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A multimodal sleep foundation model for 
disease prediction
 

Rahul Thapa1,2,10, Magnus Ruud Kjaer    3,4,5,10, Bryan He2, Ian Covert2, 
Hyatt Moore IV3,6, Umaer Hanif5,7, Gauri Ganjoo3, M. Brandon Westover8, 
Poul Jennum5,9, Andreas Brink-Kjaer4, Emmanuel Mignot    3,11   & 
James Zou    1,2,11 

Sleep is a fundamental biological process with broad implications for physical 
and mental health, yet its complex relationship with disease remains poorly 
understood. Polysomnography (PSG)—the gold standard for sleep analysis—
captures rich physiological signals but is underutilized due to challenges in 
standardization, generalizability and multimodal integration. To address these 
challenges, we developed SleepFM, a multimodal sleep foundation model 
trained with a new contrastive learning approach that accommodates multiple 
PSG configurations. Trained on a curated dataset of over 585,000 hours of PSG 
recordings from approximately 65,000 participants across several cohorts, 
SleepFM produces latent sleep representations that capture the physiological 
and temporal structure of sleep and enable accurate prediction of future disease  
risk. From one night of sleep, SleepFM accurately predicts 130 conditions with 
a C-Index of at least 0.75 (Bonferroni-corrected P < 0.01), including all-cause 
mortality (C-Index, 0.84), dementia (0.85), myocardial infarction (0.81), 
heart failure (0.80), chronic kidney disease (0.79), stroke (0.78) and atrial 
fibrillation (0.78). Moreover, the model demonstrates strong transfer learning 
performance on a dataset from the Sleep Heart Health Study—a dataset that 
was excluded from pretraining—and performs competitively with specialized  
sleep-staging models such as U-Sleep and YASA on common sleep analysis 
tasks, achieving mean F1 scores of 0.70–0.78 for sleep staging and accuracies of 
0.69 and 0.87 for classifying sleep apnea severity and presence. This work shows 
that foundation models can learn the language of sleep from multimodal sleep 
recordings, enabling scalable, label-efficient analysis and disease prediction.

Sleep is a complex process characterized by intricate interactions 
across physiological systems, including brain, heart, respiratory  
and muscle activity1. PSG—the gold standard for sleep evaluation—
captures these interactions through recordings of several modalities, 
including brain activity signals (BAS, including electroencephalogram 
(EEG) and electrooculogram (EOG)), electrocardiography (ECG), elec-
tromyography (EMG) and respiratory signals2.

Sleep disorders affect millions of people and are increasingly 
recognized as indicators of, and contributors to, various health 

conditions3. Sleep disturbances often precede the clinical onset of 
numerous conditions, such as psychiatric disorders4, neurodegen-
erative diseases5 and cardiovascular disorders6. These associations 
highlight the important role sleep plays in maintaining overall health 
and underscores its predictive potential across a wide spectrum of dis-
eases. However, most existing studies have focused on identifying links 
between sleep and specific diseases using isolated metrics or manual 
annotations, leaving much of the complexity of sleep physiology, as 
captured in PSG, underutilized.
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further evaluated generalization using the Sleep Heart Health Study 
(SHHS)20,23—a multicenter dataset of 6,441 adults aged 40 years and 
older, held out from pretraining and used solely for transfer learn-
ing. Dataset distributions postfiltering are shown in Table 1. Demo-
graphics for SSC and BioSerenity appear in Extended Data Tables 1 
and 2, whereas details for SHHS, MrOS and MESA are available in their 
respective publications.

Our preprocessing pipeline begins by resampling all signals to 
128 Hz for consistency across cohorts. Signals are then segmented into 
5-s windows, which serve as the model’s fundamental input tokens. The 
architecture includes one-dimensional (1D) convolutional layers for 
feature extraction, followed by channel-agnostic attention pooling 
to address variability in channel number and order across cohorts. 
A transformer block captures temporal dependencies over a 5-min 
context window. During pretraining, we use a multimodal CL objective 
to align representations across all modalities. The robustness of the 
model stems from its channel-agnostic design, enabling it to accom-
modate missing channels, varying channel counts and heterogeneous 
signal types.

For downstream tasks, we leverage the pretrained model’s embed-
dings through lightweight fine-tuning. The token embeddings from 
different modalities are pooled again and processed by a two-layer 
long short-term memory (LSTM) network before passing through 
task-specific output heads. For patient-level prediction tasks (for 
example, disease prediction), an additional temporal pooling layer 
before the output layer compresses all token embeddings into a single 
128-dimensional embedding.

To evaluate model performance across tasks, we use appropriate 
task-specific metrics. For classification tasks such as sex classifica-
tion, we report area under the receiver operating characteristic curve 
(AUROC) and area under the precision-recall curve (AUPRC); for sleep 
apnea classification we show confusion matrices and report accuracy; 
for age estimation, we use mean absolute error (MAE) and Pearson 
correlation. Sleep staging is evaluated using the F1 score, which is well 
suited for class-imbalanced settings. For disease prediction, we report 
AUROC and Harrell’s concordance index (C-Index)—a standard sur-
vival analysis metric that measures the proportion of correctly ranked 
risk pairs. All metrics range from 0 to 1, with higher values indicating 
better performance; 95% confidence intervals (CIs) are computed 
using bootstrapping.

SleepFM supports standard sleep analysis tasks
After pretraining SleepFM, we assessed the general utility of its learned 
representations by fine-tuning on four common benchmark tasks: 
age estimation, sex classification, sleep stage classification and sleep  
apnea classification. Although these tasks are not the main focus  
of our work, they are useful validations showing that the model cap-
tures fundamental sleep patterns. For all tasks, we trained lightweight 

Recent advances in deep learning have enabled the use of PSG’s 
multimodal data for tasks ranging from sleep staging and apnea detec-
tion to predicting conditions such as atrial fibrillation, biological aging 
and narcolepsy3,7–10. Despite this progress, current approaches face  
key limitations: they focus on individual outcomes, depend on super-
vised learning with expert-labeled data and are trained on relatively 
small datasets (2,500–15,913 recordings)3,7,9–11. Manual annotations 
are time consuming and prone to inter-rater variability, making scal-
ing difficult. Moreover, existing models lack flexibility across record-
ing environments, generalize poorly across cohorts and often fail to 
exploit the richness of multimodal sleep signals. There remains a need 
for robust, generalizable architectures and systematic evaluation of 
sleep’s predictive value across a broad range of health conditions.

Foundation models have emerged as a transformative approach 
in machine learning, enabling robust representation learning from 
large-scale, unlabeled data12. By leveraging self-supervised learning, 
these models can be fine-tuned efficiently for diverse applications. 
In biomedicine, foundation models have demonstrated remarkable 
capabilities in analyzing complex, heterogeneous datasets, driving 
advances in disease prediction, patient stratification and therapeu-
tic discovery13,14. Their ability to extract meaningful patterns from 
large-scale data has addressed many challenges associated with the 
diverse and high-dimensional nature of clinical datasets.

Despite these successes, their application to sleep remains limited. 
Sleep data, particularly from PSG, presents unique challenges due to 
its complexity and variability, including differences in the number and 
types of recording channel across clinical cohorts. Most sleep stud-
ies have focused narrowly on sleep-specific outcomes, constraining  
the broader potential of foundation models for disease prediction.  
In preliminary work, we explored self-supervised learning on PSG  
data in a smaller cohort of participants11. Although this effort high-
lighted the potential of foundation models for analyzing sleep data,  
it targeted primarily sleep-specific outcomes and lacked the flexibil-
ity to accommodate the diverse configurations of PSG recordings.  
These limitations emphasize the need for models that can generalize 
across heterogeneous datasets and systematically uncover the role of 
sleep in predicting a wider range of diseases.

In this paper we present SleepFM, a foundation model trained on 
over 585,000 h of PSG data from 65,000+ participants. SleepFM cap-
tures the diverse information present in multimodal sleep recordings—
integrating EEG, ECG, EMG and respiratory signals. Its channel-agnostic 
architecture enables joint learning across several modalities, produc-
ing representations that generalize across environments. We also intro-
duce a new leave-one-out (LOO) contrastive learning (CL) (LOO-CL) 
algorithm that aligns information across modalities during pretraining 
while remaining resilient to missing or heterogeneous channels during 
inference. Our model uses 5–25 times more data than previously trained 
supervised sleep3,7,9,10 or biosignal models15,16.

