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A B S T R A C T

Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in achieving durable and
potentially curative responses in patients with hematological malignancies. CARs are tailored fusion proteins that
direct T cells to a specific antigen on tumor cells thereby eliciting a targeted immune response. The approval of
several CD19-targeted CAR T-cell therapies has resulted in a notable surge in clinical trials involving CAR T cell
therapies for hematological malignancies. Despite advancements in understanding response mechanisms, resis-
tance patterns, and adverse events associated with CAR T-cell therapy, the translation of these insights into
robust clinical efficacy has shown modest outcomes in both clinical trials and real-world scenarios. Therefore, the
assessment of CAR T-cell functionality through rigorous preclinical studies plays a pivotal role in refining
therapeutic strategies for clinical applications. This review provides an overview of the various in vitro and
animal models used to assess the functionality of CAR T-cells. We discuss the findings from preclinical research
involving approved CAR T-cell products, along with the implications derived from recent preclinical studies
aiming to optimize the functionality of CAR T-cells. The review underscores the importance of robust preclinical
evaluations and the need for models that accurately replicate human disease to bridge the gap between pre-
clinical success and clinical efficacy.

1. Introduction

Chimeric Antigen Receptor (CAR) T-cell therapy has transformed the
cancer field by inducing long-term and potentially curative responses in
patients with hematological malignancies [1,2]. CAR T-cells are reen-
gineered T cells specifically designed to target antigens expressed pre-
dominantly by tumor cells [2,3]. Structurally, CARs are fusion proteins
that combine: a) an antigen-recognition domain that contains the
antibody-derived tumor-targeting variable regions, also called as single-
chain variable fragment (scFv), with b) a T cell activation domain (T cell
receptor-derived constant regions, i.e., CD3ζ), that are connected by c) a
spacer hinge and transmembrane spanning elements. These CARs are
usually introduced to the T cells using lentiviral or retroviral vectors,
redirecting T cells to specific surface antigens in a manner independent
of major histocompatibility complex (MHC) restriction. This approach
avoids tumor cell escape from the immune system through Human
Leukocyte Antigen (HLA) downregulation or mutations in proteasomal
antigen processing, just to name a few known escape mechanisms [2,4].

First-generation CARs included only the CD3ζ signaling domain,
providing insufficient activation [5]. Second and third-generation CARs
incorporate one or two costimulatory domains, respectively, allowing
full activation and memory pool formation of CAR T-cells with sustained
tumor control [2]. The most commonly used costimulatory domains are
CD28 and CD137 (4-1BB), with CD137 providing superior in vivo
persistence of CAR T-cells [5,6].

Despite the significant success of CAR T-cell therapies in B cell ma-
lignancies, high burden and mortality rates are still associated with
these diseases [7,8]. Additionally, complete response (CR) rates can vary
with approximately 85 % of patients achieve CR in Acute Lymphoblastic
Leukemia (ALL), 50 % in Non-Hodgkin’s Lymphoma (NHL), and 25 % in
Chronic Lymphocytic Leukemia (CLL) [9,10]. Despite extensive efforts
in this field, achieving consistently effective curative treatments for
relapsed and refractory patients remains a challenge. Some well-known
mechanisms of failure upon CAR-T cell therapy include tumor resistance
to apoptosis [11], loss of target antigens [12,13], upregulation of
inhibitory receptors [14], and T cell-intrinsic deficiencies [15].
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However, depending on the aggressiveness of the disease and the design
of the CAR T construct, these mechanisms may vary, and there are still
knowledge gaps which need to be addressed [16,17].

The road from idealizing a CAR, to getting approval by regulatory
agencies (i.e., the Food and Drug Administration – FDA) can be a long
and hard one, and all products being developed need to achieve certain
milestones regarding their function and safety. A series of preclinical
assays using reliable in vitro and in vivo models are required to prove
their efficacy. Usually, tumor killing activity and cytokine production
are the main observations of interest, however, in order to assess if the
product can produce a durable long-term remission, these CAR T cells
should also be tested for their persistence after repeated tumor chal-
lenges, not only in vitro, but also in vivo.

In this review, we discuss the steps involved in translating CAR T-cell
therapies from bench to bedside. While exploring the main assays and
indicators that are used as predictors of efficacy, we provide insights
from what the field has learned from previous clinical trials and their
outcomes.

2. Background

The currently approved CAR T-cell products include CD19-directed

CAR T cells for B-cell malignancies and anti-BCMA-directed CAR T
cells for multiple myeloma. Two anti-CD19 CAR T-cell products utilizing
the CD28 costimulatory domain are approved: axicabtagene ciloleucel
(Axi-Cel) for relapsed/refractory (R/R) large B cell lymphoma (LBCL)
[18–20] and follicular lymphoma (FL) [21], and brexucabtagene auto-
leucel (Brexu-Cel) for R/R B-cell ALL [22,23] and mantle cell lymphoma
(MCL) [24]. The anti-CD19 CAR T-cell product tisagenlecleucel (Tisa-
cel), which uses a 4-1BB costimulatory domain, is approved for R/R B-
ALL [25], LBCL [26] and FL [27]. Another 4-1BB-based anti-CD19 CAR
T-cell product, lisocabtagene maraleucel (Liso-Cel), formulated with
CD4+ and CD8+ cells in a 1:1 ratio, is used in R/R LBCL [28–30], CLL
[31] andMCL [32]. More recently, two 4-1BB-based CAR T-cell products
have been approved in multiple myeloma: the BCMA-directed ide-
cabtagene vicleucel (Ide-cel) [33] and the dual-BCMA construct cil-
tacabtagene autoleucel (Cilta-cel) [34].

These therapies have significantly improved the outcomes of patients
with lymphoid malignancies, but only 20–50 % of patients experience
long-term remissions [35–38] (Table 1). Therefore, current research
efforts are focused not only on identifying new target antigens to
broaden the applications of CAR T-cell therapies but also on designing
better CAR T-cell products for lymphoid malignancies. Much can be
learned from analyzing previous studies, including the results of

Table 1
Long-term results of the commercial CAR-T cell therapies.

Disease Disease /
indication

CAR T-cell
product

ORR/CR mFU
(mo)

mDOR
(mo)

mPFS or
EFS (mo)

mOS
(mo)

Long-term response /
survivals (when
available)

Reference

B-ALL R/R, pediatric /
AYA

Tisa-cel (CD19-
BBz)

81/60 %
(CRi 21 %)

38.8 NR 24 NR 3y-EFS/OS: 44/63 % ELIANA [25,35]

Brexu-Cel
(CD19-28z)

67/29 %
(CRi 38 %)

36.1 7.2 a 5.2 a NR / ZUMA-4 [23]

R/R, adults Brexu-Cel
(CD19-28z)

71/56 %
(CRi 15 %)

26.8 14.6 a 11.6 a 25.4 a / ZUMA-3 [22,172]

LBCL R/R after ≥ 2 lines
of therapy

Tisa-cel (CD19-
BBz)

53/39 % 40.3 NR 2.9 11.1 3y-DOR 60.4 % JULIET [26,173]

Axi-Cel (CD19-
28z)

82/54 % 63.1 11.1 5.7 25.8 5y-EFS/OS 30.3/42.6 % ZUMA-1 [18,36]

Liso-cel (CD19-
BBz)

73/53 % 19.9 23.1 6.8 27.3 2y-DOR/PFS/OS 49.5/
40.6/50.5 %

TRANSCEND NHL
001 [28,174]

R/R after 1st-line
therapy

Axi-Cel (CD19-
28z)

