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Sleepis afundamental biological process with broad implications for physical
and mental health, yetits complex relationship with disease remains poorly
understood. Polysomnography (PSG)—the gold standard for sleep analysis—
capturesrich physiological signals but is underutilized due to challengesin
standardization, generalizability and multimodal integration. To address these
challenges, we developed SleepFM, a multimodal sleep foundation model
trained with anew contrastive learning approach that accommodates multiple
PSG configurations. Trained on a curated dataset of over 585,000 hours of PSG
recordings from approximately 65,000 participants across several cohorts,
SleepFM produces latent sleep representations that capture the physiological
and temporal structure of sleep and enable accurate prediction of future disease
risk. From one night of sleep, SleepFM accurately predicts 130 conditions with
aC-Index of atleast 0.75 (Bonferroni-corrected P < 0.01), including all-cause
mortality (C-Index, 0.84), dementia (0.85), myocardial infarction (0.81),

heart failure (0.80), chronickidney disease (0.79), stroke (0.78) and atrial
fibrillation (0.78). Moreover, the model demonstrates strong transfer learning
performance on a dataset from the Sleep Heart Health Study—a dataset that
was excluded from pretraining—and performs competitively with specialized
sleep-staging models such as U-Sleep and YASA on common sleep analysis
tasks, achieving mean F; scores of 0.70-0.78 for sleep staging and accuracies of
0.69 and 0.87 for classifying sleep apnea severity and presence. This work shows
that foundation models can learn the language of sleep from multimodal sleep
recordings, enabling scalable, label-efficient analysis and disease prediction.

Sleep is a complex process characterized by intricate interactions
across physiological systems, including brain, heart, respiratory
and muscle activity'. PSG—the gold standard for sleep evaluation—
captures theseinteractions through recordings of several modalities,
including brain activity signals (BAS, including electroencephalogram
(EEG) and electrooculogram (EOG)), electrocardiography (ECG), elec-
tromyography (EMG) and respiratory signals®.

Sleep disorders affect millions of people and are increasingly
recognized as indicators of, and contributors to, various health

conditions®. Sleep disturbances often precede the clinical onset of
numerous conditions, such as psychiatric disorders*, neurodegen-
erative diseases’ and cardiovascular disorders®. These associations
highlight the importantrole sleep plays in maintaining overall health
and underscoresits predictive potential across awide spectrum of dis-
eases. However, most existing studies have focused onidentifying links
between sleep and specific diseases using isolated metrics or manual
annotations, leaving much of the complexity of sleep physiology, as
captured in PSG, underutilized.
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Recent advances in deep learning have enabled the use of PSG’s
multimodal data for tasks ranging fromsleep staging and apnea detec-
tionto predicting conditions such as atrial fibrillation, biological aging
and narcolepsy®'°. Despite this progress, current approaches face
key limitations: they focus onindividual outcomes, depend on super-
vised learning with expert-labeled data and are trained on relatively
small datasets (2,500-15,913 recordings)>”°™". Manual annotations
are time consuming and prone to inter-rater variability, making scal-
ing difficult. Moreover, existing models lack flexibility across record-
ing environments, generalize poorly across cohorts and often fail to
exploit the richness of multimodal sleep signals. There remains a need
for robust, generalizable architectures and systematic evaluation of
sleep’s predictive value across a broad range of health conditions.

Foundation models have emerged as a transformative approach
in machine learning, enabling robust representation learning from
large-scale, unlabeled data™. By leveraging self-supervised learning,
these models can be fine-tuned efficiently for diverse applications.
In biomedicine, foundation models have demonstrated remarkable
capabilities in analyzing complex, heterogeneous datasets, driving
advances in disease prediction, patient stratification and therapeu-
tic discovery™™. Their ability to extract meaningful patterns from
large-scale data has addressed many challenges associated with the
diverse and high-dimensional nature of clinical datasets.

Despite these successes, their application to sleep remains limited.
Sleep data, particularly from PSG, presents unique challenges due to
its complexity and variability, including differencesin the number and
types of recording channel across clinical cohorts. Most sleep stud-
ies have focused narrowly on sleep-specific outcomes, constraining
the broader potential of foundation models for disease prediction.
In preliminary work, we explored self-supervised learning on PSG
data in a smaller cohort of participants™. Although this effort high-
lighted the potential of foundation models for analyzing sleep data,
it targeted primarily sleep-specific outcomes and lacked the flexibil-
ity to accommodate the diverse configurations of PSG recordings.
These limitations emphasize the need for models that can generalize
across heterogeneous datasets and systematically uncover the role of
sleepin predicting a wider range of diseases.

Inthis paper we present SleepFM, afoundation model trained on
over 585,000 h of PSG data from 65,000+ participants. SleepFM cap-
tures the diverseinformation present in multimodal sleep recordings—
integrating EEG, ECG, EMG and respiratory signals. Its channel-agnostic
architecture enables joint learning across several modalities, produc-
ing representations that generalize across environments. We also intro-
duce a new leave-one-out (LOO) contrastive learning (CL) (LOO-CL)
algorithmthat alignsinformationacross modalities during pretraining
while remaining resilient to missing or heterogeneous channels during
inference. Our model uses 5-25times more data than previously trained
supervised sleep®”*'° or biosignal models™.

Inspired by phenome-wide association studies (PheWAS)", we
examined whether sleep characteristics, as captured by SleepFM, can
predict the onset of a wide range of diseases. Leveraging electronic
healthrecord (EHR) disease codes, we develop aframework to system-
atically explore predictive associations between multimodal sleep and
diverse health conditions.

Dataset and SleepFM architecture

We describe our dataset and training procedures in detail in
Methods. Briefly, we used PSG data from four primary cohorts:
Stanford Sleep Clinic (SSC)", BioSerenity'®", the Multi-Ethnic Study
of Atherosclerosis (MESA)?>?' and the Outcomes of Sleep Disorders
in Older Men (MrOS)?*?*2, SSC includes 35,052 studies from partici-
pants aged 1-100 years; BioSerenity adds 18,900 studies from peo-
ple aged 7-90 years; MESA and MrOS contribute 2,237 and 3,930
PSGs, respectively, from older adults. Together, these cohorts span
65,000 participants and more than 585,000 h of sleep recordings. We

Table 1| Distribution of PSG recordings across cohorts and
data splits

Split SSC BioSerenity MESA MROS SHHS Total
Train 24,137 18,869 1,747 3,340 3,291 51,384
Validation 764 100 10 18 500 1,392
Test 5,019 - 150 286 2,000 7455
Temporaltest 5132 - - - - 5132
Total 35,052 18,969 1907 3644 5791 65,363

The model was first pretrained on SSC, BioSerenity, MESA and MROS data, following which
these same recordings were used for task-specific fine-tuning. The SHHS dataset is reserved
exclusively for evaluating transfer learning capabilities and was used only during fine-tuning
not during pretraining. The temporal test set consists of SSC recordings from 2020 onwards,
used to evaluate model robustness to temporal distribution shifts. Dashes (-) indicate that no
data is available for that split.

further evaluated generalization using the Sleep Heart Health Study
(SHHS)****—a multicenter dataset of 6,441 adults aged 40 years and
older, held out from pretraining and used solely for transfer learn-
ing. Dataset distributions postfiltering are shown in Table 1. Demo-
graphics for SSC and BioSerenity appear in Extended Data Tables 1
and 2, whereas details for SHHS, MrOS and MESA are available in their
respective publications.

Our preprocessing pipeline begins by resampling all signals to
128 Hzfor consistency across cohorts. Signals are then segmented into
5-swindows, which serve asthe model’s fundamental input tokens. The
architecture includes one-dimensional (1D) convolutional layers for
feature extraction, followed by channel-agnostic attention pooling
to address variability in channel number and order across cohorts.
A transformer block captures temporal dependencies over a 5-min
context window. During pretraining, we use amultimodal CL objective
to align representations across all modalities. The robustness of the
model stems from its channel-agnostic design, enabling it to accom-
modate missing channels, varying channel counts and heterogeneous
signal types.

For downstream tasks, we leverage the pretrained model’s embed-
dings through lightweight fine-tuning. The token embeddings from
different modalities are pooled again and processed by a two-layer
long short-term memory (LSTM) network before passing through
task-specific output heads. For patient-level prediction tasks (for
example, disease prediction), an additional temporal pooling layer
before the output layer compresses all token embeddingsintoasingle
128-dimensional embedding.