Inspired by phenome-wide association studies (PheWAS)17, we 
examined whether sleep characteristics, as captured by SleepFM, can 
predict the onset of a wide range of diseases. Leveraging electronic 
health record (EHR) disease codes, we develop a framework to system-
atically explore predictive associations between multimodal sleep and 
diverse health conditions.

Dataset and SleepFM architecture
We describe our dataset and training procedures in detail in  
Methods. Briefly, we used PSG data from four primary cohorts:  
Stanford Sleep Clinic (SSC)11, BioSerenity18,19, the Multi-Ethnic Study 
of Atherosclerosis (MESA)20,21 and the Outcomes of Sleep Disorders 
in Older Men (MrOS)20,22. SSC includes 35,052 studies from partici-
pants aged 1–100 years; BioSerenity adds 18,900 studies from peo-
ple aged 7–90 years; MESA and MrOS contribute 2,237 and 3,930 
PSGs, respectively, from older adults. Together, these cohorts span 
65,000 participants and more than 585,000 h of sleep recordings. We 

Table 1 | Distribution of PSG recordings across cohorts and 
data splits

Split SSC BioSerenity MESA MROS SHHS Total

Train 24,137 18,869 1,747 3,340 3,291 51,384

Validation 764 100 10 18 500 1,392

Test 5,019 – 150 286 2,000 7,455

Temporal test 5,132 – – – – 5,132

Total 35,052 18,969 1,907 3,644 5,791 65,363

The model was first pretrained on SSC, BioSerenity, MESA and MROS data, following which 
these same recordings were used for task-specific fine-tuning. The SHHS dataset is reserved 
exclusively for evaluating transfer learning capabilities and was used only during fine-tuning 
not during pretraining. The temporal test set consists of SSC recordings from 2020 onwards, 
used to evaluate model robustness to temporal distribution shifts. Dashes (–) indicate that no 
data is available for that split.

http://www.nature.com/naturemedicine
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LSTM-based heads on top of the frozen multimodal embeddings 
derived from entire nights of PSG data.

For age estimation, we assessed the ability of the model 
to predict chronological age. Overall performance is shown in 
Extended Data Fig. 1, with the model achieving a MAE of 7.33 years and a 
correlation coefficient of 0.88. Performance varied across age groups, 
with higher accuracy in pediatric and middle-aged participants and 
greater error in elderly adults, suggesting that age prediction is more 
challenging at the extremes of the age spectrum. Sex classification 
yielded an AUROC of 0.86 (0.85–0.87) and AUPRC of 0.90 (0.89–0.91). 
For sleep stage classification, we fine-tuned a LSTM-based classifier 
to distinguish Wake, Stage 1, Stage 2, Stage 3 and rapid eye movement 
(REM) using 5-s windows—a more granular resolution than the standard 
30-s epochs, which has been shown to improve precision in certain con-
ditions (for example, narcolepsy10). As shown in Supplementary Fig. 1, 
SleepFM performs well on Wake, Stage 2 and REM, with expected confu-
sion in transitional stages like Stage 1—consistent with known human 
scoring variability. We report results across SSC, MESA, MrOS and 
SHHS, where SleepFM achieves competitive performance compared to 
U-Sleep7, YASA24, GSSC25 and STAGES10—state-of-the-art sleep staging 
models, as shown in Extended Data Tables 3 and 4. Furthermore, we 
compare SleepFM to three PhysioEx26 models on the public datasets 
DCSM27 and HMC28 in a fully external validation setting, achieving  
an F1 score of 0.68 on DCSM—outperforming all models—and 0.55 on 
HMC (Supplementary Table 1). Although the source alone has little  
impact, using several datasets for pretraining and fine-tuning improves  
generalization, boosting macro F1 by around 0.1 (Supplementary  
Tables 2, 3 and 4), consistent with previous work26.

For sleep apnea classification, we performed patient-level sever-
ity classification to distinguish between four commonly used severity 
groups on the basis of the apnea–hypopnea index (AHI): none (AHI < 5), 
mild (5 ≤ AHI < 15), moderate (15 ≤ AHI < 30) and severe (AHI ≥ 30). 
Across MESA, MrOs and SHHS, we observe competitive perfor-
mance, with a severity classification accuracy of 0.69 and a presence  
classification accuracy (none/mild versus moderate/severe) of 0.87. 
The confusion matrix for apnea classification is shown in Fig. 1.

SleepFM enables comprehensive disease 
prediction from sleep data
To enable disease prediction, we paired SSC data with EHRs, extracting 
all diagnostic codes (International Classification of Diseases, ninth 
revision (ICD-9) and International Classification of Diseases, tenth 
revision (ICD-10)) and their timestamps. These codes were mapped to 
phecodes—a hierarchical system of 1,868 disease categories designed 
for PheWAS29. The timestamp of each phecode was defined as the earli-
est among its corresponding ICD codes. Positive cases were defined as 
patients whose first phecode instance occurred more than 7 days after 
the sleep study, avoiding trivial associations. We excluded phecodes 
with prevalence below 1.5% to ensure statistical power, resulting in 1,041 
phecodes for evaluation. For model fine-tuning, we used a multilabel 
extension of the Cox proportional hazards (CoxPH) loss, averaging 
independent losses computed for each label.

Figure 2 illustrates the performance of SleepFM across disease 
categories on the test set. Although performance varies across catego-
ries, SleepFM demonstrates strong results in several areas, including 
neoplasms, pregnancy complications, circulatory conditions and 
mental disorders. Overall, 130 future diseases achieved a C-Index and 
AUROC of at least 0.75 on held-out participants (Bonferroni-corrected 
P < 0.01), as summarized in Supplementary Table 5. AUROC was calcu-
lated using a 6-year horizon, meaning a condition is considered positive 
if the patient develops the disease within 6 years of their PSG study. 
The 6-year horizon for AUROC calculation was chosen to balance per-
formance and account for both long-term and short-term conditions. 
Supplementary Fig. 2 shows AUROC values across 1–6 year horizons 
for several conditions.

The model showed high accuracy for mild cognitive impairment 
(AUROC 0.84 (0.80–0.880)), aligning with studies showing sleep dis-
turbances as early markers of cognitive decline30. Strong performance 
was observed for Parkinson’s disease (0.93 (0.89–0.96)), where sleep 
disorders are increasingly recognized as potential early indicators31, 
and developmental delays and disorders (0.84 (0.79–0.87)). Among 
circulatory conditions, the model effectively predicted hypertensive 
heart disease (0.88 (0.85–0.91)) and intracranial hemorrhage (0.82 
(0.73–0.90)), consistent with established links between sleep disorders 
and cardiovascular risk32. In the Neoplasm category, the model showed 
strong predictive performance for several cancers: prostate cancer 
(0.90 (0.87–0.93)), breast cancer (0.90 (0.86–0.93)) and melanomas 
of skin (0.83 (0.76–0.90)). These findings align with existing literature 
linking sleep patterns to cancer risk33,34.

Drawing on sleep expertise and previous literature, we identi-
fied 14 conditions with strong potential links to sleep patterns. Pre-
vious studies associate sleep regularity with mortality35, prolonged 
sleep with early neurodegeneration36 and sleep disturbances with 
dementia37, stroke38 and cardiovascular outcomes9. Related phecodes 
were grouped into unified disease categories in consultation with a 
medical doctor (Supplementary Table 6). Results for selected condi-
tions—including death, stroke, heart failure (HF) and dementia—are 
shown in Extended Data Fig. 2. SleepFM demonstrates strong predic-
tive performance, with particularly high accuracy for death (AUROC 
0.84 (0.80–0.88)), HF (0.83 (0.79–0.86)), chronic kidney disease 
(CKD) (0.82 (0.79–0.85)), dementia (0.87 (0.84–0.91)) and stroke (0.81 
(0.78–0.85)). All reported associations are statistically significant 
(P < 0.01, Bonferroni-corrected).