83/65 % (vs
50/32 % b)

47.2 41.7 (vs
7.8)

14.7 (vs
3.7)

NR (vs
31.1)

4y-PFS/OS 41.8/54.6 %
(vs 24.4/46 %)

ZUMA-7 c [19,37]

Liso-cel (CD19-
BBz)

80/74 % (vs
45/43 % b)

17.5 NR (vs
9.1)

NR (vs 2.4) NR (vs
29.9)

18mo-EFS/OS 52.6/73.1
% (vs 20.8/60.6 %)

TRANSFORM c [29]

Axi-Cel (CD19-
28z)

90/79 % 12 NR 11.8 NR 1y-PFS /OS 48.8/78.3 % ALYCANTE d [20]

Liso-cel (CD19-
BBz)

80/54 % 12.3 12.1 9 NR / PILOT e [30]

FL R/R after ≥ 2 lines
of therapy

Tisa-cel (CD19-
BBz)

86/69 % 29 NR NR NR 2y-DOR/PFS/OS 66.4/
57.4/87.7 %

ELARA [27,175]

Axi-Cel (CD19-
28z)

92/74 % 41.7 NR 40.2 NR 3y-DOR/PFS/OS 57/54/
76 %

ZUMA-5 [21,176]

MCL R/R Axi-Cel (CD19-
28z)

91/68 % 35.6 28.2 25.8 46.6 2y-PFS 52.9 %, 30mo-OS
60.3 %

ZUMA-2 [24,177]

CLL R/R after ≥ 2 lines
of therapy f

Liso-cel (CD19-
BBz)

43/18 % 20.8 35.5 11.9 30.3 18mo-DOR/PFS/OS
70.3/46.9/71 %

TRANSCEND CLL
004 [31]

Multiple
myeloma

R/R after ≥ 4 lines
of therapy g

Ide-cel (BCMA-
BBz)

73/33 % 13.3 10.7 8.8 19.4 1y-OS 78 % KarMMa [33]

R/R after ≥ 2 lines
of therapy g

Cilta-cel (dual
BCMA-BBz)

97/67 % 27.7 NE NR NR 27mo-PFS/OS 54.9/70.4
%

CARTITUDE-1
[34,38]

ORR: overall response rate; CR: complete remission; DOR: duration of response; mo: months; B-ALL: B-cell acute lymphoblastic leukemia; R/R: relapsed/refractory;
AYA: adolescent and young adults; CRi: complete remission with incomplete hematological recovery; (m)EFS: (median) event-free survival; (m)OS: (median) overall
survival; (m)RFS: (median) relapse-free survival; NR: not reached; LBCL: large B-cell lymphoma; (m)PFS: (median) progression free survival; SOC: standard of care; FL:
follicular lymphoma; MCL: mantle cell lymphoma; CLL: chronic lymphocytic leukemia; BCMA: B-cell maturation antigen.

a Censored for subsequent treatment.
b SOC arm: immunochemotherapy + autologous hematopoietic stem cell transplantation.
c
<12 mo after 1st-line therapy, eligible for autologous hematopoietic stem cell transplantation.

d <12 mo after 1st-line therapy, non-eligible for autologous hematopoietic stem cell transplantation.
e After 1st-line therapy, eligible for autologous hematopoietic stem cell transplantation.
f including a Bruton tyrosine kinase (BTK) inhibitor and a B-cell lymphoma 2 (BCL-2) inhibitor.
g Including an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody.
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correlative studies that have identified important determinants of
response and resistance to CAR T-cell therapies. Furthermore, in the
absence of standardized and validated assays for predicting the efficacy
of CAR T-cell therapies, reviewing the preclinical evaluations from both
successful and unsuccessful clinical trials might provide valuable in-
sights into the key parameters to consider when developing new CAR T-
cell products.

3. Preclinical models and assays to evaluate CAR potency

Several biological factors have been reported and associated with
clinical response, especially in the context of anti-CD19 CAR T-cell
treated patients [39,40]. Some determinants of response are related to
the in vivo expansion/peak in CAR T levels in apheresed samples
[1,15,18,39], persistence of circulating CAR T in the patient after a
prolonged follow-up [15,41,42], and early memory phenotype [15]. On
the other hand, products that express genes linked to cellular exhaustion
resulted in reduced clinical responses in patients with B-cell lymphoma
[15,43]. At the perspective of non-responding patients, an increase in
CD8+ cells with an exhausted/senescent phenotype and a distinct
transcriptional signature associated with terminal differentiation and
exhaustion was characteristic in this population, as well as the presence

of regulatory T cells (Treg) in the CAR T product [15,44]. These findings
underscore the importance of thoroughly assessing the functional
characteristics of CAR T cells before infusion, in addition to their
phenotypic analysis. The main read-outs of in vitro and in vivo assays
are summarized in Fig. 1.

3.1. In vitro potency assays

The information obtained from in vitro assays are a crucial part of
quality control for final products, and they have the potential to serve as
valuable biomarkers that are translated into efficacy in vivo [45]. These
assays are essential not only to assess their cytotoxic function during
preclinical development, but also to ensure that the manufacturing
process and final product meet standards for quality, consistency, and
stability for each batch release [46]. Additionally, potency assays pro-
vide a basis for assessing comparability after scale-up during process
development, site transfer, and/or the introduction of new starting
materials (e.g., a new patient sample). These steps should be established
during early clinical development and are required before moving for-
ward to a clinical trial.

The main assays performed to assess CAR T-cell potency are cyto-
toxicity assays and cytokine production. Cytotoxicity assays can be

Fig. 1. Assays for the preclinical evaluation of CAR-T cells. Diagram containing different types of assays to determine CAR-T cell function. In vitro assays can assess
the potency of the product upon: A) brief stimulation, where T cells are activated using either PMA/ionomycin, which bypass the T cell receptor by directly activating
intracellular signaling pathways, or CD3/CD28 beads, which mimic physiological T cell receptor and co-stimulatory signaling. After that stimulation period, cytokine
production is assessed in the cell culture supernatant by ELISA, and intracellularly by flow cytometry, where immunophenotyping can be performed at the same time;
B) chronic stimulation, when the CAR-T cells are exposed multiple times at given intervals over the course of weeks. CAR-T cell proliferation is measured, and
immunophenotyping can be used to assess the phenotype of those cells after multiple tumor encounters. In vivo assays (C) utilizing immunocompromised mice to
evaluate human tumor and CAR-T cells are useful to assess safety and long-term remission, especially if a rechallenge is administered after tumor clearance, showing
the presence of memory cells that can sustain response. (Created with BioRender.com).
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relatively complex, and they vary significantly between different labo-
ratories. For instance, co-cultures with CAR T-cells can be performed
with cell lines or tumor cells in the presence or absence of cytokines in
the media. Other variables are the effector-to-target (E:T) ratios, and the
duration of co-culture, which can go from 4 to 6 h, or longer [43,47–51].
Usually, the main read-out of potency assays is tumor lysis, however, the
phenotype of the cells as well as their cytokine profiles can also be
assessed.

The quantification of Type-1 cytokines (i.e., IL-2, IL-6, IFN-γ, TNF-α)
in co-culture supernatants is usually considered an indicator of cell
activation and specific activity [51,52], and although it does not directly
indicate which cells were responsible for producing them, it is likely
associated with immune protective activities coming from the CAR T-
cells. In this assay, a short incubation (4 h) of the CAR T-cells with TCR-
dependent or -independent molecules can be done (e.g., CD3/CD28 or
PMA/Ionomycin, respectively). Another strategy could be a longer
stimulation (6–12 h) with artificial antigen-presenting cells (aAPCs),
which consist of tumor cell lines engineered to over-express the antigen
of interest (i.e., K562-CD19 cells for B cell malignancies [53]), prior to
cytokine detection. Additionally, the phenotype of the cells could be
assessed by flow cytometry, so the characterization of the product would
become more robust.

