胞增殖、分化。 在 ＣＣＬ４ 小鼠肝损伤模型中，转化生

长因子 β１ 可通过增加趋化因子受体 ３ 的表达增强

ＢＭ⁃ＭＳＣｓ 在体内和体外向小鼠肝窦内皮的归巢和

移植，并且增强 ＢＭ⁃ＭＳＣｓ 抑制 Ｔ 细胞增殖的能力，
进而发挥抗炎作用［９］。

巨噬细胞是肝脏内参与炎性损伤调控的一类重

要免疫细胞群体。 ＢＭ⁃ＭＳＣｓ 通过促进巨噬细胞中

Ｈｉｐｐｏ⁃Ｙｅｓ 相关蛋白（Ｈｉｐｐｏ ／ Ｙｅｓ⁃ａｓｓｏｃｉａｔｅｄ ｐｒｏｔｅｉｎ，
ＹＡＰ）信号通路活化，导致 ＮＬＲＰ３ ／半胱氨酸蛋白酶⁃
１ 活性降低和 ＩＬ⁃１β 释放，介导巨噬细胞向 Ｍ２ 表型

极化，从而抑制肝脏炎性反应［１０］。 ＢＭ⁃ＭＳＣｓ 也可

通过增加 ＣＤ７３ 和 ＣＤ５Ｌ 的表达，促进抗炎 Ｍ２ 巨噬

细胞极化［１１］。 除此之外，信号转导转录激活因子 ３
（ ｓｉｇｎａｌ ｔｒａｎｓｄｕｃｅｒ ａｎｄ ａｃｔｉｖａｔｏｒ ｏｆ ｔｒａｎｓｃｒｉｐｔｉｏｎ ３，
ＳＴＡＴ３）信号通路在肝脏炎性损伤、脂肪变性、细胞

再生过程也发挥重要作用。 大剂量乙醇诱导小鼠肝

损伤模型证实，接受 ＢＭ⁃ＭＳＣｓ 治疗后，模型小鼠肝 ／
体质量比、血液和肝脏脂质、丙二醛和 ＴＮＦ⁃α 等显著

降低，敲除 ＴＮＦ 刺激基因 ６（ＴＮＦ ｓｔｉｍｕｌａｔｅｄ ｇｅｎｅ ６，
ＴＳＧ⁃６）后 ＢＭ⁃ＭＳＣｓ 治疗作用显著减弱，机制与

ＢＭ⁃ＭＳＣｓ上调 ＴＳＧ⁃６ 抑制肝脏 ＳＴＡＴ３ 信号有关［１２］。
此外，ＭＳＣ 还可以通过旁分泌多种细胞因子，如前列

腺素 Ｅ２、ＩＬ⁃６ 和 ＴＮＦ⁃β 等，发挥免疫调节和抗炎作

用［１３］。 综上，ＢＭ⁃ＭＳＣｓ 可通过多种作用机制抑制肝

脏免疫炎性损伤，发挥治疗肝脏疾病的潜力。
２􀆰 ２　 骨髓间充质干细胞抑制肝纤维化发生发展

肝星状细胞活化是肝纤维化形成的核心机制，
ＢＭ⁃ＭＳＣｓ 可参与改善肝纤维化，促进肝功能恢复并

抑制肝纤维化向肝硬化进展。 予以 ＣＣＬ４ 构建肝纤

维化大鼠模型尾静脉注射 ＢＭ⁃ＭＳＣｓ 治疗，通过 ＨＥ
和 Ｍａｓｓｏｎ 三色染色观察肝组织病理变化、量化肝纤

维化程度，发现 ＢＭ⁃ＭＳＣｓ 治疗后大鼠胶原染色阳性

面积显著减少，证实 ＢＭ⁃ＭＳＣｓ 治疗可有效缓解肝纤
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维化， 并 且 该 研 究 发 现 ＢＭ⁃ＭＳＣｓ 可 通 过 减 少