To better understand the physiological basis of disease pre-
diction, we analyzed model performance stratified by both sleep  
stages and signal modalities. We found that although most sleep 
stages contribute similarly to disease prediction, certain stages  
such as Stage 1/2 and REM can offer slightly better predictive 
power for specific conditions, including cardiovascular and neuro
degenerative diseases. Likewise, different signal modalities showed  
nuanced differences, with BAS signals better capturing mental  
and neurological conditions, respiratory signals more predictive of 
respiratory and metabolic disorders, and electrocardiogram (EKG) 
signals more informative for circulatory diseases. Although these 
differences align with known physiology, the overall predictive  
performance was highest when combining all modalities. Full results  
and condition-specific breakdowns are provided in Supplementary  
Figs. 3 and 4 and Supplementary Tables 7 and 8. Furthermore, we 
trained separate SleepFM models on each modality to directly assess 
modality-level importance. Performance comparisons stratified  
by disease category, presented in Supplementary Tables 9 and 10,  
further confirm that combining all modalities yields the optimal  
performance.

SleepFM demonstrates robust generalization 
across time and cohorts
We evaluate the generalization capabilities of SleepFM across temporal 
distribution shifts and external site validation. For temporal generali-
zation, we test the model on a separate cohort comprising Stanford 
patients from 2020 onwards. All model pretraining and training was 
done on data from before 2020. Despite the limited follow-up period, 
SleepFM maintains strong predictive performance. Extended Data 
Fig. 3 shows results for our 14 selected conditions, with particularly 
robust and statistically significant performance (Bonferroni-corrected 
P < 0.01) for death (0.83 (0.73–0.91)), HF (0.80 (0.75–0.85)) and 
dementia (0.83 (0.76–0.89)). Comprehensive temporal-split perfor-
mance across all disease phenotypes and categories is provided in 
Supplementary Figs. 5 and 6. Supplementary Fig. 7 further reports 
temporal-split performance comparisons with baseline models, strati-
fied by disease category.
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Fig. 1 | Overview of SleepFM framework. a, PSG setup and dataset statistics across  
several sleep centers. Bars show the number of independent PSG recordings 
(participants) per cohort and the corresponding total recording hours.  
b, Multimodal contrastive pretraining: raw signals from each modality are encoded 
by a CNN, channel embeddings are pooled within modality and a temporal 
transformer with temporal pooling yields sequence-level representations for  
LOO-CL. C: channels, S: sequence length, D: embedding dimension. c, Fine-tuning 
using frozen embeddings for downstream tasks (sleep staging, apnea detection, 
disease prediction). Eight hours of multimodal embeddings are aggregated to 

patient-level representations, concatenated with age and sex, and passed to an 
LSTM followed by a fully connected layer. d, Evaluation across representative tasks 
and clinical applications. Left and middle: confusion matrices for sleep staging 
(SHHS) and AHI categories (SSC) shown as row-normalized percentages. Right: 
disease prediction performance on the Stanford cohort (n = 5,019 participants). 
Box plots summarize 1,000 patient-level bootstrap resamples: faint dots 
(individual bootstrap draws), and vertical line with end caps (95% bootstrap 
percentile CI). Numeric labels are means. Number of positive samples for each 
disease: CKD (354), death (224), dementia (221), HF (283) and stroke (297).
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To assess cross-site generalization, we evaluate SleepFM’s trans-
fer learning capabilities on SHHS—a dataset entirely excluded from  
the pretraining phase. We use the pretrained model to extract  
embeddings and then fine-tune it on a subset of SHHS. Specifically, 
the SHHS fine-tuning set includes 3,291 participants, and the test set 
includes 2,000 participants. Due to differences in task availability 
between SSC and SHHS, our evaluation focuses on six overlapping 
cardiovascular conditions. This setup mimics real-world deployment 
scenarios where foundation models must be adapted to new clinical 
sites with minimal supervision.

As shown in Fig. 3, SleepFM demonstrates strong transfer learn-
ing performance across key outcomes. For example, the model  
achieves statistically significant predictive accuracy (Bonferroni- 
corrected P < 0.01) for stroke (0.82 (0.76–0.87)), congestive HF  
(0.85 (0.82–0.88)) and mortality related to cardiovascular disease 
(0.88 (0.83–0.91)).

SleepFM surpasses supervised baselines in disease 
prediction
We compare SleepFM against two supervised baselines: Demo
graphics and End-to-End PSG. The demographics baseline is a  
multilayer perceptron (MLP) trained on structured clinical features 

(age, sex, race/ethnicity and body mass index (BMI)). This baseline 
includes more demographic variables than the SleepFM-based 
models, which only use age and sex. The End-to-End PSG model is 
trained directly on raw PSG data using the same architecture and 
parameter count as SleepFM, and it includes age and sex but does 
not use any pretraining. From Fig. 4, we observe that the percent-
age difference in AUROC between SleepFM and both baseline 
models ranges from 5% to 17%. The magnitude of improvement 
varies across disease categories; for example, gains are more pro-
nounced in neurological and hematopoietic conditions, whereas in 
neoplasm-related conditions the improvements are comparatively 
modest. Supplementary Fig. 8 reports the overall test-set perfor-
mance comparison between SleepFM and the baseline models across 
all disease phenotypes.

Next, we evaluated three different variants of SleepFM using 
identical training configurations, as shown in Table 2 and Extended  
Data Table 5. SleepFM-LSTM (without Demo) uses SleepFM embeddings 
with a two-layer LSTM fine-tuning head but no demographic features. 
SleepFM-Linear uses SleepFM embeddings with a simple linear predic-
tion head and includes age and sex. Finally, SleepFM-LSTM, combines 
the pretrained SleepFM embeddings with a two-layer LSTM head and 
includes age and sex.
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Fig. 2 | Performance of SleepFM on the held-out test set (n = 5,019) as 
stratified by disease category. Individual dots represent a disease within 
a category. The results are evaluated using two metrics: the C-Index, which 
measures the model’s ability to rank patient risk accurately, and the 6-year 

AUROC, which assesses the model’s discrimination performance by evaluating its 
ability to distinguish between patients who experience the event of interest and 
those who do not within a 6-year prediction window. For reference, the horizontal 
dashed line indicates a threshold of 0.75.
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As seen in Table 2, the demographics-only baseline performs 
well, reflecting the fact that many diseases are associated strongly 
with age, sex, BMI and race/ethnicity. For example, in the Neoplasm 
category, older age is a strong predictor of cancer risk. Nevertheless, all 
SleepFM-based models, including the SleepFM-LSTM (without Demo) 
variant, consistently outperform the demographics and End-to-End 
PSG baselines across most disease categories. This demonstrates the 
benefit of using pretrained SleepFM embeddings for disease pre-
diction. Furthermore, SleepFM-LSTM (without Demo) achieves over  
+5 AUROC points in 9 out of 14 conditions, whereas SleepFM-Linear  
and SleepFM-LSTM achieve over +5 AUROC points in 12 out of 14 con-
ditions, compared to supervised demographics baseline. As seen  
from the 95% CI bars, these improvements are robust, with most 
differences being larger than the uncertainty intervals. Finally, 
SleepFM-Linear performs comparably to SleepFM-LSTM, suggesting  
that the strength of the model lies in the pretrained embeddings 
rather than the complexity of the downstream head. Percentage  
improvement comparisons across models are provided in Supple-
mentary Fig. 9, and a scatterplot comparison of all disease phenotypes 
across different fine-tuning architectures on top of SleepFM is shown 
in Supplementary Fig. 10.

To further examine disease-specific performance, full results are 
provided in Supplementary Tables 11, 12 and 13, and clinician-selected 
conditions are presented in Supplementary Fig. 11. These compar-
isons show that SleepFM achieves substantial gains across several 

neurological, mental, circulatory, endocrine/metabolic and respira-
tory conditions. For neurological and mental disorders, SleepFM 
attains higher C-Index scores for senile dementia (0.99 (0.98–1.00) 
versus 0.87 (0.75–0.96)), myoneural disorders (0.81 (0.73–0.88) versus  
0.42 (0.28–0.55)) and developmental delays (0.80 (0.77–0.84) versus 
0.58 (0.51–0.64)). For circulatory diseases, SleepFM outperforms in 
atherosclerosis (0.92 (0.88–0.95) versus 0.74 (0.64–0.89)) and acute 
pulmonary heart disease (0.80 (0.75–0.85) versus 0.74 (0.68–0.80)).  
Improvements in endocrine/metabolic conditions include diabetes  
type 2 with circulatory complications (0.87 (0.83–0.91) versus  
0.79 (0.74–0.85)) and diabetic retinopathy (0.81 (0.77–0.85) versus  
0.75 (0.69–0.80)). For respiratory conditions, SleepFM achieves  
higher C-Index in respiratory insufficiency (0.79 (0.72–0.85)]  
versus 0.59 (0.51–0.67)) and failure (0.77 (0.73–0.80) versus 0.70 
(0.65–0.74)). These findings highlight the versatility of SleepFM  
in predicting a broad range of diseases beyond what is captured  
by demographics alone.