To evaluate model performance across tasks, we use appropriate
task-specific metrics. For classification tasks such as sex classifica-
tion, wereportareaunder thereceiver operating characteristic curve
(AUROC) and areaunder the precision-recall curve (AUPRC); for sleep
apnea classification we show confusion matrices and report accuracy;
for age estimation, we use mean absolute error (MAE) and Pearson
correlation. Sleep staging is evaluated using the F; score, whichis well
suited for class-imbalanced settings. For disease prediction, we report
AUROC and Harrell’s concordance index (C-Index)—a standard sur-
vival analysis metric that measures the proportion of correctly ranked
risk pairs. All metrics range from O to 1, with higher values indicating
better performance; 95% confidence intervals (Cls) are computed
using bootstrapping.

SleepFM supports standard sleep analysis tasks

After pretraining SleepFM, we assessed the general utility of its learned
representations by fine-tuning on four common benchmark tasks:
age estimation, sex classification, sleep stage classification and sleep
apnea classification. Although these tasks are not the main focus
of our work, they are useful validations showing that the model cap-
tures fundamental sleep patterns. For all tasks, we trained lightweight
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LSTM-based heads on top of the frozen multimodal embeddings
derived from entire nights of PSG data.

For age estimation, we assessed the ability of the model
to predict chronological age. Overall performance is shown in
Extended DataFig.1, with the model achievinga MAE of 7.33 yearsand a
correlation coefficient of 0.88. Performance varied across age groups,
with higher accuracy in pediatric and middle-aged participants and
greater error in elderly adults, suggesting that age prediction is more
challenging at the extremes of the age spectrum. Sex classification
yieldedan AUROC of 0.86 (0.85-0.87) and AUPRC of 0.90 (0.89-0.91).
For sleep stage classification, we fine-tuned a LSTM-based classifier
to distinguish Wake, Stage 1, Stage 2, Stage 3 and rapid eye movement
(REM) using 5-s windows—amore granular resolution than the standard
30-sepochs, which hasbeen shown toimprove precisionin certaincon-
ditions (for example, narcolepsy™). As shownin Supplementary Fig.1,
SleepFM performs well on Wake, Stage 2 and REM, with expected confu-
sionintransitional stages like Stage 1—consistent with known human
scoring variability. We report results across SSC, MESA, MrOS and
SHHS, where SleepFM achieves competitive performance compared to
U-Sleep’, YASA*, GSSC* and STAGES'’—state-of-the-art sleep staging
models, as shown in Extended Data Tables 3 and 4. Furthermore, we
compare SleepFM to three PhysioEx*® models on the public datasets
DCSM? and HMC® in a fully external validation setting, achieving
an F; score of 0.68 on DCSM—outperforming all models—and 0.55 on
HMC (Supplementary Table 1). Although the source alone has little
impact, using several datasets for pretraining and fine-tuning improves
generalization, boosting macro F; by around 0.1 (Supplementary
Tables 2,3 and 4), consistent with previous work®.

For sleep apnea classification, we performed patient-level sever-
ity classification to distinguish between four commonly used severity
groups on the basis of the apnea-hypopneaindex (AHI): none (AHI < 5),
mild (5 < AHI <15), moderate (15 < AHI < 30) and severe (AHI > 30).
Across MESA, MrOs and SHHS, we observe competitive perfor-
mance, with a severity classification accuracy of 0.69 and a presence
classification accuracy (none/mild versus moderate/severe) of 0.87.
The confusion matrix for apnea classification is shownin Fig. 1.

SleepFM enables comprehensive disease
predictionfromsleep data

Toenable disease prediction, we paired SSC datawith EHRs, extracting
all diagnostic codes (International Classification of Diseases, ninth
revision (ICD-9) and International Classification of Diseases, tenth
revision (ICD-10)) and their timestamps. These codes were mapped to
phecodes—ahierarchical system of 1,868 disease categories designed
for PheWAS”. The timestamp of each phecode was defined as the earli-
estamong its corresponding ICD codes. Positive cases were defined as
patients whose first phecode instance occurred more than 7 days after
the sleep study, avoiding trivial associations. We excluded phecodes
with prevalence below 1.5% to ensure statistical power, resultingin1,041
phecodes for evaluation. For model fine-tuning, we used a multilabel
extension of the Cox proportional hazards (CoxPH) loss, averaging
independent losses computed for each label.

Figure 2 illustrates the performance of SleepFM across disease
categoriesonthe test set. Although performance varies across catego-
ries, SleepFM demonstrates strong results in several areas, including
neoplasms, pregnancy complications, circulatory conditions and
mental disorders. Overall, 130 future diseases achieved a C-Index and
AUROC of atleast 0.75on held-out participants (Bonferroni-corrected
P <0.01),as summarized inSupplementary Table 5. AUROC was calcu-
lated using a 6-year horizon, meaning a conditionis considered positive
if the patient develops the disease within 6 years of their PSG study.
The 6-year horizon for AUROC calculation was chosen to balance per-
formance and account for both long-term and short-term conditions.
Supplementary Fig. 2 shows AUROC values across 1-6 year horizons
for several conditions.

The model showed high accuracy for mild cognitive impairment
(AUROC 0.84 (0.80-0.880)), aligning with studies showing sleep dis-
turbances as early markers of cognitive decline®®. Strong performance
was observed for Parkinson’s disease (0.93 (0.89-0.96)), where sleep
disorders are increasingly recognized as potential early indicators™,
and developmental delays and disorders (0.84 (0.79-0.87)). Among
circulatory conditions, the model effectively predicted hypertensive
heart disease (0.88 (0.85-0.91)) and intracranial hemorrhage (0.82
(0.73-0.90)), consistent with established links between sleep disorders
and cardiovascular risk™. In the Neoplasm category, the model showed
strong predictive performance for several cancers: prostate cancer
(0.90 (0.87-0.93)), breast cancer (0.90 (0.86-0.93)) and melanomas
of'skin (0.83 (0.76-0.90)). These findings align with existing literature
linking sleep patterns to cancer risk*>*.,

Drawing on sleep expertise and previous literature, we identi-
fied 14 conditions with strong potential links to sleep patterns. Pre-
vious studies associate sleep regularity with mortality®, prolonged
sleep with early neurodegeneration® and sleep disturbances with
dementia®, stroke* and cardiovascular outcomes’. Related phecodes
were grouped into unified disease categories in consultation with a
medical doctor (Supplementary Table 6). Results for selected condi-
tions—including death, stroke, heart failure (HF) and dementia—are
shownin Extended DataFig. 2. SleepFM demonstrates strong predic-
tive performance, with particularly high accuracy for death (AUROC
0.84 (0.80-0.88)), HF (0.83 (0.79-0.86)), chronic kidney disease
(CKD) (0.82(0.79-0.85)), dementia (0.87 (0.84-0.91)) and stroke (0.81
(0.78-0.85)). All reported associations are statistically significant
(P<0.01, Bonferroni-corrected).

To better understand the physiological basis of disease pre-
diction, we analyzed model performance stratified by both sleep
stages and signal modalities. We found that although most sleep
stages contribute similarly to disease prediction, certain stages
such as Stage 1/2 and REM can offer slightly better predictive
power for specific conditions, including cardiovascular and neuro-
degenerative diseases. Likewise, different signal modalities showed
nuanced differences, with BAS signals better capturing mental
and neurological conditions, respiratory signals more predictive of
respiratory and metabolic disorders, and electrocardiogram (EKG)
signals more informative for circulatory diseases. Although these
differences align with known physiology, the overall predictive
performance was highest when combining all modalities. Full results
and condition-specific breakdowns are provided in Supplementary
Figs. 3 and 4 and Supplementary Tables 7 and 8. Furthermore, we
trained separate SleepFM models on each modality to directly assess
modality-level importance. Performance comparisons stratified
by disease category, presented in Supplementary Tables 9 and 10,
further confirm that combining all modalities yields the optimal
performance.