One assay that provides comprehensive information about the CAR
T-cell product, involves the iterative stimulation (3 to 4 times at 2 to 5-
day intervals) of CAR T-cells with aAPCs or patient-derived tumor cells
at different effector:target (E:T) ratios. This assay, also considered a
pressure test, allows for phenotype and cytokine evaluation at various
time points, where CAR T-cell products are queried for differentiation
capacity and tumor killing while preserving a memory state after mul-
tiple challenges [53–55]. This assay can be useful especially in the
context of chronic diseases such as CLL, where immune-surveillance and
CAR T-cell persistence is required to provide long-term remissions [42].

Importantly, some groups direct their efforts to developing new
methods to assess CAR T-cell function [56,57], and there is a hope that if
they are used across different products with no significant variability,
they could become a standard. However, it is important to consider the
type of disease (acute vs. chronic) and the biomarkers identified within
their responder or non-responder groups of patients.

3.2. In vivo assays

In vivo models are crucial for evaluating the functionality of CAR T-
cells, providing a more realistic and complex environment to assess
antitumor efficacy, persistence, and interactions with the tumor
microenvironment (TME). These models include immune-compromised
or immune-competent systems. Immune-compromised models, such as
NSG (NOD/SCID/IL2Rγnull) mice, allow for the engraftment of human
tumors without a graft-versus-host event, creating a suitable platform
for testing human CAR T-cells. The effectiveness against xenografts has
been an important consideration in determining the feasibility of
advancing specific CAR designs into clinical development [6]. To
replicate clinical scenarios accurately, xenografts are frequently exposed
to suboptimal amounts of CAR T-cells (“stress test”), and tumor
rechallenges can be conducted to assess the persistence and memory
responses mediated by the CAR T products [58], which can be predictors
of long-term efficacy.

Immune-competent models, such as those involving genetically
engineered mouse models (GEMMs) and humanized mouse (HM)
models, offer the advantage of a fully functional immune system, which
is essential for understanding the interactions between CAR T-cells and
endogenous immune cells [59]. These models help evaluate CAR T-cell
responses in a more physiologically relevant context, including the ef-
fects of preconditioning regimens, combination therapies, and the sup-
pression of immune inhibitory signals within the TME [58]. GEMMs
allow for the study of CAR T-cell activity against early-stage tumors and
the co-evolution of antitumor T cells with tumor progression. HM

models, which involve the reconstitution of the human immune system
inmice, are particularly useful for assessing CAR T-cell function, adverse
events, and the potential for cytokine release syndrome (CRS) and im-
mune effector cell-associated neurotoxicity syndrome (ICANS) [59–63].

The use of in vivo models in CAR T-cell development is indispensable
for preclinical studies, as they provide a comprehensive understanding
of CAR T-cell functionality, efficacy, and safety. These models facilitate
the optimization of CAR T-cell therapies, guiding the development of
more effective and safer treatments for clinical applications.

4. Clinical trials data summary

4.1. Pre-clinical development of the currently-approved CAR T-cells

Although cytotoxicity is essential for CAR T-cells to be effective,
enhanced cytotoxicity does not necessarily translate to superior clinical
efficacy. While the superiority of second-generation CAR T-cells over
first-generation CAR T-cells is widely accepted, early data from their
development revealed that the introduction of a costimulatory domain
in anti-CD19 CAR T-cells did not increase efficacy in short-term cyto-
toxicity assays [5,6,64,65]. This indicates that factors beyond immedi-
ate cytotoxicity are critical for the overall clinical success of CAR T-cell
therapies. Importantly, the superiority of these second-generation CAR
T-cells became evident when interrogating sustained functionality in
long-term cytotoxicity and proliferation assays, as well as cytokine
production [5,6,64,65].

The preclinical research at the University of Pennsylvania that led to
the development of Tisa-Cel focused on long-term proliferation. The 4-
1BB costimulatory domain was selected over the CD28 costimulatory
domain due to its superior long-term antitumor efficacy, as demon-
strated in a long-term in vivo murine model using primary ALL cells with
follow-up periods exceeding five months [6]. On the other hand, the
CD28 costimulatory domain was selected during preclinical develop-
ment at the National Cancer Institute, NIH, due to its high transduction
efficiency and robust cytokine production [3]. This research ultimately
resulted in the development of the commercial product Axi-Cel.
Exploring further the differences between CAR T-cells incorporating a
CD28 or 4-1BB costimulatory domain (28ζ-CAR or BBζ-CAR), Kawalekar
et al. confirmed the ability of the 4-1BB costimulatory domain to pro-
mote a central memory phenotype in CD8+ T cells, associated with fatty
acid oxidation and mitochondrial biogenesis, while the CD28 domains
favors effector memory differentiation, associated with glycolysis. [66]
In clinical application, the outcomes of these preclinical tests are vali-
dated: the 28ζ-CAR T product Axi-Cel shows fast proliferation and
higher rates or toxicities (which have been associated with IFNγ secre-
tion) [67], while the BBζ-CAR T product Tisa-Cel demonstrates long-
term persistence [42]. The third successfully developed anti-CD19
CAR T-cell product is the BBζ-CAR T-cell Liso-Cel. Its development at
the Fred Hutchinson Cancer Research Center was based on preclinical
research demonstrating the synergistic effect of CD4+ T cells and central
memory CD8+ T cells. This combination resulted in optimal prolifera-
tion upon stimulation (both in vitro and in vivo) and superior long-term
tumor control, with higher survival rates observed over follow-up pe-
riods of up to 16–18 weeks [68]. However, recent preclinical work has
demonstrated the critical role of CD4+ T cells in supporting CD8+ T-cell
function, as manufacturing CD8+ CAR T cells without CD4+ cells results
in a hypofunctional phenotype and reduced anti-tumor activity [69].

Regarding anti-BCMA CAR T-cells, the BB2121 construct was
selected from among the various anti-BCMA CAR constructs due to its
high transduction efficiency, greater IFNγ production, and enhanced
cytotoxic abilities. Further experiments demonstrated that T-cells engi-
neered with this construct could induce tumor clearance and improve
survival in a murine model, with follow-up periods extending up to 85
days. In contrast, chemotherapeutic treatment using bortezomib could
only reduce the tumor burden in this model, with tumor progression
observed after treatment discontinuation [70].
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Overall, the preclinical development of most of these successful CAR
T-cell products included long-term evaluation of efficacy. Only the
preclinical development of the 28ζ-CAR Axi-Cel focused on acute effi-
cacy and less on long-term persistence, which was later observed in
clinical practice as well. This observation provides a good signal that
well-designed assays used during pre-clinical evaluation can robustly
predict clinical outcomes. However, while some key determinants of
efficacy may be shared across CAR T-cell products and diseases, other
important factors may vary depending on the specific context, and the
pipeline of assays may need to be tailored accordingly.