Ｇａｓｄｅｒｍｉｎ Ｄ等细胞焦亡相关蛋白的表达抑制肝细

胞焦亡，加速肝细胞增殖和减轻肝纤维化［１４］。 免疫

荧光染色标记证实，注射 ＣＣＬ４ 小鼠肝脏巨噬细胞

向 Ｍ１ 型极化，表达 ＴＮＦ⁃α、ＩＦＮ⁃γ 和 ＩＬ⁃６ 等细胞因

子增加，促进肝星状细胞活化，加速肝纤维化形成。
移植 ＢＭ⁃ＭＳＣｓ 可抑制 Ｍ１ 型巨噬细胞，同时诱导

Ｍ２ 型巨噬细胞增殖和激活，伴随基质金属蛋白酶

（ｍａｔｒｉｘ ｍｅｔａｌｌｏ ｐｒｏｔｅｉｎａｓｅ，ＭＭＰ）⁃１３ 分泌升高，抑制

肝纤维化形成［１５］。 小鼠巨噬细胞包括 Ｌｙ６Ｃｈｉ 和

Ｌｙ６Ｃ ｌｏ两个亚群，Ｌｙ６Ｃｈｉ巨噬细胞通过生成多种细胞

因子和趋化因子参与促进肝星状细胞活化，而

Ｌｙ６Ｃ ｌｏ巨噬细胞则通过分泌 ＭＭＰ１２ 和 ＭＭＰ１３，上
调 ＴＮＦ 相关的凋亡诱导配体诱导肝星状细胞凋亡，
抑制肝纤维化。 ＢＭ⁃ＭＳＣｓ 可通过激活抗纤维化因