SleepFM demonstrates robust generalization
across time and cohorts

We evaluate the generalization capabilities of SleepFM across temporal
distribution shifts and external site validation. For temporal generali-
zation, we test the model on a separate cohort comprising Stanford
patients from 2020 onwards. All model pretraining and training was
doneondatafrombefore2020. Despite the limited follow-up period,
SleepFM maintains strong predictive performance. Extended Data
Fig. 3 shows results for our 14 selected conditions, with particularly
robust and statistically significant performance (Bonferroni-corrected
P <0.01) for death (0.83 (0.73-0.91)), HF (0.80 (0.75-0.85)) and
dementia (0.83 (0.76-0.89)). Comprehensive temporal-split perfor-
mance across all disease phenotypes and categories is provided in
Supplementary Figs. 5 and 6. Supplementary Fig. 7 further reports
temporal-split performance comparisons with baseline models, strati-
fied by disease category.
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Fig.1| Overview of SleepFM framework. a, PSG setup and dataset statistics across
several sleep centers. Bars show the number of independent PSG recordings
(participants) per cohort and the corresponding total recording hours.

b, Multimodal contrastive pretraining: raw signals from each modality are encoded
by aCNN, channelembeddings are pooled within modality and atemporal
transformer with temporal pooling yields sequence-level representations for
LOO-CL. C: channels, S: sequence length, D: embedding dimension. ¢, Fine-tuning
using frozen embeddings for downstream tasks (sleep staging, apnea detection,
disease prediction). Eight hours of multimodal embeddings are aggregated to

patient-level representations, concatenated with age and sex, and passed to an
LSTM followed by a fully connected layer. d, Evaluation across representative tasks
and clinical applications. Left and middle: confusion matrices for sleep staging
(SHHS) and AHI categories (SSC) shown as row-normalized percentages. Right:
disease prediction performance on the Stanford cohort (n = 5,019 participants).
Box plots summarize 1,000 patient-level bootstrap resamples: faint dots
(individual bootstrap draws), and vertical line with end caps (95% bootstrap
percentile CI). Numeric labels are means. Number of positive samples for each
disease: CKD (354), death (224), dementia (221), HF (283) and stroke (297).
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Fig. 2| Performance of SleepFM on the held-out test set (n = 5,019) as
stratified by disease category. Individual dots represent a disease within
acategory. Theresults are evaluated using two metrics: the C-Index, which
measures the model’s ability to rank patient risk accurately, and the 6-year

AUROC, which assesses the model’s discrimination performance by evaluating its
ability to distinguish between patients who experience the event of interest and
those who do not within a 6-year prediction window. For reference, the horizontal
dashed line indicates a threshold of 0.75.

To assess cross-site generalization, we evaluate SleepFM’s trans-
fer learning capabilities on SHHS—a dataset entirely excluded from
the pretraining phase. We use the pretrained model to extract
embeddings and then fine-tune it on a subset of SHHS. Specifically,
the SHHS fine-tuning set includes 3,291 participants, and the test set
includes 2,000 participants. Due to differences in task availability
between SSC and SHHS, our evaluation focuses on six overlapping
cardiovascular conditions. This setup mimics real-world deployment
scenarios where foundation models must be adapted to new clinical
sites with minimal supervision.

As shown in Fig. 3, SleepFM demonstrates strong transfer learn-
ing performance across key outcomes. For example, the model
achieves statistically significant predictive accuracy (Bonferroni-
corrected P < 0.01) for stroke (0.82 (0.76-0.87)), congestive HF
(0.85 (0.82-0.88)) and mortality related to cardiovascular disease
(0.88(0.83-0.91)).

SleepFM surpasses supervised baselines in disease
prediction

We compare SleepFM against two supervised baselines: Demo-
graphics and End-to-End PSG. The demographics baseline is a
multilayer perceptron (MLP) trained on structured clinical features

(age, sex, race/ethnicity and body mass index (BMI)). This baseline
includes more demographic variables than the SleepFM-based
models, which only use age and sex. The End-to-End PSG model is
trained directly on raw PSG data using the same architecture and
parameter count as SleepFM, and it includes age and sex but does
not use any pretraining. From Fig. 4, we observe that the percent-
age difference in AUROC between SleepFM and both baseline
models ranges from 5% to 17%. The magnitude of improvement
varies across disease categories; for example, gains are more pro-
nounced in neurological and hematopoietic conditions, whereas in
neoplasm-related conditions the improvements are comparatively
modest. Supplementary Fig. 8 reports the overall test-set perfor-
mance comparison between SleepFM and the baseline models across
all disease phenotypes.

Next, we evaluated three different variants of SleepFM using
identical training configurations, as shown in Table 2 and Extended
DataTable5.SleepFM-LSTM (without Demo) uses SleepFM embeddings
withatwo-layer LSTM fine-tuning head but no demographic features.
SleepFM-Linear uses SleepFM embeddings with asimple linear predic-
tionhead and includes age and sex. Finally, SleepFM-LSTM, combines
the pretrained SleepFM embeddings with a two-layer LSTM head and
includes age and sex.
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Fig. 3 |SleepFM prediction performance on the SHHS testset (n = 2,000
participants). Due to differences in available outcome data between SHHS

and Stanford datasets, evaluation was limited to a subset of conditions. Results
demonstrate transfer learning capabilities across these key clinical outcomes,
including stroke, congestive HF and cardiovascular disease-related mortality.
Each panel uses barplots derived from 1,000 patient-level bootstrapping: faint
points are individual bootstrap draws, and the vertical line with end caps marks

the 95% bootstrap percentile Cl. Numbers above bars report the mean. Metrics
are C-Index (top) and AUROC at 6 years (bottom). The number of positive
samples for each outcome s as follows: angina (704), cardiovascular disease
death (128), congestive HF (190), coronary heart disease death (80), myocardial
infarction (103) and stroke (95). All conditions are statistically significant with a
Pvalue <0.01after Bonferronicorrection.

As seen in Table 2, the demographics-only baseline performs
well, reflecting the fact that many diseases are associated strongly
with age, sex, BMI and race/ethnicity. For example, in the Neoplasm
category, older ageis astrong predictor of cancer risk. Nevertheless, all
SleepFM-based models, including the SleepFM-LSTM (without Demo)
variant, consistently outperform the demographics and End-to-End
PSG baselines across most disease categories. This demonstrates the
benefit of using pretrained SleepFM embeddings for disease pre-
diction. Furthermore, SleepFM-LSTM (without Demo) achieves over
+5 AUROC points in 9 out of 14 conditions, whereas SleepFM-Linear
and SleepFM-LSTM achieve over +5 AUROC points in 12 out of 14 con-
ditions, compared to supervised demographics baseline. As seen
from the 95% Cl bars, these improvements are robust, with most
differences being larger than the uncertainty intervals. Finally,
SleepFM-Linear performs comparably to SleepFM-LSTM, suggesting
that the strength of the model lies in the pretrained embeddings
rather than the complexity of the downstream head. Percentage
improvement comparisons across models are provided in Supple-
mentary Fig. 9, and ascatterplot comparison of all disease phenotypes
across different fine-tuning architectures on top of SleepFM is shown
inSupplementary Fig. 10.

To further examine disease-specific performance, full results are
providedinSupplementary Tables 11,12 and 13, and clinician-selected
conditions are presented in Supplementary Fig. 11. These compar-
isons show that SleepFM achieves substantial gains across several

neurological, mental, circulatory, endocrine/metabolic and respira-
tory conditions. For neurological and mental disorders, SleepFM
attains higher C-Index scores for senile dementia (0.99 (0.98-1.00)
versus 0.87 (0.75-0.96)), myoneural disorders (0.81(0.73-0.88) versus
0.42(0.28-0.55)) and developmental delays (0.80 (0.77-0.84) versus
0.58 (0.51-0.64)). For circulatory diseases, SleepFM outperforms in
atherosclerosis (0.92 (0.88-0.95) versus 0.74 (0.64-0.89)) and acute
pulmonary heart disease (0.80 (0.75-0.85) versus 0.74 (0.68-0.80)).
Improvements in endocrine/metabolic conditions include diabetes
type 2 with circulatory complications (0.87 (0.83-0.91) versus
0.79 (0.74-0.85)) and diabetic retinopathy (0.81 (0.77-0.85) versus
0.75 (0.69-0.80)). For respiratory conditions, SleepFM achieves
higher C-Index in respiratory insufficiency (0.79 (0.72-0.85)]
versus 0.59 (0.51-0.67)) and failure (0.77 (0.73-0.80) versus 0.70
(0.65-0.74)). These findings highlight the versatility of SleepFM
in predicting a broad range of diseases beyond what is captured
by demographics alone.

Similarly, full comparisons with the End-to-End PSG model are
provided in Supplementary Table 14. This comparison highlights
the value of foundation model pretraining: although both models
share similar architecture and input signals, SleepFM benefits from
self-supervised pretraining, enabling more robust and informative
representations. This advantage is reflected in consistent perfor-
mance gains across neurological, circulatory, endocrine/metabolic
and respiratory conditions. For neurological and mental disorders,
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Fig. 4 | Performance improvements of SleepFM over baseline models across
disease categories on Stanford test set (n = 5,019 participants). SleepFM and
the End-to-End PSG modelinclude age and sex demographic features, whereas
the demographics-only modelincludes age, sex, BMI and race/ethnicity. Each
box shows the distribution of disease-level percentage improvements of SleepFM

relative to each baseline within the indicated disease category. Improvements
are shown for both C-Index (top) and 6-year AUROC (bottom) metrics. Boxes
represent the interquartile range (IQR), with whiskers extending to 1.5x IQR and
outliers shown as points. Diamonds denote the mean improvement within each
category. The horizontal dashed line at zero indicates no improvement.