4.2. Pre-clinical development of new CAR T-cell products

Lessons can also be drawn from unsuccessful clinical trials as well.
The 28ζ anti-BCMA CAR T product KITE-585 exhibited limited expan-
sion and lack of efficacy in a phase I clinical trial for relapsed/refractory
multiple myeloma. Although the full preclinical data have not been
published, the authors retrospectively assessed their preclinical findings
and identified several factors that might have contributed to the “arti-
ficial” positive results in preclinical assessments. These factors included
the use of IL-2 in the assays, high alloreactivity in the preclinical models,
and higher BCMA expression in cell lines compared to primary myeloma
cells [71]. This underscores the importance of a robust pipeline of reli-
able preclinical assays to evaluate new CAR T-cell products before
moving forward to clinical trials.

CAR T-cells targeting CD22 or both CD19 and CD22 have been
developed by several groups, but several challenges have arisen in their
clinical application. Fry et al. led a clinical trial evaluating a new BBζ-
CD22-targeted CAR T-cells in 21 children and young adults with B-ALL,
including 15 relapsing after anti-CD19 CAR T-cell therapy [72]. They
observed complete remission in 73 % of patients receiving ≥1 × 106

CD22-CART cells/kg, including patients with CD19dim or CD19neg
disease. However, the median duration of remission was only 6 months,
with most relapses associated with diminished CD22 surface expression.
Further preclinical evaluation confirmed that anti-CD22 CAR T-cells
could only delay the growth of NALM6 cells modified to express lower
levels of CD22, while the original NALM6 cells were eradicated [72].
Using the same scFv in a CAR construct with a longer linker, Singh et al.
observed disappointing results in a phase 1 clinical trial in pediatric B-
ALL, with a response in only 4/8 patients, who ultimately experienced a
CD22+ relapse [73]. Comparing the impact of a long or short linker with
this CD22 scFv, they observed that the construct with a short linker was
inducing more tonic signaling secondary to homodimerization, resulting
in a higher phosphorylation of Pi3K and MAPK pathways, with
enhanced proliferation during manufacturing, more durable synapse
formation with target cells, and higher secretion of cytokines early after
antigen exposure. In vivo, this also resulted in a higher CAR T-cell
expansion (at day 15) and better tumor control (with a follow-up of 50
days) [73]. Following this observation, they developed a new anti-CD22
CAR construct with a short linker, that is currently evaluated in an
amended version of the clinical trial (NCT02650414; no published re-
sults yet). In a recent single center, dose-escalation phase 1 trial
(NCT04088890), 38 large B-cell lymphoma patients with median 4 lines
of therapy who had relapsed after CD19 targeted CAR T-cell therapy
were treated with CD22 directed CAR T-cell therapy. The CR and PR
rates were 53 % and 16 % respectively with a median duration of
response of 27.8 months [74]. While the results are promising and
provides a therapeutic option following relapse after CD19 CAR T-cell
therapy, this is a phase 1 dose finding study and further research is
warranted to measure the long-term efficacy.

In the preclinical development of a dual CD19/CD22-targeting CAR
by Autolus, substantial efforts were dedicated to optimizing the CAR
design. However, the assays designed to evaluate the efficacy of this CAR
T-cell product predominantly focused on short-term efficacy measures,
such as cytotoxicity, IFNγ production, and proliferation up to four days
in vitro, along with an in vivo model with only a 15-day follow-up

period. Although these CAR T-cells demonstrated a notable acute ef-
fect, evidenced by a high rate of complete remission (CR + CRi) at one
month in relapsed/refractory (R/R) B-ALL, they exhibited low persis-
tence compared to Tisa-Cel in the ELIANA trial. Consequently, the 1-
year overall survival (OS) and event-free survival (EFS) rates were
relatively modest at 60 % and 32 %, respectively [75].

In the preclinical development of another bivalent CD19/CD22 CAR
T-cell product at the NIH, significant optimization of the CAR was
achieved, including the comparison of different tandem/loop structures.
However, in vivo assays suggested a reduced ability to clear tumor cells
expressing only the CD22 target [76]. Subsequently, the phase 1 trial
using this construct in B-ALL and LBCL failed to achieve outcomes su-
perior to CD19-alone targeting CARs, with CD19− /dim relapses in 50 %
and 29 % of patients with B-ALL and LBCL, respectively, and no CD22− /

dim relapse [77]. To interrogate the relative potency of the signal
delivered via the CD19 scFv versus the CD22 scFv, authors compared the
response to CD22-only stimulation and CD19-only stimulation using
samples from manufactured cell products. They observed a reduced
activation (CD69 expression) and cytokine secretion (TNFα, IFNγ and
IL2) in response to NALM6 cells expressing CD22 only, compared to
NALM6 cells expressing CD19 only. When comparing the activity of the
CD22 scFv in bispecific CD19–22 CAR and in monospecific CD22 CAR,
they observed similar levels of activation but lower secretion of TNF-α
and IL-2 [77]. Other bispecific CARs such as CD19/CD20 or CD19/
BCMA have been evaluated in phase 1–2 clinical trials in NHL and
multiple myeloma respectively while trispecific (CD19/CD20/CD22)
CARs have been evaluated in preclinical models of large cell lymphoma.
[78–80]

Long-term tumor clearance and tumor control upon rechallenge are
crucial parameters, but the importance of CAR T-cell persistence should
not be underestimated. In the preclinical development of NKG2D-based
CAR T cells, the cells demonstrated their long-term efficacy in vivo in a
murine model of ovarian cancer, including a rechallenge with tumor
cells after 225 days. However, the NKG2D-based CAR T cells were not
persisting, and this long-term anti-tumor immunity was mediated by a
host immune response [81]. The clinical trials evaluating NKG2D-based
CAR T cells in myeloid malignancies and multiple myeloma have
revealed low response rates, with no sign of long-term tumor control
[82,83]. These results may also stem from the significant differences
between the immune environment in murine models and in patients. In
myeloid malignancies, the strong immunosuppressive microenviron-
ment might limit the efficacy of this product and hinder the develop-
ment of a secondary endogenous immune response.

Overall, these observations underscore the significance of con-
ducting comprehensive evaluations of new CAR T-cell products. This
includes not only optimizing the CAR structure when designing a new
CAR construct, but also assessing functionality through robust in vitro
and in vivo assays. These assays should evaluate both acute and chronic
CAR T-cell functions, encompassing proliferation, cytotoxicity, and
cytokine production following acute and chronic stimulation, the latter
mimicking the sustained antigen exposure of these CAR T-cells when
infused into patients. In murine models, long-termmonitoring of CAR T-
cell persistence and tumor control, ideally incorporating tumor rechal-
lenge in surviving mice, can offer valuable insights into the long-term
efficacy of the CAR T-cell product. Finally, further work may be
needed to better mimic the inflammatory and immunosuppressive
environment present in many malignant diseases, as its impact on CAR
T-cell efficacy and toxicity might be underestimated in current pre-
clinical models.

5. Enhancing CAR T-cell therapeutic efficacy: lessons from
preclinical studies and early clinical evaluations

The pursuit of enhanced efficacy with CAR T-cell therapy has
resulted in extensive preclinical studies employing different approaches
ranging from manufacturing strategies to innovative CAR designs. Some
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of these approaches are highlighted in Table 2. The lessons from these
pre-clinical studies help in a better understanding of the various dy-
namics governing the CAR T-cell efficacy and could help refine the
strategies and subsequently optimize the approach in clinical settings.

5.1. Manufacturing strategies to obtain an improved memory function

Numerous correlative studies have consistently identified the pro-
portion of early memory (eM) or stem cell memory (SCM) T cells as a
robust signature associated with CAR T-cell proliferation, efficacy, and
persistence [15,37,40,43,84,85]. In alignment with these findings,
Biasco et al. demonstrated that CAR TSCM cells undergo a clonal burst
shortly after infusion and are the primary contributors to the clonal pool
at both early and late timepoints [86]. Building upon these insights,
several research groups are now developing CAR T-cell manufacturing
processes aimed at enriching for these eM/SCM T-cells. In addition to
the FDA-approved Liso-Cel, which is enriched in CD8 central memory
(CM) T-cells [87], other CAR T-cell products enriched in early memory
T-cells are currently under development.