子和凋亡通路促进 Ｌｙ６Ｃ ｌｏ巨噬细胞的恢复以减弱肝

纤维化。 此外，移植 ＢＭ⁃ＭＳＣｓ 通过上调 ＩＬ⁃４ 和

ＩＬ⁃１０促进巨噬细胞极化的两个关键性调控因子核

受体 Ｎｒ４ａ１ 和转录因子 Ｃｅｂｐβ 活化，导致肝脏中

Ｌｙ６Ｃｈｉ ／ Ｌｙ６Ｃ ｌｏ巨噬细胞比例下调，抑制肝纤维化发

生发展。 ＢＭ⁃ＭＳＣｓ 还可通过活化 ＭｅｒＴＫ⁃细胞外调

节蛋白激酶信号通路，促进巨噬细胞分泌 ＭＭＰ１２，
发挥抗纤维化作用［１６］。 ＭＳＣｓ 可以大量产生外泌

体， 将 ｃｉｒｃＤＩＤＯ１ （ 一 种 来 源 于 ＤＩＤＯ１ 基 因 的

ｃｉｒｃＲＮＡ）转染到 ＭＳＣｓ 中，继而以 ＭＳＣｓ 分离的外泌

体孵育肝星状细胞，发现肝星状细胞中 ｃｉｒｃＤＩＤＯ１
表达明显升高，通过上调星状细胞 ＰＴＥＮ 和降低

ｐ⁃ＡＫＴ ／ ＡＫＴ比值抑制肝星状细胞增殖［１７］。 当然，
ＢＭ⁃ＭＳＣｓ 调控纤维化作用受多种因素调控，将

ＩＦＮ⁃γ预处理后 ＭＳＣｓ 移植入肝纤维化小鼠体内

时，相比移植未经 ＩＦＮ⁃γ 处理 ＭＳＣｓ 组治疗效果更

好，ＩＦＮ⁃γ 预处理可以增强巨噬细胞的激活，加强

巨噬细胞运动和吞噬能力，更有利于促进受损肝

组织修复、增加 ＭＳＣｓ 抗纤维化效果［１８］ 。 虽然当

前ＢＭ⁃ＭＳＣｓ已经成为抑制肝纤维化的一种潜在手

段，但大多研究局限于实验模型中，ＢＭ⁃ＭＳＣｓ 治疗

肝纤维化仍需在临床实践中得到更好的评估。
２􀆰 ３　 骨髓间充质干细胞抗凋亡、诱导自噬与促肝细

胞再生

各种生长因子、细胞因子、激素与代谢分子、氧
化应激和 ｍｉｃｒｏＲＮＡ 等在肝细胞损伤与再生平衡中

均发挥重要作用。 ＢＭ⁃ＭＳＣｓ 可以通过旁分泌机制

减少肝细胞凋亡、促进肝细胞再生。 对部分肝切除

术大鼠模型尾静脉注射缺氧与常氧状态下的 ＢＭ⁃
ＭＳＣｓ，观察到与常氧状态下相比，缺氧 ＢＭ⁃ＭＳＣｓ 组

小鼠的肝脏 ／体重比显著升高，且肝细胞增殖相关分

子 ｐ⁃ＳＴＡＴ３ ／ ｔ⁃ＳＴＡＴ３ 和细胞周期蛋白 Ｄ 表达显著

上调，并且发现缺氧 ＢＭ⁃ＭＳＣｓ 中 ｍｉＲ⁃１８２⁃５ｐ 可通

过调节叉头框蛋白 Ｏ１ ／ Ｔｏｌｌ 样受体 ４ 信号通路促进

肝脏再生过程中的 Ｍ２ 型巨噬细胞极化，促进小鼠

部分肝切除术后的肝脏再生［１９］。 ＢＭ⁃ＭＳＣｓ 还可通

过激活前列腺素 Ｅ 受体 ４，改善 ＣＲＥＢ 磷酸化，导致

ＹＡＰ 激活。 继而上调 Ｈｉｐｐｏ 信号相关基因双调蛋

白（ａｍｐｈｉｒｅｇｕｌｉｎ，ＡＲＥＧ）和结缔组织生长因子（ｃｏｎ⁃
ｎｅｃｔｉｖｅ ｔｉｓｓｕｅ ｇｒｏｗｔｈ ｆａｃｔｏｒ，ＣＴＧＦ）促进肝细胞增殖。
不仅如此，激活的 ＹＡＰ 还可通过增加 ｍｉＲ⁃２９ａ⁃３ｐ 水

平抑制 ＰＴＥＮ，进而激活哺乳动物雷帕霉素靶蛋白

（ｍａｍｍａｌｉａｎ ｔａｒｇｅｔ ｏｆ ｒａｐａｍｙｃｉｎ，ｍＴＯＲ）信号通路，促
进肝细胞再生。 外泌体和自噬相关机制同样参与

ＢＭ⁃ＭＳＣｓ 介导的肝细胞凋亡与再生。 小鼠肝损伤模

型证实 ＢＭ⁃ＭＳＣｓ 来源外泌体可通过上调 ｍｉＲ⁃２０ａ⁃５ｐ
激活 ＰＴＥＮ ／ ＡＫＴ 信号通路，减少肝细胞凋亡，促进细

胞增殖［２０］。 另外，通过透射电镜发现急性肝衰竭小

鼠尾静脉注射 ＢＭ⁃ＭＳＣｓ 后肝脏中自噬溶酶体数量明

显增加，当使用蛋白酶抑制剂阻断自噬溶酶体后，
ＢＭ⁃ＭＳＣｓ 治疗效应被显著抑制，说明 ＢＭ⁃ＭＳＣｓ 可能

通过上调自噬发挥治疗作用。 进一步发现，ＢＭ⁃ＭＳＣｓ
通过 ｌｅｔ⁃７ａ⁃５ｐ 作用于 ＭＡＰ４Ｋ３ 蛋白激酶减少转录因

子 ＥＢ（ｔｒａｎｓｃｒｉｐｔｉｏｎ ｆａｃｔｏｒ ＥＢ，ＴＦＥＢ）磷酸化并诱导其

核易位的方式激活自噬，使受损的细胞器或错误折叠

的蛋白质被降解并回收用于 ＡＴＰ 生产和蛋白质合

成，抑制肝细胞凋亡［２１］。 肿瘤坏死因子超家族成员

１４ （ ｔｕｍｏｒ ｎｅｃｒｏｓｉｓ ｆａｃｔｏｒ ｓｕｐｅｒｆａｍｉｌｙ ｍｅｍｂｅｒ １４，
ＴＮＦＳＦ１４）可以通过激活 ＳＴＡＴ３ 和 ＳＴＡＴ５ 通路增强

ＢＭ⁃ＭＳＣｓ 向功能性肝细胞样细胞分化，并通过上调

多种细胞周期相关蛋白的表达水平，促进细胞增

殖［２２］。 因此，ＢＭ⁃ＭＳＣｓ 通过多种机制促进肝细胞再

生，对后续的临床应用提供了理论支持。

３　 骨髓间充质干细胞治疗肝衰竭的临床研

究与转化

　 　 随着对 ＢＭ⁃ＭＳＣｓ 与肝衰竭交互信号通路与相
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齐泽强　 骨髓间充质干细胞治疗肝衰竭的作用机制