SleepFM outperforms the end-to-end model in myoneural disorders
(0.84 (0.75-0.91) versus 0.54 (0.40-0.69)), developmental delays
(0.84 (0.79-0.87) versus 0.61 (0.52-0.69)) and speech/language
disorders (0.83 (0.74-0.90) versus 0.71 (0.60-0.83)). For circula-
tory conditions, improvements are observed in atherosclerosis of
native arteries of the extremities (0.95 (0.92-0.98) versus 0.65 (0.61-
0.69)), atherosclerosis of the extremities (0.84 (0.75-0.90) versus
0.78(0.71-0.85)) and acute pulmonary heart disease (0.84 (0.77-0.90)
versus 0.76 (0.69-0.83)). In endocrine/metabolic disorders, SleepFM
demonstrates stronger performance for predicting diabetes with
circulatory complications (0.89 (0.85-0.93) versus 0.79 (0.70-0.87)),
neurological manifestations (0.86 (0.81-0.90) versus 0.73 (0.67-0.78))
and diabetic retinopathy (0.84 (0.79, 0.89) versus 0.76 (0.69-0.82)).
Respiratory conditions also benefit, with better performance in
predicting respiratory insufficiency (0.82 (0.72-0.91) versus
0.64 (0.54-0.73)) and respiratory failure (0.76 (0.71-0.82) versus 0.68
(0.62-0.74)). In predicting all-cause mortality, SleepFM achieves a
AUROC of 0.85 (0.80-0.89), outperforming both the Demographic
baseline and End-to-End PSG model, which achieve AUROC of 0.78
(0.72-0.82).

Finally, we compare fine-tuning scalability by evaluating
SleepFM alongside two baseline models as we increase the amount
of fine-tuning data and measure performance on the same test set.
Theseresults are shownin Extended Data Fig. 4 for SHHS and Extended
DataFig. 5 and Supplementary Fig. 12 for SSC. In both plots, the key
observationis that SleepFM consistently outperforms the supervised
baselines, with its performance improving steadily as more data are
used, remaining above the baseline curves for nearly all conditions.
For SHHS, SleepFM surpasses the Demographics baseline in five out
of six conditions across all data percentages, with particularly large
improvementsin smaller dataset splits. For example, SleepFM trained
onjust10% of the data outperforms the Demographics baseline trained
on five times more data across all conditions in SSC and four out of
six conditions in SHHS (for example, cardiovascular disease death,
congestive HF, myocardial infarction and stroke). SleepFM also out-
performs the End-to-End PSG baseline in five out of six conditions,
although the gapis slightly smaller than with the Demographics base-
line. SleepFM exhibits stable scaling behavior across data percentages,
with smoother performance improvements, whereas the baseline
models show greater variability.
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Table 2 | Comparison of category-averaged AUROC across SleepFM variants and baselines

Category Demo E2E-PSG SleepFM-1 SleepFM-2 SleepFM-3
Circulatory system 074473, 074) 0.74 (013 075 0.78077,078) 0.79078, 080) 079078, 080)
Dermatologic 0.64 (063,065 0.63062, 069) 0.68067,069) 0.71070,072) 0.70070,071)
Digestive 0.63062,064) 0.64063 065) 0.69069,070) 0.7271,073) 0.72071,073)
Endocrine/metabolic 0.68068,069) 0.67066, 069) 0.74 73,075 0.75(074, 076) 0.75(074,076)
Hematopoietic 0.64 063, 066) 0.66(064,067) 0.73(072,075) 0.75(073,076) 07473 076)
Infectious diseases 0.62(061,064) 0.62(060,063) 0.67 (065, 069) 0.70(068,07) 0.70068,071)
Injuries and poisonings 0.62061,063) 0.63 061,064 0.68067,069) 0.70069, 071) 0.70069, 071)
Mental disorders 0.66(065,067) 0.66(065,067) 0.72071,073) 0.74 73,075 0.74 74,075
Musculoskeletal 0.68067,069) 0.68(067,069) 0.70(69, 071) 0.72072,073) 0.72071,073)
Neoplasms 0.73071,072) 0.73071,074) 0.73072, 074 0.76075,077) 0.76075,077)
Neurological 0.62(061, 063) 0.63(062, 064) 0.70(069, 071 0.72071,073) 0.72071,073)
Respiratory 0.63062, 064 0.64 063,065 0.69068,070) 0.69069,070) 0.70069, 071)
Sense organs 0.66065,067) 0.67 (066,068 0.7070,072 0.73(072,070) 0.73 (072,074
Symptoms 0.65(064,066) 0.66(064,067) 0.7207,073) 0.75(074,076) 0.75(074,076)

Category-averaged 6-year AUROC (meangsy, y) comparing SleepFM variants with two baselines across disease categories on Stanford cohort (n=5,019). The Demographics baseline (Demo)
uses only structured clinical features (age, sex, BMI and race/ethnicity). The End-to-End PSG baseline (E2E-PSG) is trained directly on raw PSG signals with age and sex, without any pretraining.
SleepFM-1denotes SleepFM-LSTM (without Demo), using two LSTM layers in the fine-tuning prediction module and no demographic features. SleepFM-2 denotes SleepFM-Linear, a linear
prediction module on SleepFM embeddings with age and sex. SleepFM-3 denotes SleepFM-LSTM, which uses two LSTM layers in the fine-tuning prediction module with age and sex. Values
are averaged within each category across conditions. Uncertainty is estimated by nonparametric bootstrapping (n=1,000 resamples): for each resample, conditions within a category are
sampled with replacement and the category mean is computed; 95% Cls are the 2.5th-97.5th percentiles across resamples.

Discussion
This study presents a large-scale foundation model for sleep analysis,
developed on more than 585,000 h of PSG data from 65,000 partici-
pants. Our work makes several contributions. First, we address chal-
lenges in sleep analysis by leveraging self-supervised learning to train
afoundation model that learns from unlabeled data and is agnostic to
channel type and number, enabling broad exploration of sleep data
across diverse clinical settings. Second, through extensive evaluation
across 1,041 disease phenotypes, we demonstrate sleep’s broad pre-
dictive power for diverse health outcomes. The model shows strong
performance in predicting death (C-Index 0.84), dementia (0.85), HF
(0.80) and CKD (0.79). Third, we demonstrated transfer learning capa-
bilities through strong performance onthe SHHS dataset. Despite SHHS
being entirely excluded from pretraining, our model maintains robust
predictive power for key outcomes such as stroke (C-Index 0.81), con-
gestive HF (0.83) and death related to cardiovascular disease (0.86).
Finally, SleepFM achieves competitive performance onstandard sleep
analysistasks, including sleep staging and apnea detection, with mean
F, scores ranging from 0.70 to 0.78 across cohorts—comparable to
state-of-the-art models such as U-Sleep’, GSSC*, STAGES'® and YASA*.
Furthermore, inafully external validation setting, SleepFM outperforms
allmodels on DCSM (F, = 0.68) and is competitive with the PhysioEx*®
models. For apnea classification, SleepFM achieves 87% accuracy in
MESA, MrOS and SHHS, comparable to state-of-the-art models®.
SleepFM predicts all-cause mortality more accurately than both
the Demographics-based model and the End-to-End PSG model,
achieving a higher C-Index of 0.84 (0.81-0.87), compared to 0.79
(0.75-0.82). This indicates that pretraining efficiently captures subtle
mortality-related signalsin the PSG data. Research shows strong asso-
ciationbetween all-cause mortality and sleep-related factors, including
high arousal burden®, low REM sleep*’, sleep-disordered breathing®,
hypoxemia and low sleep efficiency*. Increased ‘brain age’ derived
fromEEG has also beenidentified as animportant predictor of mortal-
ity>. SleepFM probably integrates these multifactorial contributors,
capturing respiratory events, sleep fragmentation, arousal burden
andsleep efficiency, along with markers of cardiovascular, metabolic
and other diseases.