Enriching the starting material in TCM through CD25/CD14/CD45RA
depletion and CD62L selection has proven ineffective in B-NHL and B-
ALL treated with anti-CD19 28ζ CAR T-cells, with poor persistence (≤28
days) and low response rates [88,89]. Interestingly, in the preclinical
evaluation of this process, the engraftment of TCM-enriched CAR T-cells
in NSG mice was measured only up to day 24, with no report of subse-
quent evaluation of persistence or in vivo tumor control. These disap-
pointing results prompted a modification of the process to enrich in both
naive (TN) and TCM cells (through CD62L selection, without CD45RA
depletion) [89]. In adult patients with B-ALL treated, TN/CM enrichment
before anti-CD19 CAR T-cell manufacturing resulted in a high complete
remission/complete remission with incomplete hematologic recovery
(CR/CRi) rate of 87 %, with 95 % of these patients achieving minimal
residual disease (MRD) negativity. Responders had a median relapse-
free survival (RFS) of 17.1 months, and some patients exhibited long-
term CAR T-cell persistence. However, consolidation with allogeneic
hematopoietic stem cell transplantation, which was performed in 53 %
of responding patients, was still associated with superior RFS, indicating
that these CAR T-cells were still not providing a sufficient long-term
control of the disease [89]. Another CAR T-cell product enriched in
naive and memory cell (positive selection of CD62L+ cells), with a BBζ-
based bispecific anti-CD19/CD20 CAR was developed at UCLA and
showed promising results in a phase 1 clinical trial in patients with
relapsed/refractory B-NHL after ≥2 prior lines of therapy (ORR 90 %,
CR 70 %, median PFS 18 months) [90]. The development of this new
CAR structure included optimization of the extracellular spacer and
linker sequence to obtain an optimal activation in response to CD20 as
well as CD19 stimulation [91]. Interestingly, the preclinical
manufacturing of this CAR T-cell product was performed on CD8+

selected cells [91]. When moving to the clinical CAR T-cell product, the
CD62L+ selection without this CD8+ selection resulted in an enrichment
in monocytes, and the protocol had to be amended to include a CD14/
CD25 depletion when ≥5 % of CD62L+ cells were CD14+ and/or CD25+

[90].
The T-memory stem cell subset has been described as crucial for CAR

T -cell efficacy, and their expansion during manufacturing has been
favored using IL-7 and IL-15 rather than IL-2 [84]. After observing the
poor persistence and efficacy of anti-Lewis Y CAR T cells in a clinical
trial for metastatic solid tumors and noting the low abundance of stem-
like T cells in the infusion product, Meyran et al. reported the preclinical
optimization of a CAR T-cell product enriched in stem-like T cells. This
was achieved by selecting naive T-cells using negative selection process
(magnetic depletion of non-naive T-cells) and employing a shortened
manufacturing process with IL-7 and IL-15 instead of IL-2 [92]. They
demonstrated that this process preserved a more stem-like phenotype at
the end of manufacturing, and that these CAR T-cells exhibited superior
proliferation not only after acute stimulation but also after a 30-day

Table 2
Strategies used to improve CAR T-cell efficacy in preclinical models or clinical
trials of hematological malignancies.

Approach Description

Incorporation of co-stimulatory
domains

Addition of co-stimulatory domains like CD28, 4-
1BB, OX40, or ICOS to enhance T-cell activation
and persistence [178,179].

Optimization of CAR construct
Optimizing the components of CAR construct to
improve antigen recognition and binding affinity
[180,181].

Cytokine secretion

Arming the CAR T-cells to secrete cytokines to
enhance T-cell proliferation, persistence,
cytotoxicity and overcome an immunosuppressive
TME [105,106,112].

Suicide genes Incorporation of suicide genes for safety control
and elimination of CAR T cells [182].

Trafficking chemokines/
chemokine receptors

Addition of chemokine or chemokine receptors to
enhance migration towards tumor sites and
improve CAR T-cell infiltration [120,183].

Resistance to
immunosuppression

Engineering CAR T cells to resist inhibitory signals
from the tumor microenvironment or express
immune checkpoint inhibitors [184].

miRNA modulation
Integrating miRNA in the CAR construct to
enhance proliferation and effector functions
[185].

Switchable CAR T cells
Designing CAR T cells with inducible activation or
deactivation mechanisms for enhanced safety and
control [186].

Transcriptional regulation of
CAR expression

Controlling CAR expression levels through
inducible promoters or regulatory elements to
optimize efficacy [187].

Modulation of CAR affinity

Controlling the CAR affinity to the target antigen
with low affinity CAR constructs showing reduced
trogocytosis and better effector functions
[188,189].

Dual-targeting CAR T cells
Designing CAR T cells targeting multiple tumor
antigens to enhance specificity or to overcome
tumor heterogeneity and antigen escape [190].

Targeting novel antigens

Designing CAR constructs targeting antigens other
than CD19, CD20 and CD22 to combat antigen
negative relapses following targeted therapies
[191–193].

Tumor microenvironment
modulation

Modification of CAR T cells to resist inhibitory
signals or express factors enhancing tumor
infiltration [154,155].

Enhancing resistance to T cell
exhaustion

Incorporating factors that counteract T-cell
exhaustion, such as blocking PD-1, TIM-3 or TIGIT
signaling pathways [194,195].

Metabolic programming

Modulating the different metabolic pathways like
glycolysis, cholesterol and fatty acid metabolism
in the CAR T-cells allowing for sustained effector
function and survival [141,144].

Optimizing the culture
Optimizing the CAR T-cell culture conditions such
as serum supplements and PH to improve the CAR
T-cell phenotype and function [196,197].

Gene expression regulation
Overexpression or downregulation of specific
genes leading to enhanced CAR T-cell function
[198].

Gene specific vector
integration

Integration of the lentiviral vector in specific
genes such as TET2 enhancing the CAR T-cell
potency [53,199].

Non-viral gene delivery
methods

Utilizing non-viral methods such (CRISPR)/Cas9
for site specific integration and enhanced tumor
specific cytotoxicity [200,201].

Combination therapies

Combining CAR T-cell therapy with other
treatments like checkpoint inhibitors, BTK
inhibitors, to synergistically enhance efficacy
[202,203].

In vivo CAR T cell
manufacturing

In vivo CAR transduction using T cell directed
vectors has the potential to overcome the
limitations in terms of cost and infrastructure
requirements of ex vivo manufacturing [170,204].

In vivo CAR restimulation
Restimulation of the CAR T-cells in vivo using a
vaccine like approach to enhance their persistence
and effector function [205,206].

(continued on next page)
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chronic stimulation in vitro. Additionally, the optimized CAR T-cells
showed enhanced expansion and tumor control at low doses in NSGmice
[92]. This product still needs to demonstrate its superiority in clinical
trials. Furthermore, despite the potential for lower dosing compared to
conventional CAR T-cells, the limited availability of naive T-cells in
heavily treated patients may still constrain feasibility of this process.