Similarly, full comparisons with the End-to-End PSG model are  
provided in Supplementary Table 14. This comparison highlights 
the value of foundation model pretraining: although both models 
share similar architecture and input signals, SleepFM benefits from 
self-supervised pretraining, enabling more robust and informative 
representations. This advantage is reflected in consistent perfor-
mance gains across neurological, circulatory, endocrine/metabolic 
and respiratory conditions. For neurological and mental disorders, 
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Fig. 3 | SleepFM prediction performance on the SHHS test set (n = 2,000 
participants). Due to differences in available outcome data between SHHS 
and Stanford datasets, evaluation was limited to a subset of conditions. Results 
demonstrate transfer learning capabilities across these key clinical outcomes, 
including stroke, congestive HF and cardiovascular disease-related mortality. 
Each panel uses barplots derived from 1,000 patient-level bootstrapping: faint 
points are individual bootstrap draws, and the vertical line with end caps marks 

the 95% bootstrap percentile CI. Numbers above bars report the mean. Metrics 
are C-Index (top) and AUROC at 6 years (bottom). The number of positive 
samples for each outcome is as follows: angina (704), cardiovascular disease 
death (128), congestive HF (190), coronary heart disease death (80), myocardial 
infarction (103) and stroke (95). All conditions are statistically significant with a 
P value <0.01 after Bonferroni correction.
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SleepFM outperforms the end-to-end model in myoneural disorders 
(0.84 (0.75–0.91) versus 0.54 (0.40–0.69)), developmental delays  
(0.84 (0.79–0.87) versus 0.61 (0.52–0.69)) and speech/language  
disorders (0.83 (0.74–0.90) versus 0.71 (0.60–0.83)). For circula-
tory conditions, improvements are observed in atherosclerosis of  
native arteries of the extremities (0.95 (0.92–0.98) versus 0.65 (0.61–
0.69)), atherosclerosis of the extremities (0.84 (0.75–0.90) versus  
0.78 (0.71–0.85)) and acute pulmonary heart disease (0.84 (0.77–0.90) 
versus 0.76 (0.69–0.83)). In endocrine/metabolic disorders, SleepFM 
demonstrates stronger performance for predicting diabetes with 
circulatory complications (0.89 (0.85–0.93) versus 0.79 (0.70–0.87)), 
neurological manifestations (0.86 (0.81–0.90) versus 0.73 (0.67–0.78)) 
and diabetic retinopathy (0.84 (0.79, 0.89) versus 0.76 (0.69–0.82)). 
Respiratory conditions also benefit, with better performance in  
predicting respiratory insufficiency (0.82 (0.72–0.91) versus  
0.64 (0.54–0.73)) and respiratory failure (0.76 (0.71–0.82) versus 0.68 
(0.62–0.74)). In predicting all-cause mortality, SleepFM achieves a 
AUROC of 0.85 (0.80–0.89), outperforming both the Demographic 
baseline and End-to-End PSG model, which achieve AUROC of 0.78 
(0.72–0.82).

Finally, we compare fine-tuning scalability by evaluating 
SleepFM alongside two baseline models as we increase the amount 
of fine-tuning data and measure performance on the same test set. 
These results are shown in Extended Data Fig. 4 for SHHS and Extended 
Data Fig. 5 and Supplementary Fig. 12 for SSC. In both plots, the key 
observation is that SleepFM consistently outperforms the supervised 
baselines, with its performance improving steadily as more data are 
used, remaining above the baseline curves for nearly all conditions. 
For SHHS, SleepFM surpasses the Demographics baseline in five out 
of six conditions across all data percentages, with particularly large 
improvements in smaller dataset splits. For example, SleepFM trained 
on just 10% of the data outperforms the Demographics baseline trained 
on five times more data across all conditions in SSC and four out of 
six conditions in SHHS (for example, cardiovascular disease death, 
congestive HF, myocardial infarction and stroke). SleepFM also out-
performs the End-to-End PSG baseline in five out of six conditions, 
although the gap is slightly smaller than with the Demographics base-
line. SleepFM exhibits stable scaling behavior across data percentages, 
with smoother performance improvements, whereas the baseline 
models show greater variability.
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Fig. 4 | Performance improvements of SleepFM over baseline models across 
disease categories on Stanford test set (n = 5,019 participants). SleepFM and 
the End-to-End PSG model include age and sex demographic features, whereas 
the demographics-only model includes age, sex, BMI and race/ethnicity. Each 
box shows the distribution of disease-level percentage improvements of SleepFM 

relative to each baseline within the indicated disease category. Improvements 
are shown for both C-Index (top) and 6-year AUROC (bottom) metrics. Boxes 
represent the interquartile range (IQR), with whiskers extending to 1.5× IQR and 
outliers shown as points. Diamonds denote the mean improvement within each 
category. The horizontal dashed line at zero indicates no improvement.
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Discussion
This study presents a large-scale foundation model for sleep analysis, 
developed on more than 585,000 h of PSG data from 65,000 partici-
pants. Our work makes several contributions. First, we address chal-
lenges in sleep analysis by leveraging self-supervised learning to train 
a foundation model that learns from unlabeled data and is agnostic to 
channel type and number, enabling broad exploration of sleep data 
across diverse clinical settings. Second, through extensive evaluation 
across 1,041 disease phenotypes, we demonstrate sleep’s broad pre-
dictive power for diverse health outcomes. The model shows strong 
performance in predicting death (C-Index 0.84), dementia (0.85), HF 
(0.80) and CKD (0.79). Third, we demonstrated transfer learning capa-
bilities through strong performance on the SHHS dataset. Despite SHHS 
being entirely excluded from pretraining, our model maintains robust 
predictive power for key outcomes such as stroke (C-Index 0.81), con-
gestive HF (0.83) and death related to cardiovascular disease (0.86). 
Finally, SleepFM achieves competitive performance on standard sleep 
analysis tasks, including sleep staging and apnea detection, with mean 
F1 scores ranging from 0.70 to 0.78 across cohorts—comparable to 
state-of-the-art models such as U-Sleep7, GSSC25, STAGES10 and YASA24. 
Furthermore, in a fully external validation setting, SleepFM outperforms 
all models on DCSM (F1 = 0.68) and is competitive with the PhysioEx26 
models. For apnea classification, SleepFM achieves 87% accuracy in 
MESA, MrOS and SHHS, comparable to state-of-the-art models8.

SleepFM predicts all-cause mortality more accurately than both 
the Demographics-based model and the End-to-End PSG model, 
achieving a higher C-Index of 0.84 (0.81–0.87), compared to 0.79 
(0.75–0.82). This indicates that pretraining efficiently captures subtle 
mortality-related signals in the PSG data. Research shows strong asso-
ciation between all-cause mortality and sleep-related factors, including 
high arousal burden39, low REM sleep40, sleep-disordered breathing41, 
hypoxemia and low sleep efficiency42. Increased ‘brain age’ derived 
from EEG has also been identified as an important predictor of mortal-
ity3. SleepFM probably integrates these multifactorial contributors, 
capturing respiratory events, sleep fragmentation, arousal burden 
and sleep efficiency, along with markers of cardiovascular, metabolic 
and other diseases.

Predictive and prognostic models for neurological and mental 
disorders are advancing rapidly, offering the potential for earlier and 
more individualized treatment. Among the top conditions predicted 
by SleepFM were Alzheimer’s disease and Parkinson’s disease, with 
C-Indices of 0.91 (0.87–0.98) and 0.89 (0.85–0.92), respectively. Sleep 
disorders are associated strongly with preclinical Alzheimer’s disease43, 
including abnormalities in non-REM sleep, such as reduced slow-wave 
activity44, REM sleep disturbances45 and decreased spindle activity46. 
In early Alzheimer’s disease, REM sleep abnormalities have been linked 
to basal forebrain cholinergic lesions, which probably contribute to  
cognitive decline47. Similarly, Parkinson’s disease is frequently pre-
ceded by REM sleep behavior disorder, characterized by REM sleep 
without atonia and abnormalities in BAS and ECG patterns48. Recent 
studies have also shown that respiratory signals can capture pheno-
types specific to Parkinson’s disease49.