Predictive and prognostic models for neurological and mental
disorders are advancing rapidly, offering the potential for earlier and
more individualized treatment. Among the top conditions predicted
by SleepFM were Alzheimer’s disease and Parkinson’s disease, with
C-Indices 0f 0.91(0.87-0.98) and 0.89 (0.85-0.92), respectively. Sleep
disorders are associated strongly with preclinical Alzheimer’s disease*,
including abnormalitiesin non-REM ssleep, such as reduced slow-wave
activity**, REM sleep disturbances* and decreased spindle activity*°.
Inearly Alzheimer’s disease, REM sleep abnormalities have been linked
to basal forebrain cholinergic lesions, which probably contribute to
cognitive decline”. Similarly, Parkinson’s disease is frequently pre-
ceded by REM sleep behavior disorder, characterized by REM sleep
without atonia and abnormalities in BAS and ECG patterns*. Recent
studies have also shown that respiratory signals can capture pheno-
types specific to Parkinson’s disease®’.

Consistent with these findings, SleepFM identified BAS as the
strongest predictor of neurological and mental disorders, whereas
respiratory signals were particularly effective in predicting senile
dementia. Most studies in this domain rely on imaging modalities
such as magnetic resonance imaging (MRI) and functional MRI (fMRI)
to predict dementia. For example, one study using hippocampal
MRI achieved a C-Index of 0.86 (ref. 50), whereas another using fMRI
reported an AUROC of 0.82 for predicting dementia up to 9 years in
advance®. Although direct performance comparisons are challenging
due to differences in sample distributions, the ability of SleepFM to
leverage PSG datato predict neurological and mental disorders under-
scores its potential as an alternative to imaging-based approaches.

Other established biomarkers for Alzheimer’s disease—such as
amyloid PET, decreased cerebrospinal fluid -amyloid,,, and increased
cerebrospinal fluid phosphorylated tau (for example, p-tau,,,)*>**—have
been used widely for diagnosis and prognosis. More recently, plasma
p-tau,; has emerged as a promising less invasive marker**. Sleep bio-
markers from PSG data offer a complementary, noninvasive tool for
the prognosis of dementia and mild cognitive impairment.

SleepFM accurately modeled cardiovascular disease in both the
SSC and SHHS datasets, leveraging data-driven methods commonly
used in prognostic modeling of cardiovascular disease, particularly
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with ECG data® and lead Il ECG from PSG studies’. Foundation models
have demonstrated state-of-the-art performance with ECG data in
various cross-sectional tasks®. For predicting cardiovascular mortality
over 10 years, aprevious study reported an AUROC of 0.84 (0.78-0.89)
in a subset of SHHS participants with sleep apnea, whereas SleepFM
achieved a slightly higher AUROC of 0.88 (0.83-0.91). Similarly,
for atrial fibrillation, earlier work reported an AUROC of 0.82 (ref. 9),
which aligns with SleepFM’s performance of 0.81 (0.78-0.84). Our
ablation study further demonstrated that both ECG and respiratory
signals contribute to the prediction of circulatory system pheno-
types, suggesting that SleepFM integrates information on sleep
apnea and heart activity in ways that are consistent with known
disease mechanisms*®.

Most disease categories, including neurological, circulatory,
hematopoietic, mental disorders and endocrine/metabolic, were pre-
dicted with notably improved performance by SleepFM compared to
the Demographics-based and End-to-End PSG baseline models. Many
ofthese diseases are either associated with sleep (for example, type 2
diabetes”) or influenced directly by the signal modalities (for exam-
ple, heartarrhythmia). Disrupted and unhealthy sleep contributes to
dysfunction across several physiological systems, increasing the risk
of diseases such as obesity, type 2 diabetes, hypertension, stroke and
cardiovascular disease’®. Sleep-specific conditions, including sleep
apnea’®and less conclusively periodic leg movements®, are also linked
to cardiovascular outcomes. Furthermore, specific EEG waveforms,
such as coupled slow-wave and spindle activity, have been identified
as markers of next-day blood glucose regulation®.

Despite these promising results, several limitations should be
acknowledged. Although our dataset is large, it consists primarily of
patients referred for sleep studies due to suspected sleep disorders or
other medical conditions requiring overnight monitoring. This selec-
tionbias means our cohortis not representative of the general popula-
tion, as people without sleep complaints or those with limited access
to specialized sleep clinics are underrepresented. The model’s per-
formance shows some degradationin temporal test sets, highlighting
the challenge of maintaining predictive accuracy over time as clinical
practices and patient populations evolve. Furthermore, interpreting
the predictions made by SleepFM is inherently challenging due to the
complexity of the learned features during training by adeep model. To
mitigate this, we stratified the model’s performance across sleep stages
and datamodalities, and conducted evaluations on temporal test sets
and unseen datasets to gaininsightsinto its behavior. However, further
workis needed to enhance case-levelinterpretability and understand
the specific sleep patterns and features driving these predictions.

Inbuilding our model, we selected hyperparameters for SleepfFM
based onprevious work and ensured all training convergedinloss; more
extensive hyperparameter searches may further boost performance.
Furthermore, although we evaluated SleepFM’s transfer learning per-
formance on an independent dataset, SHHS, only a subset of the full
1,041 conditions could be assessed in this sample due to limited diag-
nostic overlap with SSC; this prevented a comprehensive evaluation
of generalization across the full spectrum of diseases. Our sleep apnea
analysis was limited tobinary and four-class classification on the basis
of AHIthresholds; we did not explore more granular formulations such
as AHlregression or event detection, we leave this for future research.
Similarly, although SleepFM achieves competitive results on sleep
staging tasks across most datasets, it lags behind specialized sleep
staging models on certain external validation datasets (for example,
HMC). Further specialized modeling may be necessary to optimize
SleepFM for sleep staging.

This study underscores the potential of sleep-based foundation
models for risk stratification and longitudinal health monitoring. By
integrating several physiological signals and leveraging large-scale pre-
training, SleepFM performs consistently well across diverse disease cat-
egories and outperforms supervised baselines. Its stable performance

across fine-tuning splits suggests that pretraining may improve model
generalizability, particularly in clinical contexts with limited labeled
data. These results suggest that SleepFM can complement existing
risk assessment tools and help identify early signs of diseases. As
wearable sleep technologies continue to advance, models such as
SleepFM may offer opportunities for noninvasive, real-time health
monitoring. Future efforts should explore how combining sleep-based
models with data from EHRs, omics and imaging can further enhance
their utility.
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Methods

Dataset and preprocessing

Our dataset includes PSG recordings from four different sites: SSC,
BioSerenity, MESA?*?' and MROS****, with SHHS**** serving as an exter-
nal validation dataset. Among these, MESA, MROS and SHHS are pub-
licly available datasets, whereas SSC is our proprietary dataset. The
BioSerenity dataset, provided by the BioSerenity company, contains
18,869 overnight recordings lasting 7-11 heach. This dataset isasubset
of alarger collection from SleepMed and BioSerenity sleep laborato-
ries, gathered between 2004 and 2019 across 240 US facilities”. At
the time of this study, approximately 20,000 deidentified PSGs were
available for analysis. The dataset distribution across different splits
isshownin Fig. 1, with SSC constituting the largest cohort. To prevent
data leakage, participants with several PSG recordings were assigned
to a single split. For MESA, MROS and SHHS details, we refer readers
to their original publications. Below, we describe our internal SSC
dataset in more detail.

The SSC dataset comprises 35,052 recordings, each lasting
approximately 8 h overnight. It includes diverse waveforms such as
BAS, ECG, EMG and respiratory channels, making it a high-quality
resource for sleep-related research. The dataset spans recordings from
1999102024 andincludes participants aged 2to 96 years. The patient
demographic statistics for SSC and BioSerenity are summarized in
Extended Data Tables1and 2, respectively.

Our preprocessing strategy minimizes alterations to preserve raw
signal characteristics crucial for identifying nuanced patterns. Each
recording contains up to four modalities: BAS, ECG, EMG and respira-
tory, with variable numbers of channels. For BAS, we allowed up to ten
channels, for ECG two channels, for EMG four channels and for respira-
tory seven channels. The number and type of channels vary across sites
and even between patients within the same site, depending on the
study type. The types of channel available across sites are described
in Supplementary Tables 15-19. BAS includes channels that measure
brainactivity fromdifferent regions (frontal, central, occipital) as well
asEOG for eye movements. EMG records electrical activity in muscles,
whereas ECG captures cardiac electrical function. Respiratory channels
measure chest and abdominal movements, pulse readings and nasal/
oralairflow. These channels were selected based on their relevance to
sleep studies, guided by sleep experts'.