Another approach to preserve a less differentiated phenotype is to
reduce the manufacturing time [93]. YTB323 is an anti-CD19 BBz CAR
T-cell product (with the same CAR construct used for Tisa-Cel) with a
short – expansion-less – manufacturing process using the T-Charge™
platform. The preclinical evaluation showed higher IL-2 and IFNγ
secretion upon CD19-specific activation, superior efficacy in repeat-
stimulation assay, as well as better expansion and tumor control at
lower doses in vivo [94]. In a phase 1 clinical trial, this product showed
very good overall response rates of 80 % at the optimal dose (dose level
2) in patients with LBCL ≥2 lines of prior therapy (including HSCT)
[94]. With a median follow-up of 10 months, responses appeared

durable (CR rates of 63 % at 3 months and 69 % at 6 months, median
duration of response not reached) [95].

Finally, other methods to enrich CAR T-cells in early memory T-cells
have been assessed in preclinical studies. Some groups have used small
molecules or cytokines during manufacturing to preserve or enhance the
stem-like or memory function of the CAR T-cell product. These include
the use of IL-7, IL-21, and the glycogen synthase-3β inhibitor TWS119
[96], AKT inhibition [97], and PI3Kδ/γ inhibition [98]. Additionally,
some groups have pursued further genetic modifications in the T cells to
induce durable changes that favor the persistence of a stem cell-like
pool, such as FOXO1 overexpression [99,100].

5.2. Armored CAR-T cells: preclinical insights and therapeutic strategies

To improve the therapeutic benefits of CAR T-cells, many innovative
CAR designs have been developed to enhance the antitumor efficiency
and overcome treatment resistance related to inadequate expansion,
infiltration, and persistence of CAR T-cells. [101–104] In this regard,
fourth-generation CARs (referred to as “armored” CARs) that incorpo-
rate cytokines (IL-7, IL-15, IL-18, IL-21, Il-25, IL-33) are being developed
to improve CAR T-cell persistence, tumor infiltration and effector
functions [105–110]. (Fig. 2) The co-expressed cytokines can help
maintain an early memory phenotype in the CAR T-cells, overcome the
immunosuppressive microenvironment (CLL/NHL) and reduce the level
of apoptosis of CAR T-cells apart from enhanced proliferation and
effector functions. [111–113] While the incorporation of cytokines im-
proves the T-cell function, the potential risk of adverse events could

Table 2 (continued )

Approach Description

Memory phenotype CAR T cells
Engineering CAR T cells to exhibit a memory
phenotype, promoting long-term persistence and
recall responses [207].

Optimizing the starting
material

Enrichment of naïve and memory stem cell
populations in the apheresis product [90,208].

Shortening the manufacturing
time

Reducing the culture duration to maintain a less
differentiated phenotype in the manufactured
CAR T-cells [94].

Fig. 2. Overview of optimization strategies to enhance CAR T-cell efficacy. Various strategies have been explored in preclinical models to optimize the effectiveness
of CAR T-cell therapy for hematological malignancies. These include: 1) Engineering “armored” CAR T-cells that can produce cytokines or express chemokine re-
ceptors to enhance cytotoxicity, memory function, or tumor site migration. 2) Developing second and third generation CAR constructs with additional costimulatory
domains to boost T-cell activation and persistence. 3) Modulating the affinity of CAR receptors to reduce exhaustion, trogocytosis, and improve effector functions. 4)
Blocking PD1-PDL1 axis using secreted PD1 scFV or 5) anti-PD1 monoclonal antibodies to make the CAR T-cells more resistant to exhaustion. 6) Incorporating suicide
genes (irreversible) or 7) use of pharmacological agents such as TKI (reversible) to control CAR T-cell exhaustion and minimize adverse events. 8) Manipulating
metabolic pathways, such as increasing oxidative phosphorylation and fatty acid oxidation, to improve CAR T-cell persistence and memory function. 9) Combining
CAR T-cell therapy with BTK inhibitors to synergistically enhance CAR T-cell function. 10) Targeting multiple antigens or 11) novel antigens to prevent antigen
escape and improve therapeutic efficacy. (Created with BioRender.com).
BTK – Bruton tyrosine kinase. CAR – chimeric antigen receptor. CD – cluster differentiation. IL- interleukins. MDSC – myeloid derived suppressor cells. NO – nitric
oxide. ROS – reactive oxygen species. scFv – single chain fragment variable. TAM – tissue associated macrophages. TCR – T cell receptor. TME – tumor
microenvironment.
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preclude its clinical adoption, although some studies have designed the
CAR construct to address this issue [114]. Therefore, it is important to
have robust preclinical assays and animal models to evaluate these
CARs. Yoshikawa et al. used a chimeric cytokine receptor G6/7R that
captures IL-6 from the myeloid cells via extracellular IL-6 receptor
reducing the toxicity while the constitutively active IL7 signaling im-
proves the CAR T-cell proliferation and effector function [115]. In
another study, hypoxia-controlled secretion (HIF1α) of IL12 resulted in
regression of large DLBCL in animal models without toxicity [116]. Both
the studies used xenograft animal models followed up for 2 months or
more after infusion with the latter also claiming “effective cure” with
100 % mice surviving until the termination of the experiment with all
the doses assessed in the study.

One of the potential reasons for the failure of CAR T-cells in solid
tumors and lymphoma has been the inability of the CAR T-cells to
effectively migrate to the tumor site after infusion. Researchers have
tried to improve the tumor site homing by incorporating the expression
of a chemokine receptors or chemokines in the CAR construct that
guides the immune cells to the tumor site [117,118]. (Fig. 2) The
feasibility of incorporating chemokines/chemokine receptors in the CAR
construct has been demonstrated in preclinical settings and evaluated in
clinical trials [119]. Although the preclinical studies do effectively
assess the short term, and, in some studies, long term effector function as
well the safety, it is important to remember the limitation of animal
models in recapitulating the tumor microenvironment in humans with
different cellular and non-cellular components. Hence the result from
the preclinical studies is not always reproduced when it moves to a
clinical trial, and it is imperative to evaluate the CAR T-cell function
with different models and appropriate readouts that would best repre-
sent the scenario in a patient. Recently, anti-CD19 CAR T-cells
expressing IL-7 and CCL19 have demonstrated enhanced tumor target-
ing and antitumor activity compared to conventional CD19 CAR T-cells
with no dose limiting toxicities such as grade 4 CRS. [120] While the
preclinical data from tumor animal models was promising with 100 %
mice (n = 6) survival and 5 out of 6 tumor-bearing mice achieving long-
term tumor-free survival up to 95 days post-treatment, the results from
the clinical trial were not very different from the other studies. The
overall response rate was 79.5 % at 3 months (CR – 56.4 %; PR – 23.1 %)
and the median progression-free survival was 13 months with a median
follow up of 32 months. In another study, 1928z/IL-12 CAR T-cells
derived from umbilical cord blood retained a central memory-effector
phenotype with a significantly enhanced survival of CD19+ tumor
bearing mice. Using appropriate preclinical models, the authors
demonstrated that clinically relevant doses could be achieved from
umbilical cord derived CAR T-cells; however, relevant models to test the
safety were not assessed in the study as noted by the authors [121]. Like
lymphoma, the TME plays an important role in myeloma disease pro-
gression and treatment outcomes. CAR T-cells targeting the myeloma-
associated antigens BCMA and B-cell activating factor (BAFF-R) failed
to eliminate myeloma when these antigens were weakly expressed,
whereas IL-18-secreting CAR T-cells targeting these antigens promoted
myeloma clearance. The IL-18-secreting CAR T-cells developed an
effector-like T-cell phenotype, promoted interferon-gamma production,
reprogrammed the myeloma bone marrow microenvironment through
type I/II interferon signaling, and activated macrophages to mediate
anti-myeloma activity [122].