Consistent with these findings, SleepFM identified BAS as the 
strongest predictor of neurological and mental disorders, whereas 
respiratory signals were particularly effective in predicting senile 
dementia. Most studies in this domain rely on imaging modalities 
such as magnetic resonance imaging (MRI) and functional MRI (fMRI) 
to predict dementia. For example, one study using hippocampal 
MRI achieved a C-Index of 0.86 (ref. 50), whereas another using fMRI 
reported an AUROC of 0.82 for predicting dementia up to 9 years in 
advance51. Although direct performance comparisons are challenging 
due to differences in sample distributions, the ability of SleepFM to 
leverage PSG data to predict neurological and mental disorders under-
scores its potential as an alternative to imaging-based approaches.

Other established biomarkers for Alzheimer’s disease—such as 
amyloid PET, decreased cerebrospinal fluid β-amyloid42, and increased 
cerebrospinal fluid phosphorylated tau (for example, p-tau129)52,53—have 
been used widely for diagnosis and prognosis. More recently, plasma 
p-tau217 has emerged as a promising less invasive marker54. Sleep bio-
markers from PSG data offer a complementary, noninvasive tool for 
the prognosis of dementia and mild cognitive impairment.

SleepFM accurately modeled cardiovascular disease in both the 
SSC and SHHS datasets, leveraging data-driven methods commonly 
used in prognostic modeling of cardiovascular disease, particularly 

Table 2 | Comparison of category-averaged AUROC across SleepFM variants and baselines

Category Demo E2E-PSG SleepFM-1 SleepFM-2 SleepFM-3

Circulatory system 0.74(0.73, 0.74) 0.74(0.73, 0.75) 0.78(0.77, 0.78) 0.79(0.78, 0.80) 0.79(0.78, 0.80)

Dermatologic 0.64(0.63, 0.65) 0.63(0.62, 0.64) 0.68(0.67, 0.69) 0.71(0.70, 0.72) 0.70(0.70, 0.71)

Digestive 0.63(0.62, 0.64) 0.64(0.63, 0.65) 0.69(0.69, 0.70) 0.72(0.71, 0.73) 0.72(0.71, 0.73)

Endocrine/metabolic 0.68(0.68, 0.69) 0.67(0.66, 0.68) 0.74(0.73, 0.75) 0.75(0.74, 0.76) 0.75(0.74, 0.76)

Hematopoietic 0.64(0.63, 0.66) 0.66(0.64, 0.67) 0.73(0.72, 0.75) 0.75(0.73, 0.76) 0.74(0.73, 0.76)

Infectious diseases 0.62(0.61, 0.64) 0.62(0.60, 0.63) 0.67(0.65, 0.69) 0.70(0.68, 0.71) 0.70(0.68, 0.71)

Injuries and poisonings 0.62(0.61, 0.63) 0.63(0.61, 0.64) 0.68(0.67, 0.69) 0.70(0.69, 0.71) 0.70(0.69, 0.71)

Mental disorders 0.66(0.65, 0.67) 0.66(0.66, 0.67) 0.72(0.71, 0.73) 0.74(0.73, 0.75) 0.74(0.74, 0.75)

Musculoskeletal 0.68(0.67, 0.68) 0.68(0.67, 0.69) 0.70(0.69, 0.71) 0.72(0.72, 0.73) 0.72(0.71, 0.73)

Neoplasms 0.73(0.71, 0.74) 0.73(0.71, 0.74) 0.73(0.72, 0.74) 0.76(0.75, 0.77) 0.76(0.75, 0.77)

Neurological 0.62(0.61, 0.63) 0.63(0.62, 0.64) 0.70(0.69, 0.71) 0.72(0.71, 0.73) 0.72(0.71, 0.73)

Respiratory 0.63(0.62, 0.64) 0.64(0.63, 0.65) 0.69(0.68, 0.70) 0.69(0.69, 0.70) 0.70(0.69, 0.71)

Sense organs 0.66(0.65, 0.67) 0.67(0.66, 0.68) 0.71(0.70, 0.72) 0.73(0.72, 0.74) 0.73(0.72, 0.74)

Symptoms 0.65(0.64, 0.66) 0.66(0.64, 0.67) 0.72(0.71, 0.73) 0.75(0.74, 0.76) 0.75(0.74, 0.76)

Category-averaged 6-year AUROC (mean(95% CI)) comparing SleepFM variants with two baselines across disease categories on Stanford cohort (n = 5,019). The Demographics baseline (Demo) 
uses only structured clinical features (age, sex, BMI and race/ethnicity). The End-to-End PSG baseline (E2E-PSG) is trained directly on raw PSG signals with age and sex, without any pretraining. 
SleepFM-1 denotes SleepFM-LSTM (without Demo), using two LSTM layers in the fine-tuning prediction module and no demographic features. SleepFM-2 denotes SleepFM-Linear, a linear 
prediction module on SleepFM embeddings with age and sex. SleepFM-3 denotes SleepFM-LSTM, which uses two LSTM layers in the fine-tuning prediction module with age and sex. Values 
are averaged within each category across conditions. Uncertainty is estimated by nonparametric bootstrapping (n = 1,000 resamples): for each resample, conditions within a category are 
sampled with replacement and the category mean is computed; 95% CIs are the 2.5th–97.5th percentiles across resamples.
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with ECG data55 and lead II ECG from PSG studies9. Foundation models 
have demonstrated state-of-the-art performance with ECG data in 
various cross-sectional tasks15. For predicting cardiovascular mortality 
over 10 years, a previous study reported an AUROC of 0.84 (0.78–0.89) 
in a subset of SHHS participants with sleep apnea, whereas SleepFM 
achieved a slightly higher AUROC of 0.88 (0.83–0.91). Similarly,  
for atrial fibrillation, earlier work reported an AUROC of 0.82 (ref. 9), 
which aligns with SleepFM’s performance of 0.81 (0.78–0.84). Our  
ablation study further demonstrated that both ECG and respiratory  
signals contribute to the prediction of circulatory system pheno-
types, suggesting that SleepFM integrates information on sleep 
apnea and heart activity in ways that are consistent with known 
disease mechanisms56.

Most disease categories, including neurological, circulatory, 
hematopoietic, mental disorders and endocrine/metabolic, were pre-
dicted with notably improved performance by SleepFM compared to 
the Demographics-based and End-to-End PSG baseline models. Many 
of these diseases are either associated with sleep (for example, type 2 
diabetes57) or influenced directly by the signal modalities (for exam-
ple, heart arrhythmia). Disrupted and unhealthy sleep contributes to 
dysfunction across several physiological systems, increasing the risk 
of diseases such as obesity, type 2 diabetes, hypertension, stroke and 
cardiovascular disease58. Sleep-specific conditions, including sleep 
apnea56 and less conclusively periodic leg movements59, are also linked 
to cardiovascular outcomes. Furthermore, specific EEG waveforms, 
such as coupled slow-wave and spindle activity, have been identified 
as markers of next-day blood glucose regulation60.

Despite these promising results, several limitations should be 
acknowledged. Although our dataset is large, it consists primarily of 
patients referred for sleep studies due to suspected sleep disorders or 
other medical conditions requiring overnight monitoring. This selec-
tion bias means our cohort is not representative of the general popula-
tion, as people without sleep complaints or those with limited access 
to specialized sleep clinics are underrepresented. The model’s per-
formance shows some degradation in temporal test sets, highlighting 
the challenge of maintaining predictive accuracy over time as clinical 
practices and patient populations evolve. Furthermore, interpreting 
the predictions made by SleepFM is inherently challenging due to the 
complexity of the learned features during training by a deep model. To 
mitigate this, we stratified the model’s performance across sleep stages 
and data modalities, and conducted evaluations on temporal test sets 
and unseen datasets to gain insights into its behavior. However, further 
work is needed to enhance case-level interpretability and understand 
the specific sleep patterns and features driving these predictions.