EachPSGrecordingis resampled to128 Hz to standardize sampling
rates across participants and sites. Before downsampling, we utilized
afourth-order low-pass Butterworth filter to prevent aliasing, applied
inazero-phase setting to avoid phase distortion. Finally, we standard-
ized the signal to have zero mean and unit variance. For any signals that
needed to be upsampled, this was done using linear interpolation. Due
to the channel-agnostic model design, we did not need any other data
harmonization. Signals are segmented into 5-s patches, with each seg-
ment embedded into a vector representation for transformer model
processing. To prevent data leakage, PSGs were split into pretrain,
train, validation, test and temporal test sets early in the preprocess-
ing pipeline. Although there is overlap between the pretraining and
training sets, no overlap exists with the validation, test or temporal
test sets. The SHHS serves as anindependent dataset not used during
pretraining, instead being used to evaluate the model’s ability to adapt
to anew site through lightweight fine-tuning.

During pretraining, the only required labels are the modality types
ofthe signals. A self-supervised CL objective isemployed for pretrain-
ing. For downstream evaluations, we consider canonical tasks such as
age/sex prediction, sleep stage classification, sleep apnea classification
and various patient conditions extracted from EHR data. Sleep stag-
ing and apnea labels for SSC, MESA, MROS and SHHS were annotated
by sleep experts. To ensure consistency across and within datasets,
Rechtschaffenand Kales labels were converted to American Academy of
Sleep Medicine standard by mapping Rechtschaffen and Kales stages 3
and 4 to American Academy of Sleep Medicine standard N3. SHHS also

includes diagnostic information for conditions such as myocardial
infarction, stroke, angina, congestive heart failure and death. For SSC,
we paired PSG data with Stanford EHR data using deidentified patient
IDsto extract demographic and diagnostic information. As BioSerenity
lacks associated labels, it was used exclusively for pretraining.

SleepFM model architecture

Our modelarchitectureisillustrated in Fig. 1. The architectureincludes
several key components that differ slightly between the pretraining and
fine-tuning stages. During pretraining, we employ CL as the objective
function for representation learning. A single model processes all
four modalities.

The first component of the architecture is the Encoder, a1D con-
volutional neural network (CNN) that processes raw signal data for
eachmodality separately. The encoder takes raw input vectors, where
the length of each vector corresponds to a 5-s segment of the signal,
referred toasatoken. Theinput dimensionsare (B, T, C), where Bis the
batchsize, Tistheraw temporallength of the input and Cis the number
of channels for each modality. These inputs are reshaped into (B, C,
S,L),where Sisthesequence lengthrepresenting the number of tokens
(§=T/L)and L corresponds to the raw vector length for a single token
(forexample, 640 samples). Each tokenis then processed individually
throughastack of six convolutional layers, each followed by normaliza-
tion and ELU activation layers. These layers progressively reduce the
temporal resolution while increasing the number of feature channels,
converting theinputfrom1channel to 128 channels. After this, adaptive
average pooling further reduces the temporal dimensions, and afully
connected layer compresses the representationinto al28-dimensional
embedding for each token. The final output of the encoder has dimen-
sions (B, C, S, D), where D=128.

Following the encoder, a sequence of transformer-based opera-
tionsisapplied to extract and aggregate modality-specificand tempo-
ralfeatures. The first step is channel pooling, which aggregates token
embeddings from all channels within agiven modality. This operation
uses an attention pooling mechanism based on a transformer layer
to compute attention scores for each channel and produces a single
aggregated embedding per time segment by averaging over the chan-
nel dimension. The resulting embeddings, with dimensions (B, S, D),
arethen passed through atemporal transformer, which operates along
the temporal dimension to capture dependencies between tokens.
The temporal transformer applies sinusoidal positional encoding to
the token embeddings, followed by two transformer blocks consisting
of self-attention and feedforward layers, enabling the model to learn
contextual relationships across the sequence. After temporal mod-
eling, the embeddings are processed through temporal pooling, which
aggregates token embeddings over the sequence length (S) for each
modality. Similar to channel pooling, temporal pooling uses an atten-
tion mechanism to compute weighted averages, generating acompact
representation of size (B, 128) per modality. These steps collectively
ensure that the model captures both spatial and temporal dependen-
cies while reducing dimensionality for computational efficiency.

The final output is a single 128-dimensional embedding for each
modality, used for CL during pretraining. Whereas the 5-min recordings
areused exclusively for pretraining, we retain the 5-s-level embeddings
for each modality for downstream tasks such as sleep staging and
disease classification.

Baseline models
We evaluate SleepFM against two carefully chosen baseline approaches
to demonstrate the value of our foundation model methodology.
The first baseline is a simple demographic model that processes
only patient characteristics, including age, sex, BMland race/ethnicity
information. Thisdemographicbaselineisimplemented as a one-layer
MLP to establish a minimum performance threshold using only basic
patient data available in most clinical settings.
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The second baseline is the more sophisticated End-to-End PSG
modelthat directly processes raw sleep recordings. This model uses the
same architecture as SleepFM, including the 1D CNN encoder, channel
poolingtransformer block, temporal transformer block, temporal pool-
ing transformer block and the LSTM layers, and is trained from scratch
onthesame dataset used for downstreamevaluation. Italsoincludes age
and sex demographicfeaturesto ensure afair comparison, but does not
leverage any pretraining, serving toisolate the benefit of task-specific
supervised learning on PSG signals without a foundation model.

Allbaseline models were trained using dataset splitsshownin Table 1.
The foundation model was first pretrained on the training dataset using a
self-supervised objective, and subsequently fine-tuned onthe same data.
Incontrast, the supervised baseline models were trained end-to-end with-
out any pretraining. Although all models share identical architectures,
training objectives and data splits, SleepFM consistently outperforms
both baselines across a range of clinical prediction tasks. Although this
may seem counterintuitive—given that the supervised PSG baseline
is trained on the same data—these results align with well-established
benefits of pretraining in representation learning. Self-supervised
pretraining enables the model to learn more generalizable physiological
representations, facilitates better convergence through improved
initialization and makes more efficient use of sparse or noisy
supervision during fine-tuning, as demonstrated in previous work™.

Model training

Modeltraining can be categorized into two segments: pretraining and
fine-tuning. The pretraining stage involves self-supervised represen-
tation learning with a CL objective and fine-tuning involves training
the model with supervised learning objective for specific tasks such
as sleep stage classification, sleep apnea classification and disease
prediction. We describe these in more details below.

Pretraining. Model pretraining is performed using a self-supervised
learning objective called CL. Specifically, we employ a CL objective for
several modalities, referred toas LOO-CL. The key ideabehind CListo
bring positive pairs of embeddings from different modalities closer
in the latent space while pushing apart negative pairs. Positive pairs
are derived from temporally aligned 5-min aggregated embeddings,
obtained after temporal pooling, across four different modalities. All
other nonmatching instances within a training batch are treated as
negative pairs.

InLOO-CL, we define apredictive task where an embedding from
one modality attempts toidentify the corresponding embeddings from
the remaining modalities. For eachmodality i, we construct anembed-
ding %' by averaging over embeddings from all other modalities,
excluding modality i. We then apply a contrastive loss between the
embedding of modality i and this LOO representation:

exp (sim(xi, X;)/7)
ZLI exp (sim(xi,x,;i)/r)’

Li,k = - log

where £;, is the loss for a sample k from modality i in a given batch,
sim(-) represents a similarity function (for example, cosine similarity)
and 7 is a temperature scaling parameter. The numerator computes
the similarity between the embedding of modality i and the LOO
representation of the corresponding sample, whereas the denominator
sums the similarities across all samples within the batch. The motiva-
tion behind the LOO method is to encourage each embedding to align
semantically with all other modalities.

Fine-tuning. After pretraining with the CL objective, we extract 5-s
embeddings for all patient PSG data across modalities. We standard-
ize the temporal context to 9 h for all patients—longer recordings are
cropped and shorter ones are zero-padded to ensure consistentinput

dimensions. For example, for a patient’s standardized 9-h sleep data,
the resulting patient matrix has dimensions (4 x 6,480 x 128), where
4 represents the number of modalities, 6,480 is the number of 5-s
embeddings for9 hof sleepand128isthe embedding vector dimension.

During fine-tuning, we first apply a channel pooling operation
across different modalities, reducing the dimensions to (6,480 x 128)
for our example patient matrix. The pooled embeddings are then pro-
cessed through a two-layer LSTM block, which is designed to handle
temporal sequences. For sleep staging tasks, these 5-s embeddings
are passed directly through a classification layer. For all other tasks,
theembeddings are first pooled along the temporal dimension before
being passed through an output layer.

For disease classification, we append age and sex features to the
mean-pooled embedding vector after the LSTM block, before passing
it to the final output layer. This addition empirically improves perfor-
mance and surpasses the demographic baseline.