5.3. Mitigating CAR T-cell exhaustion: strategies for controlled signaling

One of the reasons for CAR T-cell exhaustion (especially CARs with
CD28 costimulatory domain) is the strong tonic and ligand independent
constitutive signaling which initially results in results in uncontrolled
proliferation, cytokine production and eventually leads to exhaustion.
Unlike the T-cell receptors (TCRs) which are controlled by a stringent
feedback mechanism, constitutive CAR expression is less susceptible to
feedback regulation [123]. Controlling this constitutive CAR signaling

not only delays exhaustion but could also reduce the adverse events.
Different strategies have been tried to address this issue such as use of
suicide genes (truncated EGFR) that could be targeted pharmacologi-
cally [124], use of inhibitory CARs that temporarily and reversibly in-
hibits the CAR T-cell activity [125] or the use of clinically used drugs
such as TKIs that could function as a reversible on/off switch for T cell
activation and differentiation [126,127]. (Fig. 2) While using a “kill
switch” results in irreversible loss of potentially therapeutic CAR T-cells,
using reversible switches has the potential to avoid or minimize adverse
events like CRS and TLS without compromising the efficacy [128]. Using
appropriate in vitro models and flow cytometry assays, Rodgers et al.
showed activation and cytotoxicity of their switchable CAR T-cells was
dependent on the presence of CD19 antigen. While there were minimal
differences in the lytic activity with the different switch/hinge designs in
the in-vitro assays, the differences were significantly different in the in-
vivo models highlighting the role of using appropriate preclinical
models in evaluating the CAR T-cell function. TKIs namely dasatinib
abrogate the phosphorylation of multiple key components like
lymphocyte specific protein tyrosine kinase (LCK), CD3ζ, and ZAP70 in
the CAR signaling domain which was completely reversed following
depletion of the drug [126]. While the preclinical data looks promising,
there is limited clinical data available for using TKIs with CAR T therapy
outside of Ph + ALL (NCT03984968, NCT04603872) and few phase I/II
trials are currently underway [129]. Eyquem et al. integrated the CD19-
specific CAR to the T-cell receptor α constant (TRAC) locus using the
CRISPR/Cas9 genome editing and studied the T cell phenotypes and
function in mouse models of ALL [130]. They showed that directing the
CAR to the TRAC locus avoided the tonic signaling with internalization
and re-expression of the CAR on the surface following repeat exposure to
CD19+ B cells. The strategy delayed the T cell differentiation and
exhaustion and led to better efficacy in mouse models compared to
conventional CD19 CAR T-cells. Webster et al. designed CD19-targeting
CAR, which regulates its own function based on the presence of a CD19
antigen expressing cells, by placing the CAR19 constructs under tran-
scriptional control of inducible promoters AP1-NFκB or STAT5. By using
repeat stimulation assays and in-vitro and in-vivo models to assess long
term persistence the authors showed the outcomes are different when
using a proximal (AP1-NFκB) and distal (STAT5) promoters in the
construct [131].

5.4. Augmenting CAR T-cell function via checkpoint inhibition

Several Inhibitory receptors have been characterized in T-cells, such
as cytotoxic T-lymphocyte–associated protein 4 (CTLA-4), T-cell
immunoglobulin domain and mucin domain–containing protein 3 (TIM-
3), lymphocyte-activation gene 3 (LAG-3), and programmed death-1
(PD1). These molecules are upregulated following sustained activation
of T-cells in chronic disease and cancer, and they promote T-cell
dysfunction and exhaustion, thus resulting in the escape of tumor from
immunosurveillance. Targeting the checkpoint inhibitors on the T-cells
has been an attractive strategy in solid tumors and hematological ma-
lignancies [132–135]. (Fig. 2) Different approaches have been tried with
the goal of enhancing the CAR T-cell function without triggering the
uncontrolled proliferation of non-CAR T-cells leading to autoimmune
side effects [132–134,136–138]. Blaeschke et al. created aPD-1-CD28
fusion protein to transform inhibitory signals of leukemic cells (PD-1)
into T-cell stimulation (CD28) [136]. When they evaluated the cyto-
toxicity of the CAR T cells with PD-1-CD28 fusion proteins
(19_BB_3z_PD-1_28) it was not different from the conventional second-
generation CAR T cells (19_BB_3z) at any of the E:T ratio. However,
when target cells were added to anti-CD19 CARs every 3 to 4 days to
assess persistent effector function, CAR T-cells with PD-1-CD28 fusion
proteins clearly outperformed the conventional CAR T-cells. CAR T-cells
engineered to express PD-L1 scFv antibody demonstrated enhanced anti-
tumor activity in in vitro and in vivo mouse models by blocking the PD-
1/PD-L1 signaling [139]. Although the clinical trials targeting the
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checkpoint inhibition axis in B cell malignancies are limited, the
promising results show that the outcomes with CAR T-cell therapies can
be improved by targeting the immune checkpoint axis [140].

5.5. Enhancing CAR T-cell performance: leveraging the metabolic
pathways

The metabolic characteristics of the CAR T-cells depend on the cor-
eceptor included in the CAR construct with 41BB CARs showing
increased fatty acid oxidation and mitochondrial biogenesis while CD28
CARs showing increased glycolytic metabolism [66]. This difference
also partly explains the difference in phenotype and persistence of the
CAR T-cells harboring different costimulatory domains. Repeat stimu-
lation assays using in-vitro models showed that GLUT1 overexpression
in a CD19-28ζ CAR promoted the Tscm formation with increased
expression of genes associated with memory phenotypes. (Fig. 2) The
improved efficacy was demonstrated using in-vivo models as well with
the CD19-28ζ CAR with GLUT1 overexpression showing tumor control
in NALM6 mice models up to 200 days while there was rapid tumor
progression after an initial response with the control CD19-28ζ CAR T-
cells [141]. Mitochondrial function (or dysfunction) plays an important
role in determining the functional persistence of CAR T-cells and
metabolic alterations during CAR T-cell manufacture could influence its
effector function [142,143]. Recent work by Gross et al. showed that
priming CAR T-cells with galactose during the culture improved the
leukemia free survival in animal models by enhancing the mitochondrial
activity in the CAR T-cells [144]. Interestingly, the authors first evalu-
ated the mitochondrial parameters of CAR T-cell products from ALL
patients enrolled on a clinical trial demonstrating the improved CAR T-
cell function with increased mitochondrial function and subsequently
attempted a metabolic conditioning by growing cells in galactose
primed media. Two recent papers showed that FOXO1 overexpression in
CAR T-cells was associated with increased oxidative phosphorylation
and metabolic fitness and enhanced the memory phenotype and
improved efficacy [99,100].