In building our model, we selected hyperparameters for SleepFM 
based on previous work and ensured all training converged in loss; more 
extensive hyperparameter searches may further boost performance. 
Furthermore, although we evaluated SleepFM’s transfer learning per-
formance on an independent dataset, SHHS, only a subset of the full 
1,041 conditions could be assessed in this sample due to limited diag-
nostic overlap with SSC; this prevented a comprehensive evaluation 
of generalization across the full spectrum of diseases. Our sleep apnea 
analysis was limited to binary and four-class classification on the basis 
of AHI thresholds; we did not explore more granular formulations such 
as AHI regression or event detection, we leave this for future research. 
Similarly, although SleepFM achieves competitive results on sleep 
staging tasks across most datasets, it lags behind specialized sleep 
staging models on certain external validation datasets (for example, 
HMC). Further specialized modeling may be necessary to optimize 
SleepFM for sleep staging.

This study underscores the potential of sleep-based foundation 
models for risk stratification and longitudinal health monitoring. By 
integrating several physiological signals and leveraging large-scale pre-
training, SleepFM performs consistently well across diverse disease cat-
egories and outperforms supervised baselines. Its stable performance 

across fine-tuning splits suggests that pretraining may improve model 
generalizability, particularly in clinical contexts with limited labeled 
data. These results suggest that SleepFM can complement existing 
risk assessment tools and help identify early signs of diseases. As  
wearable sleep technologies continue to advance, models such as 
SleepFM may offer opportunities for noninvasive, real-time health 
monitoring. Future efforts should explore how combining sleep-based 
models with data from EHRs, omics and imaging can further enhance 
their utility.
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Methods
Dataset and preprocessing
Our dataset includes PSG recordings from four different sites: SSC, 
BioSerenity, MESA20,21 and MROS20,22, with SHHS20,23 serving as an exter-
nal validation dataset. Among these, MESA, MROS and SHHS are pub-
licly available datasets, whereas SSC is our proprietary dataset. The 
BioSerenity dataset, provided by the BioSerenity company, contains 
18,869 overnight recordings lasting 7–11 h each. This dataset is a subset 
of a larger collection from SleepMed and BioSerenity sleep laborato-
ries, gathered between 2004 and 2019 across 240 US facilities19. At 
the time of this study, approximately 20,000 deidentified PSGs were 
available for analysis. The dataset distribution across different splits 
is shown in Fig. 1, with SSC constituting the largest cohort. To prevent 
data leakage, participants with several PSG recordings were assigned 
to a single split. For MESA, MROS and SHHS details, we refer readers 
to their original publications. Below, we describe our internal SSC 
dataset in more detail.

The SSC dataset comprises 35,052 recordings, each lasting 
approximately 8 h overnight. It includes diverse waveforms such as 
BAS, ECG, EMG and respiratory channels, making it a high-quality 
resource for sleep-related research. The dataset spans recordings from 
1999 to 2024 and includes participants aged 2 to 96 years. The patient 
demographic statistics for SSC and BioSerenity are summarized in 
Extended Data Tables 1 and 2, respectively.

Our preprocessing strategy minimizes alterations to preserve raw 
signal characteristics crucial for identifying nuanced patterns. Each 
recording contains up to four modalities: BAS, ECG, EMG and respira-
tory, with variable numbers of channels. For BAS, we allowed up to ten 
channels, for ECG two channels, for EMG four channels and for respira-
tory seven channels. The number and type of channels vary across sites 
and even between patients within the same site, depending on the 
study type. The types of channel available across sites are described 
in Supplementary Tables 15–19. BAS includes channels that measure 
brain activity from different regions (frontal, central, occipital) as well 
as EOG for eye movements. EMG records electrical activity in muscles, 
whereas ECG captures cardiac electrical function. Respiratory channels 
measure chest and abdominal movements, pulse readings and nasal/
oral airflow. These channels were selected based on their relevance to 
sleep studies, guided by sleep experts1.

Each PSG recording is resampled to 128 Hz to standardize sampling 
rates across participants and sites. Before downsampling, we utilized 
a fourth-order low-pass Butterworth filter to prevent aliasing, applied 
in a zero-phase setting to avoid phase distortion. Finally, we standard-
ized the signal to have zero mean and unit variance. For any signals that 
needed to be upsampled, this was done using linear interpolation. Due 
to the channel-agnostic model design, we did not need any other data 
harmonization. Signals are segmented into 5-s patches, with each seg-
ment embedded into a vector representation for transformer model 
processing. To prevent data leakage, PSGs were split into pretrain, 
train, validation, test and temporal test sets early in the preprocess-
ing pipeline. Although there is overlap between the pretraining and 
training sets, no overlap exists with the validation, test or temporal 
test sets. The SHHS serves as an independent dataset not used during 
pretraining, instead being used to evaluate the model’s ability to adapt 
to a new site through lightweight fine-tuning.

During pretraining, the only required labels are the modality types 
of the signals. A self-supervised CL objective is employed for pretrain-
ing. For downstream evaluations, we consider canonical tasks such as 
age/sex prediction, sleep stage classification, sleep apnea classification 
and various patient conditions extracted from EHR data. Sleep stag-
ing and apnea labels for SSC, MESA, MROS and SHHS were annotated 
by sleep experts. To ensure consistency across and within datasets, 
Rechtschaffen and Kales labels were converted to American Academy of 
Sleep Medicine standard by mapping Rechtschaffen and Kales stages 3 
and 4 to American Academy of Sleep Medicine standard N3. SHHS also 

includes diagnostic information for conditions such as myocardial 
infarction, stroke, angina, congestive heart failure and death. For SSC, 
we paired PSG data with Stanford EHR data using deidentified patient 
IDs to extract demographic and diagnostic information. As BioSerenity 
lacks associated labels, it was used exclusively for pretraining.

SleepFM model architecture
Our model architecture is illustrated in Fig. 1. The architecture includes 
several key components that differ slightly between the pretraining and 
fine-tuning stages. During pretraining, we employ CL as the objective 
function for representation learning. A single model processes all 
four modalities.

The first component of the architecture is the Encoder, a 1D con-
volutional neural network (CNN) that processes raw signal data for 
each modality separately. The encoder takes raw input vectors, where 
the length of each vector corresponds to a 5-s segment of the signal, 
referred to as a token. The input dimensions are (B, T, C), where B is the 
batch size, T is the raw temporal length of the input and C is the number 
of channels for each modality. These inputs are reshaped into (B, C,  
S, L), where S is the sequence length representing the number of tokens 
(S = T/L) and L corresponds to the raw vector length for a single token 
(for example, 640 samples). Each token is then processed individually 
through a stack of six convolutional layers, each followed by normaliza-
tion and ELU activation layers. These layers progressively reduce the 
temporal resolution while increasing the number of feature channels, 
converting the input from 1 channel to 128 channels. After this, adaptive 
average pooling further reduces the temporal dimensions, and a fully 
connected layer compresses the representation into a 128-dimensional 
embedding for each token. The final output of the encoder has dimen-
sions (B, C, S, D), where D = 128.

Following the encoder, a sequence of transformer-based opera-
tions is applied to extract and aggregate modality-specific and tempo-
ral features. The first step is channel pooling, which aggregates token 
embeddings from all channels within a given modality. This operation 
uses an attention pooling mechanism based on a transformer layer 
to compute attention scores for each channel and produces a single 
aggregated embedding per time segment by averaging over the chan-
nel dimension. The resulting embeddings, with dimensions (B, S, D), 
are then passed through a temporal transformer, which operates along 
the temporal dimension to capture dependencies between tokens. 
The temporal transformer applies sinusoidal positional encoding to 
the token embeddings, followed by two transformer blocks consisting 
of self-attention and feedforward layers, enabling the model to learn 
contextual relationships across the sequence. After temporal mod-
eling, the embeddings are processed through temporal pooling, which 
aggregates token embeddings over the sequence length (S) for each 
modality. Similar to channel pooling, temporal pooling uses an atten-
tion mechanism to compute weighted averages, generating a compact 
representation of size (B, 128) per modality. These steps collectively 
ensure that the model captures both spatial and temporal dependen-
cies while reducing dimensionality for computational efficiency.

The final output is a single 128-dimensional embedding for each 
modality, used for CL during pretraining. Whereas the 5-min recordings 
are used exclusively for pretraining, we retain the 5-s-level embeddings 
for each modality for downstream tasks such as sleep staging and 
disease classification.

Baseline models
We evaluate SleepFM against two carefully chosen baseline approaches 
to demonstrate the value of our foundation model methodology.