The fine-tuning objective for disease prediction uses the CoxPH
loss function—a standard approach in survival analysis for modeling
time-to-event data. The CoxPH loss maximizes the partial likelihood
andis defined for a single label as:

3

1
LcoxpH = =77

®
I
—-

6; (h,» —log > exp(hj)) ,
JER(t)

where h;is the predicted hazard for the ith patient, §;is the event indica-
tor (1for event occurrence, O otherwise), ¢; is the event or censoring
time, R(t;) represents therisk set of all patients with event times greater
than or equal to ¢, n is the total number of patients and N, = Z,'.;l 5;
is the number of events.

For our multilabel setup with1,041labels, we extend the CoxPH loss
by computingitindependently for eachlabel and summing the results:

L
k
Liotal = Z LE:(BXPH’
k=1

where L is the total number of labels.

Giventhe large dataset size, computing the loss for all patientsin
a single batch is computationally infeasible. Therefore, we calculate
thelossinsmaller batches of 32 samples, with patients sorted by event
time in descending order to ensure correct computation of the partial
likelihood. This batching strategy, combined with the summation
of per-label losses, provides an efficient and scalable approach for
multilabel time-to-event modeling.

Architectural details. We provide additional implementation-level
details to clarify how SleepFM is constructed and trained. The design
of SleepFM was developed through an empirical and iterative pro-
cess, informed by domain knowledge and guided by practical training
considerations. Although we did not perform an exhaustive hyper-
parameter search, we systematically evaluated architectural variants
through trial-and-error by monitoring loss convergence, training
stability and downstream performance.

Each 5-ssegment of raw PSG signals (640 timepoints at 128 Hz) is
passed through a tokenizer composed of six convolutional layers with
increasing feature maps:1-> 4 > 8 > 16 > 32 > 64 > 128. Each convolu-
tional block includes BatchNorm, ELU activation and LayerNorm. After
convolution, adaptive average pooling reduces the temporal axisto1,
and alinear layer projects the features to a fixed 128-dimensional token
embedding. The resulting output shapeis (B, C, S, 128), where Cis the
number of channels and Sis the number of 5-s tokens.

Toaccommodate variability in the number and ordering of chan-
nels across different PSG datasets, we introduced an attention-based
spatial poolinglayer that operates across channels using a transformer
encoder. This design makes the model robust to inconsistencies in
recording configurations across sites. Specifically, embeddings
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from several channels within a modality are pooled using multihead
self-attention, producing a modality-specific sequence of shape
(B, S,128).

To capture long-range temporal dependenciesinsleep signals, the
pooled token sequence is passed through three transformer encoder
layers (each with eight heads, batch-first configurationand a dropout
rate of 0.3), along with sinusoidal positional encoding and LayerNorm.
This component enables modeling of contextual relationships across
the sleep sequence. The output shape remains (B, S, 128).

An additional attention-based pooling layer aggregates the tem-
poral sequence across timesteps, resulting in a single 128-dimensional
embedding for each modality (for example, BAS, ECG, EMG or res-
piratory). These fixed-size modality-specificembeddings are used for
pretraining with a self-supervised CL objective.

For downstream disease prediction, 5-s token embeddings span-
ning a standardized 9-h window are processed by a fine-tuning head.
Thisheadincludes spatial pooling followed by a two-layer bidirectional
LSTM (hiddensize: 64). Temporal mean pooling is applied across valid
timesteps, and normalized age and sex features are concatenated with
the pooled output. The combined vector is then passed through a final
linear layer to generate hazard scores for each disease. The total num-
ber of learnable parameters in this setup is approximately 0.91 million.

The supervised baseline model uses the same architecture
as SleepFM but is trained from scratch without pretraining. The
demographics-only baseline passes four input features—age, sex,
BMI and race/ethnicity—through a shallow MLP with dimensions
4 ->128 > output.

Implementation details. Allimplementations were carried out using
PyTorch, alibrary used widely for deep learning. The PSG data was
gathered and processed within a HIPAA-compliant and secure compute
cluster on Google Cloud Platform. Patient EHR data was likewise stored
and analyzed exclusively within this secure environment.

For pretraining, the model was trained with a batch size of 32, a
learning rate of 0.001, eight pooling heads, three transformer layers
and adropoutrate of 0.3. As previously described, each patchsize cor-
responds to a 5-s segment, and the total sequence length is 5 min for
the transformer model. The total parameter count for the model was
approximately 4.44 million. Pretraining was performed on 432,000 h
of sleep datacollected from 48,000 participants for one epoch, using
an NVIDIA A100 GPU. The entire pretraining process took approxi-
mately15h.

For fine-tuning, the batch size was also set to 32, with a learning
rate of 0.001, four pooling heads, two LSTM layers and a dropout rate
of 0.3. The fine-tuned model had approximately 0.91 million learnable
parameters. Training was conducted on patient data, with each token
embedding represented as a128-dimensional vector, over ten epochs.
The fine-tuning process was performed on an NVIDIA A100 GPU, with
the total training time per epoch ranging from 2 to 5 min, depending
on the task.

All dataanalysis and preprocessing were performed using Python
(v.3.10.14) and its data analysis libraries, including Pandas (v.2.1.1),
NumPy (v.1.25.2), SciPy (v.1.11.3), scikit-survival (v.0.23.0), scikit-learn
(v.1.5.2) and PyTorch (v.2.0.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Of the five data sources used in this study, four datasets are avail-
able publicly and can be accessed at the following links: SHHS
(https://sleepdata.org/datasets/shhs), MrOS (https://sleepdata.org/
datasets/mros), MESA (https://sleepdata.org/datasets/mesa)
and SSC (https://sleepdata.org/datasets/ssc). The BioSerenity

dataset is proprietary and owned by BioSerenity, which has granted
Stanford University access under a research and development agree-
ment; please contact BioSerenity directly for data agreement. Stanford
sleep data is available upon publication at https://bdsp.io/content/
hsp/2.0/.Accesstothese datais provided solely for research purposes
and is subject to data use restrictions that prohibit redistribution or
sharing with third parties.

Code availability
Allof the SleepFM code is open source and available at https://github.
com/zou-group/sleepfm-clinical.
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Extended DataFig. 1| Age estimation performance on the Stanford cohort.
Left: Scatterplot showing predicted versus chronological age across all patients
(n=5,019), with the diagonal line representing perfect prediction. The coefficient
of determination (R%), mean absolute error (MAE), and Pearson correlation
coefficient (Corr) are shown in the top left corner. Right: Mean Absolute Error
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(MAE) across chronological age groups, with vertical error bars indicating the
standard error of the mean (SEM) within each age bin. The horizontal dashed line
represents the overall MAE. Our model achieves an MAE comparable to state-
of-the-art models and demonstrates improved age estimation performance for
younger age groups compared to older ones.
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Extended DataFig. 2| Performance across clinically relevant diseases
evaluated on Stanford data (n=5019). Performance is evaluated using multiple
metrics: C-Index and AUROC. The selected conditions include critical health
outcomes such as death, heart failure, stroke, and dementia. Each panel uses
violin/point plots derived from 1000 patient-level bootstrapping: the violin
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Extended Data Fig. 4 | Scaling behavior of fine-tuning SleepFM on the SHHS
dataset. Scaling behavior of fine-tuning SleepFM on the SHHS dataset
(test size =2,000 participants). We progressively increased the percentage of
labeled SHHS data used during fine-tuning from 10% to 100%. The plots show
C-Index performance across six cardiovascular outcomes, comparing SleepfFM
with Demographics and End-to-End PSG baselines. Error bars indicate 95%
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confidence intervals derived from 1,000 participant-level bootstrap resamples
withreplacement. Even with as little as10% of training data (330 samples),
SleepFM demonstrates strong predictive accuracy and consistent performance
improvements as more labeled data becomes available. SleepFM outperforms
bothbaseline models in most conditions, particularly when the dataset size is
smaller, and its performance scaling is more stable across all outcomes.
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estimated via1,000 participant-level bootstrap resamples with replacement.
The100% mark corresponds to a full epoch of pretraining on the entire dataset
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(n=24,137). Intermediate checkpoints at 25% and 50% represent models saved
partway through that epoch, while the 0% point denotes amodel with no
pretraining, resulting in near-random performance. Performance improves
consistently with more pretraining data, highlighting the value of large-scale
self-supervised pretraining across diverse phenotypes, including cardiovascular,
metabolic, neurological, and respiratory conditions.
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Extended Data Table 1| Demographic characteristics of the Stanford Sleep Clinic (SSC) cohort