关机制认识的逐步深入，应用 ＢＭ⁃ＭＳＣｓ 治疗肝衰竭

已成为可能，其疗效也被越来越多的临床研究所证

实。 一项随机对照实验研究异基因 ＢＭ⁃ＭＳＣｓ 治疗

ＨＢＶ 相关 ＡＣＬＦ 患者临床疗效，治疗组 ５６ 例患者每

周予以注射 １􀆰 ０ × １０５ ／ ｋｇ 异基因 ＢＭ⁃ＭＳＣｓ，连续

４ 周，后随访至 ２４ 周。 结果显示，相比于单纯标准药

物治疗组 ５４ 例患者，ＢＭ⁃ＭＳＣｓ 治疗组患者的总胆红

素、ＭＥＬＤ 评分以及致命并发症的发生率均显著降

低，伴随累积生存率升高（７３􀆰 ２％ ｖｓ ５５􀆰 ６％） ［２３］。 针

对 ２０ 例计划接受肝移植患者按 １：１ 比例随机分配

到移植前接受单次静脉输注异体 ＢＭ⁃ＭＳＣ 组和标

准治疗组研究发现，两组不良事件发生率相似，尤其

接受 ＢＭ⁃ＭＳＣ 治疗患者并无 ＭＳＣ 输注相关并发症

发生，证实肝移植前输注异体 ＢＭ⁃ＭＳＣ 是安全的。
此外，在 ＢＭ⁃ＭＳＣ 移植后 １ ～ ２ 周，移植组调节性 Ｔ
细胞增加，提示 ＢＭ⁃ＭＳＣ 通过促进调节性 Ｔ 细胞分

化辅助抑制排斥反应，促进肝移植后的免疫耐

受［２４］。 ＡＢＯ 不相容肝移植已成为挽救肝衰竭患者

死亡的一种选择。 一项针对 ２２ 例接受 ＡＢＯ 不相容

肝移植的肝衰竭患者研究证实，术后随访 ２ 年，ＢＭ⁃
ＭＳＣｓ 治疗组和利妥昔单抗治疗组移植物和受体生

存率无显著差异，但 ＢＭ⁃ＭＳＣｓ 治疗组胆道并发症和

感染发生率更低，并因此提高患者生存率［２５］。 上述

临床研究为 ＢＭ⁃ＭＳＣｓ 治疗肝衰竭、失代偿期肝硬化

等终末期肝病提供了创新性经验。 当然，由于目前

临床研究报道及接受治疗人数尚少，缺乏标准化大

样本随机对照研究，因此对于 ＢＭ⁃ＭＳＣｓ 治疗肝衰竭

的疗效和安全性，尤其远期预后尚有待进一步验证。

４　 问题与展望

综上，随着对 ＢＭ⁃ＭＳＣｓ 研究的不断深入，使其

在肝衰竭的患者中开辟了极具潜力的应用前景。 越

来越多的研究证实了 ＢＭ⁃ＭＳＣｓ 治疗具有良好的安

全性和临床价值，并逐步阐明其分子机制与信号通

路。 这不仅为更多肝衰竭患者提供一种新的治疗选

择和策略，也为药物研发等提供重要基础证据支持。
但值得关注的是，由于临床研究的多方面因素限制，
移植后 ＢＭ⁃ＭＳＣｓ 在人体内是如何向肝细胞转化，受
哪些信号分子与通路调控等具体机制尚有待进一步

明确。 因此，ＢＭ⁃ＭＳＣｓ 用于治疗肝衰竭尚面临一定

的困难与挑战，包括在临床应用中最优的输注方法、
治疗时机以及输注数量等仍有待确证，其远期疗效

与安全性也尚处经验积累阶段。 相信随着对干细胞

的不断深入研究，上述问题将被逐步解决，ＢＭ⁃ＭＳＣｓ
也才真正有望应用到临床，成为治疗肝衰竭等危重

症疾病的理想治疗手段。
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