The first baseline is a simple demographic model that processes 
only patient characteristics, including age, sex, BMI and race/ethnicity 
information. This demographic baseline is implemented as a one-layer 
MLP to establish a minimum performance threshold using only basic 
patient data available in most clinical settings.
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The second baseline is the more sophisticated End-to-End PSG 
model that directly processes raw sleep recordings. This model uses the 
same architecture as SleepFM, including the 1D CNN encoder, channel 
pooling transformer block, temporal transformer block, temporal pool-
ing transformer block and the LSTM layers, and is trained from scratch 
on the same dataset used for downstream evaluation. It also includes age 
and sex demographic features to ensure a fair comparison, but does not 
leverage any pretraining, serving to isolate the benefit of task-specific 
supervised learning on PSG signals without a foundation model.

All baseline models were trained using dataset splits shown in Table 1. 
The foundation model was first pretrained on the training dataset using a 
self-supervised objective, and subsequently fine-tuned on the same data. 
In contrast, the supervised baseline models were trained end-to-end with-
out any pretraining. Although all models share identical architectures, 
training objectives and data splits, SleepFM consistently outperforms 
both baselines across a range of clinical prediction tasks. Although this 
may seem counterintuitive—given that the supervised PSG baseline 
is trained on the same data—these results align with well-established 
benefits of pretraining in representation learning. Self-supervised  
pretraining enables the model to learn more generalizable physiological 
representations, facilitates better convergence through improved  
initialization and makes more efficient use of sparse or noisy  
supervision during fine-tuning, as demonstrated in previous work11.

Model training
Model training can be categorized into two segments: pretraining and 
fine-tuning. The pretraining stage involves self-supervised represen-
tation learning with a CL objective and fine-tuning involves training 
the model with supervised learning objective for specific tasks such 
as sleep stage classification, sleep apnea classification and disease 
prediction. We describe these in more details below.

Pretraining. Model pretraining is performed using a self-supervised 
learning objective called CL. Specifically, we employ a CL objective for 
several modalities, referred to as LOO-CL. The key idea behind CL is to 
bring positive pairs of embeddings from different modalities closer 
in the latent space while pushing apart negative pairs. Positive pairs 
are derived from temporally aligned 5-min aggregated embeddings, 
obtained after temporal pooling, across four different modalities. All 
other nonmatching instances within a training batch are treated as 
negative pairs.

In LOO-CL, we define a predictive task where an embedding from 
one modality attempts to identify the corresponding embeddings from 
the remaining modalities. For each modality i, we construct an embed-
ding ̄x−ik  by averaging over embeddings from all other modalities, 
excluding modality i. We then apply a contrastive loss between the 
embedding of modality i and this LOO representation:

ℒi,k = − log
exp (sim(xik, ̄x−ik )/τ)

∑N
m=1 exp (sim(xik, ̄x−im )/τ)

,

where ℒi,k  is the loss for a sample k from modality i in a given batch, 
sim(⋅) represents a similarity function (for example, cosine similarity) 
and τ is a temperature scaling parameter. The numerator computes 
the similarity between the embedding of modality i and the LOO  
representation of the corresponding sample, whereas the denominator 
sums the similarities across all samples within the batch. The motiva-
tion behind the LOO method is to encourage each embedding to align 
semantically with all other modalities.

Fine-tuning. After pretraining with the CL objective, we extract 5-s 
embeddings for all patient PSG data across modalities. We standard-
ize the temporal context to 9 h for all patients—longer recordings are 
cropped and shorter ones are zero-padded to ensure consistent input 

dimensions. For example, for a patient’s standardized 9-h sleep data, 
the resulting patient matrix has dimensions (4 × 6,480 × 128), where  
4 represents the number of modalities, 6,480 is the number of 5-s 
embeddings for 9 h of sleep and 128 is the embedding vector dimension.

During fine-tuning, we first apply a channel pooling operation 
across different modalities, reducing the dimensions to (6,480 × 128) 
for our example patient matrix. The pooled embeddings are then pro-
cessed through a two-layer LSTM block, which is designed to handle 
temporal sequences. For sleep staging tasks, these 5-s embeddings 
are passed directly through a classification layer. For all other tasks, 
the embeddings are first pooled along the temporal dimension before 
being passed through an output layer.

For disease classification, we append age and sex features to the 
mean-pooled embedding vector after the LSTM block, before passing 
it to the final output layer. This addition empirically improves perfor-
mance and surpasses the demographic baseline.

The fine-tuning objective for disease prediction uses the CoxPH 
loss function—a standard approach in survival analysis for modeling 
time-to-event data. The CoxPH loss maximizes the partial likelihood 
and is defined for a single label as:

ℒCoxPH = − 1
Ne

n
∑
i=1

δi (hi − log ∑
j∈R(ti)

exp(h j)) ,

where hi is the predicted hazard for the ith patient, δi is the event indica-
tor (1 for event occurrence, 0 otherwise), ti is the event or censoring 
time, R(ti) represents the risk set of all patients with event times greater 
than or equal to ti, n is the total number of patients and Ne = ∑n

i=1 δi   
is the number of events.

For our multilabel setup with 1,041 labels, we extend the CoxPH loss 
by computing it independently for each label and summing the results:

ℒtotal =
L
∑
k=1

ℒ(k)
CoxPH,

where L is the total number of labels.
Given the large dataset size, computing the loss for all patients in 

a single batch is computationally infeasible. Therefore, we calculate 
the loss in smaller batches of 32 samples, with patients sorted by event 
time in descending order to ensure correct computation of the partial 
likelihood. This batching strategy, combined with the summation  
of per-label losses, provides an efficient and scalable approach for 
multilabel time-to-event modeling.

Architectural details. We provide additional implementation-level 
details to clarify how SleepFM is constructed and trained. The design 
of SleepFM was developed through an empirical and iterative pro-
cess, informed by domain knowledge and guided by practical training  
considerations. Although we did not perform an exhaustive hyper-
parameter search, we systematically evaluated architectural variants 
through trial-and-error by monitoring loss convergence, training 
stability and downstream performance.

Each 5-s segment of raw PSG signals (640 timepoints at 128 Hz) is 
passed through a tokenizer composed of six convolutional layers with 
increasing feature maps: 1 → 4 → 8 → 16 → 32 → 64 → 128. Each convolu-
tional block includes BatchNorm, ELU activation and LayerNorm. After 
convolution, adaptive average pooling reduces the temporal axis to 1, 
and a linear layer projects the features to a fixed 128-dimensional token 
embedding. The resulting output shape is (B, C, S, 128), where C is the 
number of channels and S is the number of 5-s tokens.

To accommodate variability in the number and ordering of chan-
nels across different PSG datasets, we introduced an attention-based 
spatial pooling layer that operates across channels using a transformer 
encoder. This design makes the model robust to inconsistencies in 
recording configurations across sites. Specifically, embeddings 
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from several channels within a modality are pooled using multihead 
self-attention, producing a modality-specific sequence of shape  
(B, S, 128).

To capture long-range temporal dependencies in sleep signals, the 
pooled token sequence is passed through three transformer encoder 
layers (each with eight heads, batch-first configuration and a dropout 
rate of 0.3), along with sinusoidal positional encoding and LayerNorm. 
This component enables modeling of contextual relationships across 
the sleep sequence. The output shape remains (B, S, 128).

An additional attention-based pooling layer aggregates the tem-
poral sequence across timesteps, resulting in a single 128-dimensional 
embedding for each modality (for example, BAS, ECG, EMG or res-
piratory). These fixed-size modality-specific embeddings are used for 
pretraining with a self-supervised CL objective.

For downstream disease prediction, 5-s token embeddings span-
ning a standardized 9-h window are processed by a fine-tuning head. 
This head includes spatial pooling followed by a two-layer bidirectional 
LSTM (hidden size: 64). Temporal mean pooling is applied across valid 
timesteps, and normalized age and sex features are concatenated with 
the pooled output. The combined vector is then passed through a final 
linear layer to generate hazard scores for each disease. The total num-
ber of learnable parameters in this setup is approximately 0.91 million.

The supervised baseline model uses the same architecture 
as SleepFM but is trained from scratch without pretraining. The 
demographics-only baseline passes four input features—age, sex, 
BMI and race/ethnicity—through a shallow MLP with dimensions 
4 → 128 → output.