Demographics Train Validation Test Temporal Test
Age (mean + 2SD)  45.00 &+ 40.59  44.65 + 42.89  45.71 + 40.21 49.25 + 39.36
Male 13230 (58.95%) 418 (59.80%) 2819 (60.27%) 2693 (54.61%)
Female 9205 (41.02%) 281 (40.20%) 1856 (39.68%) 2237 (45.37%)
Unknown 8 (0.04%) 0 (0.00%) 2 (0.04%) 1 (0.02%)
White 12807 (57.06%) 381 (54.51%) 2748 (58.76%) 2476 (50.21%)
Asian 2864 (12.76%) 95 (13.59%) 571 (12.21%) 914 (18.54%)
Black 628 (2.80%) 23 (3.29%) 144 (3.08%) 205 (4.16%)
Pacific Islander 225 (1.00%) 9 (1.29%) 34 (0.73%) 52 (1.05%)
Native American 76 (0.34%) 1 (0.14%) 16 (0.34%) 31 (0.63%)
Other 2290 (10.20%) 65 (9.30%) 476 (10.18%) 896 (18. 17%)
Unknown 3553 (15.83%) 125 (17.88%) 688 (14.71%) 357 (7.24%)
Non-Hispanic 16914 (75.36%) 513 (73.39%) 3600 (76.97%) 3828 (77.63%)
Hispanic/Latino 1978 (8.81%) 57 (8.15%) 392 (8.38%) 736 (14.93%)
Other 2290 (10.20%) 65 (9.30%) 476 (10.18%) 896 (18.17%)
Unknown 3551 (15.82%) 129 (18.45%) 685 (14.65%) 367 (7.44%)

Values are shown by dataset split and reported as mean +- 2 standard deviations for age, and as counts (percentages) for categorical variables.
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Extended Data Table 2 | Demographic characteristics of the Bioserenity cohort

Demographics Train Validation
Age (mean + 2SD) 48.71 + 38.59 49.11 + 41.44
Female 9684 (52.06%) 47 (47.00%)
Male 8916 (47.94%) 53 (53.00%)
African American 4636 (24.92%) 29 (29.00%)
Alaska Native 0 (0.00%) 0 (0.00%)
American Indian 124 (0.67%) 1 (1.00%)
Asian 105 (0.56%) 0 (0.00%)
Hispanic 538 (2.89%) 4 (4.00%)
Native Hawaiian 3 (0.02%) 0 (0.00%)
Pacific Islander 22 (0.12%) 0 (0.00%)
White (Caucasian) 12755 (68.58%) 64 (64.00%)
Unknown 417 (2.24%) 2 (2.00%)

Values are presented as mean +- 2 standard deviations for age, and as counts (percentages) for categorical variables.
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Extended Data Table 3 | Per-sleep-stage F1 performance of SleepFM across four cohorts

SleepFM U-Sleep
Stage SSC MESA MROS SHHS SSC MESA MROS SHHS
Wake 0.92(0_92) 0.93) 0.94(0_94’ 0.94) 0.94(()‘94’ 0.94) 0.92(0,92’ 0.92) 0.81 0.92 0.93 0.93
Stage 1 0.48(0,48’ 0.48) 0.56(0,56’ 0.56) 0.41(0'40, 0.41) 0.49(0_4& 0.49) 0.35 0.59 0.46 0.51
Stage 2 0.87(0_87, 0.87) 0.83(0_83, 0.83) 0.86(()‘86’ 0.86) 0.84(0,34, 0.84) 0.75 0.87 0.87 0.87
Stage 3 0~39(0.38, 0.39) 0.68(0,68’ 0.69) 0.65(0'64, 0.65) 0.72(0_72Y 0.72) 0.51 0.65 0.68 0.76
REM  0.86(0s6 0.55) 0-880.85 0.85) 0-90(0.00 0.00) 091001 001y 0.84  0.90 0.88 0.92
Mean 0.70 0.78 0.75 0.78 0.65 0.79 0.77 0.80

Per-sleep-stage F1scores for SleepFM across four cohorts (SSC, MESA, MrOS and SHHS), with comparison to U-Sleep. Values for SleepFM are mean F1 with 95% confidence intervals from
1,000 bootstrap resamples of test recordings (Cls shown in parentheses beneath each estimate). The bold ‘Mean’ row reports the macro-average across stages. U-Sleep values are the
corresponding F1scores reported for the same cohorts; confidence intervals were not available.
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Extended Data Table 4 | Sleep staging performance on the SSC cohort

Stage SleepFM  U-Sleep YASA GSSC STAGES
Wake 0.92 0.81 0.61 0.84 0.73
Stage 1 0.48 0.35 0.05 0.39 0.33
Stage 2 0.87 0.75 0.69 0.79 0.82
Stage 3 0.39 0.51 0.56 0.56 0.63
REM 0.86 0.84 0.71 0.85 0.79
Mean 0.70 0.65 0.52 0.68 0.66

Sleep staging results (F1) for SleepFM, U-Sleep, YASA, GSSC, and STAGES on the SSC cohort. The bold bottom row reports the macro-average (mean) across stages.
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Extended Data Table 5 | Comparison of category-averaged C-Index across SleepFM baseline

Category Demo E2E PSG SleepFM-1 SleepFM-2 SleepFM-3
Circulatory System 0~72(0A72, 0.73) 0~72(0A72, 0.73) 0~75(0A75, 0.75) 0~76(0A75, 0.76) 0~75(0A75, 0.76)
Dermatologic 0.63(0.62, 0.6a) 0.62(0.61, 0.63) 0.65(0.64,0.65) 0.66(0.65, 0.66) 0-66(0.65, 0.66)
Digestive 0-62(0.62, 0.63) 0-63(0.62, 0.63) 0-66(0.65, 0.67) 0-67(0.66, 0.68) 0-67(0.66, 0.67)
Endocrine/Metabolic 0.680.67, 0.68) 0.66(0.66, 067y 0.70(0.70, 0.71)  0.7L(0.71, 0.72)  0.71(0.71, 0.72)
Hematopoietic 0-65(0.64, 0.66) 0-66(0.65, 0.67) 0-70(0.69, 0.71) 0-70(0.69, 0.72) 0-70(0.69, 0.71)

InfeCPiOUS DiSf?aSQS 0-62(0.61, 0.63) 0-61(0.60, 0.62) 0-65(0464, 0.66) 0~66(0464, 0.67) 0-66(0.64, 0.67)
Injuries & Poisonings 0~62(0.61, 0.63) 0~63(0.62, 0.64) 0-65(0,64, 0.66) 0~66(0465, 0.67) 0-66(0.65, 0.67)

Mental Disorders 0~66(o.65, 0.66) 0~66(o.65, 0.67) 0-69(0.63, 0.70) 0~69(o.69, 0.70) 0-70(0.70, 0.71)
Musculoskeletal 0~67(0.66, 0.67) 0-67(0.66, 0.68) 0-67(0467, 0.68) 0~68(0467, 0.69) 0-68(0.67, 0.69)
Neoplasms 0~72(o.71, 0.73) 0-72(0.71, 0.73) 0-71(0.70, 0.72) 0-73(0.72, 0.74) 0-73(0.72, 0.74)
Neurological 0.62(0.61, 0.63) 0.63(0.62, 0.63) 0.66(0.66, 0.67) 0.67(0.66, 0.67) 0-67(0.66, 0.68)
Respiratory 0.63(0.62, 0.6a) 0.63(0.63, 0.64) 0.66(0.65 0.66) 0.66(0.65, 0.66) 0.660.65, 0.67)
Sense Organs 0-65(0.65, 0.66) 0~66(0.66, 0.67) 0-68(0467, 0.68) O~68(0467, 0.68) 0~68(0.67, 0.68)
Symptoms 640,63, 0.64) 0.64(0.64, 0.65) .68(0.67, 0.69) .69(0.68, 0.69) 0.680.6s, 0.69)

Category-averaged C-Index (mean with 95% Cl) comparing SleepFM variants with two baselines across disease categories on Stanford cohort (n=5,019). The Demographics baseline
(‘'Demo’) uses only structured clinical features (age, sex, BMI, and race/ethnicity). The End-to-End PSG baseline (‘E2E-PSG’) is trained directly on raw PSG signals with age and sex, without any
pretraining. SleepFM-1 denotes SleepFM-LSTM (w/o Demo), using two LSTM layers in the fine-tuning prediction module and no demographic features. SleepFM-2 denotes SleepFM-Linear, a
linear prediction module on SleepFM embeddings with age and sex. SleepFM-3 denotes SleepFM-LSTM, which uses two LSTM layers in the fine-tuning prediction module with age and sex.
Values are averaged within each category across conditions. Uncertainty is estimated via nonparametric bootstrapping (n=1000 resamples): for each resample, conditions within a category
are sampled with replacement and the category mean is computed; 95% Cls are the 2.5th-97.5th percentiles across resamples.
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