5.6. Navigating the tumor microenvironment in lymphoma

One of the big challenges in designing CAR T-cell studies in lym-
phoma has been recapitulating the heterogeneity in the lymphoma TME.
Researchers are trying to address this issue by using strategies such as
patient derived organoids [145]. The tumor microenvironment with its
cellular and non-cellular components is an important determinant of
CAR T-cell outcomes in lymphoma [146]. The presence of immuno-
suppressive myeloid (PMN-MDSC) and monocyte (M-MDSC) derived
suppressor cells have been associated with poor outcomes in NHL and
their presence in circulation prior to CAR T-cell infusion was associated
with decreased axi-cel expansion and poor outcomes [147–149]. Locke
et al. assessed the pretreatment tumor characteristics in patients
enrolled in ZUMA-7 trial and showed that low CD19 expression in ma-
lignant cells correlated with a tumor gene expression signature (GES)
consisting of immune-suppressive stromal and myeloid genes, high-
lighting the inter-relation between malignant cell features and immune
contexture substantially impacting axi-cel outcomes [150]. Apart from
the inhibitory cytokines and the infiltration of myeloid cells and Tregs,
other factors such as fibrotic stroma, phenotype of the non-CAR T-cells
tumor derived exosomes in the TME also plays a role in the CAR T-cell
proliferation and outcomes [151–153]. Therefore, robust preclinical
evaluation of the TME is important while assessing the functional effi-
cacy of CAR T-cells in lymphoma, myeloma, and solid tumors. Apart
from the efficacy the TME also plays a role in the development of
adverse events. Giavridis et al. showed in animal model that the severity
of CRS is mediated not by CAR T cell–derived cytokines, but by IL-6, IL-1
and nitric oxide (NO) produced by recipient macrophages [62]. This
suggests that the response and adverse events post infusion is not just
dependent of the tumor-CAR T-Cell interaction but also on the

microenvironment and the presence of myeloid cells in the TME. Tar-
geting the immunosuppressive microenvironment pharmacologically or
by modifying the CAR construct seems promising strategies and are
currently explored [154,155]. While these preclinical studies address
some of the important TME factors that contribute to CAR T-cell resis-
tance, better preclinical models to mimic the TME are required to truly
assess the CAR T-cell efficacy.

6. Preclinical models of allogeneic CAR T-cell therapy:
overcoming challenges for clinical translation

Although allogenic CAR T-cells offer several advantages over autol-
ogous CAR T-cells in terms of cost, availability for all patients, starting T-
cell fitness and the need for bridging chemotherapy, its clinical utility is
limited by graft rejection and graft versus host disease (GVHD)
[156,157]. HLA-mediated rejection could be avoided by knocking out
the B2M, but this could result in elimination of the CAR T-cells by the NK
cells [158–160]. Preclinical models using CD19, CD123 and BCMA
targeting CARs used different strategies to overcome these limitations
and showed potent antitumor efficacy on serial rechallenges and in vivo
models [161–164]. Although none of the preclinical studies compare the
efficacy of allogenic CAR T-cells to autologous CAR T-cells targeting the
same tumor antigen, they do demonstrate robust in-vitro anti-tumor
activity which is reproduced in immunocompromised and immuno-
competent animal models. Recent and ongoing phase 1/2 clinical trials
demonstrate antitumor activity and a manageable safety profile with
allogenic CAR-T cells (UCART19, UCART20x22) in B-ALL [165–167]
and CD7 expressing T cell leukemia/lymphoma and AML [168].

An alternative approach to lowering costs and eliminating the need
for intricate manufacturing processes and bridging chemotherapy is the
in vivo production of CAR T-cells using both viral vectors and non-viral
techniques, such as nanoparticles. Unlike conventional ex vivo methods,
which include isolating, genetically modifying, and reinfusing T-cells, in
vivo production involves delivering a genetic construct directly into the
patient’s cells to facilitate CAR T-cell generation. [169]Despite its po-
tential advantages, this strategy faces significant challenges, including
the complexity of the delivery system, the risk of host inflammatory
responses to viral vectors, and the potential for unintended vector
integration into other cells. These issues raise substantial regulatory and
safety concerns, necessitating thorough investigation of the long-term
effects of this strategy. Researchers are actively developing methods to
enhance the precision of vector integration, such as utilizing CD3-
targeted viral vectors and advanced nanoparticle technologies
[170,171].

7. Conclusion

The remarkable success of CAR T-cells in treating aggressive, treat-
ment refractory B-cell malignancies has captured the attention of clini-
cians, scientists, industry as well as the patients for this innovative
therapeutic approach. As a result, this area has been the subject of sig-
nificant research over the past decade with many groups exploring ways
to optimize the CAR T-cell treatment, improving the efficacy, and
minimizing the adverse events. Despite a lot of promising findings in
preclinical studies, these results sometimes do not consistently get
translated into improved clinical outcomes. This disparity may be
attributed partially to biological variations between humans and animal
models but underscores the need for reliable preclinical models that
accurately replicate human disease. Understanding the TME and the
interactions between CAR T-cells, tumor cells and endogenous immune
cells from the preclinical models is essential in understanding the
efficacy-toxicity profile of newly developed CAR T-cells.

8. Future considerations

Future research in CAR T cell therapy for hematological
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malignancies may prioritize several critical areas to enhance remission
rates and maintain favorable safety and efficacy profiles. Apart from
identifying new targets and strategies to optimize the CAR construct and
function, exploring synergistic effects of combining CAR T cell therapy
with available chemotherapy or immunotherapy is important. Opti-
mizing the manufacturing process, decentralized manufacturing and
improving logistics for timely delivery of CAR T cell products are
important considerations moving forward. An essential objective for the
future should involve developing strategies to lower costs and broaden
global access to CAR T-cell therapy.

Practice points

• Understand the roles and limitations of various preclinical assays and
animal models (immune-compromised and immune-competent) in
evaluating CAR T-cell functionality and safety is crucial for suc-
cessful clinical translation.

• Developing predictive biomarkers for safety and efficacy: Investigate
the development of standardized assays for predicting efficacy based
on preclinical evaluations. The preclinical model should be appro-
priate to measure both safety and efficacy as improved clinical po-
tency should not be at the risk of increased adverse events.

• Emphasize on the pre-infusion functional assessment alongside
phenotypic analysis: Factors influencing clinical responses in pa-
tients treated with anti-CD19 CAR T-cells include in vivo expansion,
post-treatment persistence, memory phenotype, and genetic
expression linked to cellular exhaustion. Non-responders typically
exhibit exhausted/senescent CD8+ cells with distinct transcriptional
signatures.

• Assessment of pre-clinical development: Understanding the impor-
tance and effectiveness of preclinical models in predicting clinical
efficacy and safety, including lessons learned from the preclinical
studies of unsuccessful trials.

• Emphasize the importance of assessing CAR T-cell persistence and
efficacy over extended periods, including potential strategies for
enhancing long-term responses. Successful clinical translation de-
pends on robust CAR T-cell responses against repeated tumor chal-
lenges and not a one-step cytotoxicity assay.

• Assess the impact of the tumor microenvironment on CAR T-cell
efficacy and safety, particularly in lymphoma models, to inform
clinical strategies effectively

Research agenda

• Enhancing Memory Function through Manufacturing Strategies:
Develop techniques to enrich CAR T-cell products with early memory
or stem cell memory T-cells to improve persistence and effectiveness.

• Streamlining Manufacturing Processes: Develop rapid and cost-
effective manufacturing protocols that maintain efficacy, evalu-
ating scalability and reproducibility in clinical trials.

• Mitigating CAR T-cell Exhaustion and Improving Function: Focus on
strategies to enhance CAR T-cell efficacy without compromising
safety, particularly by addressing exhaustion.

• Investigating Synergies with Other Treatments: Explore the com-
bined effects of CAR T cell therapy with checkpoint inhibitors,
tumor-targeted chemotherapy, or treatments affecting the tumor
microenvironment or T cells.

• Overcoming Challenges of the Tumor Microenvironment: Develop
strategies to combat the immunosuppressive effects of the tumor
microenvironment (TME), utilizing patient-derived organoids and
relevant animal models to mimic TME complexity and assess CAR T-
cell efficacy.

• Translation to Clinic: Emphasize research on strategies that demon-
strate promising results in terms of safety and efficacy in preclinical
models, focusing on their applicability to clinical settings.
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