Implementation details. All implementations were carried out using 
PyTorch, a library used widely for deep learning. The PSG data was 
gathered and processed within a HIPAA-compliant and secure compute 
cluster on Google Cloud Platform. Patient EHR data was likewise stored 
and analyzed exclusively within this secure environment.

For pretraining, the model was trained with a batch size of 32, a 
learning rate of 0.001, eight pooling heads, three transformer layers 
and a dropout rate of 0.3. As previously described, each patch size cor-
responds to a 5-s segment, and the total sequence length is 5 min for 
the transformer model. The total parameter count for the model was 
approximately 4.44 million. Pretraining was performed on 432,000 h 
of sleep data collected from 48,000 participants for one epoch, using 
an NVIDIA A100 GPU. The entire pretraining process took approxi-
mately 15 h.

For fine-tuning, the batch size was also set to 32, with a learning 
rate of 0.001, four pooling heads, two LSTM layers and a dropout rate 
of 0.3. The fine-tuned model had approximately 0.91 million learnable 
parameters. Training was conducted on patient data, with each token 
embedding represented as a 128-dimensional vector, over ten epochs. 
The fine-tuning process was performed on an NVIDIA A100 GPU, with 
the total training time per epoch ranging from 2 to 5 min, depending 
on the task.

All data analysis and preprocessing were performed using Python 
(v.3.10.14) and its data analysis libraries, including Pandas (v.2.1.1), 
NumPy (v.1.25.2), SciPy (v.1.11.3), scikit-survival (v.0.23.0), scikit-learn 
(v.1.5.2) and PyTorch (v.2.0.1).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Of the five data sources used in this study, four datasets are avail-
able publicly and can be accessed at the following links: SHHS  
(https://sleepdata.org/datasets/shhs), MrOS (https://sleepdata.org/ 
datasets/mros), MESA (https://sleepdata.org/datasets/mesa)  
and SSC (https://sleepdata.org/datasets/ssc). The BioSerenity  

dataset is proprietary and owned by BioSerenity, which has granted 
Stanford University access under a research and development agree-
ment; please contact BioSerenity directly for data agreement. Stanford 
sleep data is available upon publication at https://bdsp.io/content/
hsp/2.0/. Access to these data is provided solely for research purposes 
and is subject to data use restrictions that prohibit redistribution or 
sharing with third parties.

Code availability
All of the SleepFM code is open source and available at https://github.
com/zou-group/sleepfm-clinical.
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Extended Data Fig. 1 | Age estimation performance on the Stanford cohort. 
Left: Scatterplot showing predicted versus chronological age across all patients 
(n=5,019), with the diagonal line representing perfect prediction. The coefficient 
of determination (R2), mean absolute error (MAE), and Pearson correlation 
coefficient (Corr) are shown in the top left corner. Right: Mean Absolute Error 

(MAE) across chronological age groups, with vertical error bars indicating the 
standard error of the mean (SEM) within each age bin. The horizontal dashed line 
represents the overall MAE. Our model achieves an MAE comparable to state-
of-the-art models and demonstrates improved age estimation performance for 
younger age groups compared to older ones.
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Extended Data Fig. 2 | Performance across clinically relevant diseases 
evaluated on Stanford data (n=5019). Performance is evaluated using multiple 
metrics: C-Index and AUROC. The selected conditions include critical health 
outcomes such as death, heart failure, stroke, and dementia. Each panel uses 
violin/point plots derived from 1000 patient-level bootstrapping: the violin 

encodes the distribution of bootstrap estimates, faint points are individual 
bootstrap draws, the filled dot is the mean, and the vertical line with end caps 
marks the 95% bootstrap percentile CI. Numbers above violins report the mean. 
Metrics are C-index (top) and AUROC at 6 years (bottom).
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Extended Data Fig. 3 | Performance of SleepFM for key clinical outcomes on 
the temporal test set. Metrics include C-Index and AUROC for critical conditions 
such as death, heart failure, chronic kidney disease, dementia, and stroke. Each 
panel uses violin/point plots derived from 1000 patient-level bootstrapping: the 
violin encodes the distribution of bootstrap estimates, faint points are individual 

bootstrap draws, the filled dot is the mean, and the vertical line with end caps 
marks the 95% bootstrap percentile CI. Numbers above violins report the mean. 
Metrics are C-index (top) and AUROC (bottom). All conditions are statistically 
significant with a p-value < 0.01 after Bonferroni correction.
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Extended Data Fig. 4 | Scaling behavior of fine-tuning SleepFM on the SHHS 
dataset. Scaling behavior of fine-tuning SleepFM on the SHHS dataset  
(test size = 2,000 participants). We progressively increased the percentage of 
labeled SHHS data used during fine-tuning from 10% to 100%. The plots show 
C-Index performance across six cardiovascular outcomes, comparing SleepFM 
with Demographics and End-to-End PSG baselines. Error bars indicate 95% 

confidence intervals derived from 1,000 participant-level bootstrap resamples 
with replacement. Even with as little as 10% of training data (330 samples), 
SleepFM demonstrates strong predictive accuracy and consistent performance 
improvements as more labeled data becomes available. SleepFM outperforms 
both baseline models in most conditions, particularly when the dataset size is 
smaller, and its performance scaling is more stable across all outcomes.
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Extended Data Fig. 5 | Impact of pretraining dataset size on downstream 
performance. Stanford cohort is used for this analysis. Each subplot shows 
C-Index performance for a specific disease as a function of the percentage of 
pretraining data used (0%, 25%, 50%, 100%). The downstream fine-tuning and 
test datasets are held constant. Error bars represent 95% confidence intervals 
estimated via 1,000 participant-level bootstrap resamples with replacement. 
The 100% mark corresponds to a full epoch of pretraining on the entire dataset 

(n=24,137). Intermediate checkpoints at 25% and 50% represent models saved 
partway through that epoch, while the 0% point denotes a model with no 
pretraining, resulting in near-random performance. Performance improves 
consistently with more pretraining data, highlighting the value of large-scale 
self-supervised pretraining across diverse phenotypes, including cardiovascular, 
metabolic, neurological, and respiratory conditions.
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Extended Data Table 1 | Demographic characteristics of the Stanford Sleep Clinic (SSC) cohort

Values are shown by dataset split and reported as mean +- 2 standard deviations for age, and as counts (percentages) for categorical variables.
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Extended Data Table 2 | Demographic characteristics of the Bioserenity cohort

Values are presented as mean +- 2 standard deviations for age, and as counts (percentages) for categorical variables.
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Extended Data Table 3 | Per-sleep-stage F1 performance of SleepFM across four cohorts

Per-sleep-stage F1 scores for SleepFM across four cohorts (SSC, MESA, MrOS and SHHS), with comparison to U-Sleep. Values for SleepFM are mean F1 with 95% confidence intervals from 
1,000 bootstrap resamples of test recordings (CIs shown in parentheses beneath each estimate). The bold ‘Mean’ row reports the macro-average across stages. U-Sleep values are the 
corresponding F1 scores reported for the same cohorts; confidence intervals were not available.
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Extended Data Table 4 | Sleep staging performance on the SSC cohort

Sleep staging results (F1) for SleepFM, U-Sleep, YASA, GSSC, and STAGES on the SSC cohort. The bold bottom row reports the macro-average (mean) across stages.
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Extended Data Table 5 | Comparison of category-averaged C-Index across SleepFM baseline

Category-averaged C-Index (mean with 95% CI) comparing SleepFM variants with two baselines across disease categories on Stanford cohort (n=5,019). The Demographics baseline 
(‘Demo’) uses only structured clinical features (age, sex, BMI, and race/ethnicity). The End-to-End PSG baseline (‘E2E-PSG’) is trained directly on raw PSG signals with age and sex, without any 
pretraining. SleepFM-1 denotes SleepFM-LSTM (w/o Demo), using two LSTM layers in the fine-tuning prediction module and no demographic features. SleepFM-2 denotes SleepFM-Linear, a 
linear prediction module on SleepFM embeddings with age and sex. SleepFM-3 denotes SleepFM-LSTM, which uses two LSTM layers in the fine-tuning prediction module with age and sex. 
Values are averaged within each category across conditions. Uncertainty is estimated via nonparametric bootstrapping (n=1000 resamples): for each resample, conditions within a category 
are sampled with replacement and the category mean is computed; 95% CIs are the 2.5th-97.5th percentiles across resamples.

http://www.nature.com/naturemedicine
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