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Chimericantigenreceptor (CAR) T cell therapy is one of the most promising
cancer treatments. However, different hurdles are limiting its application
and efficacy. In this context, how aging influences CAR-T cell outcomes is
largely unknown. Here we show that CAR-T cells generated from aged female
mice present a mitochondrial dysfunction derived from nicotinamide
adenine dinucleotide (NAD) depletion that leads to poor stem-like
properties and limited functionality in vivo. Moreover, human data analysis
revealed that both age and NAD metabolism determine the responsiveness
to CAR-T cell therapy. Targeting NAD pathways, we were able to recover the
mitochondrial fitness and functionality of CAR-T cells derived from older
adults. Altogether, our study demonstrates that aging is a limiting factor

to successful CAR-T cell responses. Repairing metabolic and functional
obstacles derived from age, such as NAD decline, is a promising strategy to
improve current and future CAR-T cell therapies.

Immunotherapeutic strategies based onadoptive cell transfer (ACT) of
chimeric antigen receptor (CAR) T cells are currently among the most
promising approaches totreat cancer. Amongst the features that deter-
mine successful responses to CAR-T cell therapy, the long-term main-
tenance of a T cell pool with stem-like propertiesis fundamental'”. Asa
result, the CAR-T cell field is evolving toward finding strategies that favor
the quantity and quality of stem-like T cells in CAR-T infusion products' .
Importantly, this stem-like population engages a particular metabolic
program thatrelies mostly on mitochondrial activity* . Indeed, recent
studies demonstrated that CAR-T cell products with decreased mito-
chondrial fitness are associated with poor responses”° and metabolic

interventions boosting mitochondrial metabolismare able toimprove
the efficacy of CAR-T cell therapy in preclinical models" ™.

A key metabolite that ensures mitochondrial health is nicotina-
mide adenine dinucleotide (NAD). NAD is a well-known cofactor that
has a pivotal role in redox balance and energy metabolism by fueling
oxidative phosphorylation. Moreover, it serves as asubstrate for several
enzymes, such as sirtuin deacetylases (SIRTs), that can regulate the
expression of peroxisome proliferator-activated receptor-y coactivator
1a, atranscription cofactor involved in mitochondrial biogenesis' .
NAD metabolism critically regulates T cell fate and function . Thus,
alterations in NAD homeostasis have been linked to impaired T cell
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responses’**?, while restoration of mitochondrial dysfunction through

NAD-boosting strategies has been shown to prevent exhaustion of
tumor-infiltrating lymphocytes (TILs)*.

Agingisthefirstrisk factorassociated with cancer. Consequently,
the majority (-75%) of persons with cancer and persons eligible for
cancer immunotherapy are >65 years old. Importantly, in the context
of CAR-T cell therapy, the highest response is observed in B cell acute
lymphoblastic leukemia (B-ALL) when the median diagnostic age is
<20 years old, while the responses decline with increasing age®*. How-
ever, whether agingis animportantlimiting factor for CAR-T cell efficacy
anditsunderlying mechanismsis stillunknown. Several investigations
have reported that aging leads to deficient immune and metabolic
functions that result in altered antitumor responses®. Interestingly,
mitochondrial dysfunction is a hallmark of aging® and NAD decline
has been described across several tissues including white adipose tis-
sue (WAT), muscle and liver” . In our study, we demonstrate that age
is a limiting factor for effective CAR-T cell responses. We show that
aging drives mitochondrial dysfunctionin T cells, which impairs their
stem-like properties and antitumor capacities when transduced with
atumor-antigen-directed CAR. We then determine the decline in NAD
cellularlevels as amajor factor responsible for this process and the res-
tauration of NAD homeostasis as a strategy to rejuvenate old CAR-T cells.

CAR-T cells from aged mice have limited stem-like
properties
To decipher how aging affects the composition of CAR-T cell infusion
products, wetransduced CD8" T cells derived from young (8 weeks old)
andold (>80 weeks old) micewitha Thyl.1" CAR construct targeting the
human oncogene human epidermal growth factor receptor 2 (HER2,
also known as ERBB2) (refs.13,14,30). CAR-T cells were then expanded
under effector-like (Tg,,) or memory-like (T¢y) polarizing conditions
(involving the use of interleukin 2 (IL-2) or IL-7 and IL-15, respectively)
(Fig.1a). Young and old CAR-T cells displayed comparable differentiation
capacity when cultured in the presence of IL-2 (Fig. 1b,c). However, old
CAR-T cells were unable to properly acquire amemory-like phenotype
when cultured with IL-7 and IL-15, as shown by both the lower propor-
tion of Ty, cells (Fig. 1b,c) and the decreased levels of the stemness
marker T cell factor 1(TCF1) when compared to younger counterparts
(Fig. 1d)*"*. To prove that these differences stem not only from the
accumulation of experienced (CD44") T cells with age (Extended Data
Fig.1a) butalso fromcell-intrinsic defects, weisolated CD8" naive T cells
(CD44°CD62L") fromyoung and old mice and tested their differentiation
capability in vitro. Following initial activation, we expanded under T,
or Ty polarizing conditions and we observed that naive T cells derived
fromaged mice did not differentiate efficiently toward a Ty, phenotype
(Extended Data Fig. 1b). Accordingly, the T, population had lower
TCFlexpression (Extended DataFig.1c). Theseresults suggest that the
defective memory-like phenotypeidentified inaged CAR-T cell infusion
products is not only because of differences in the initial population
heterogeneity but also because of cell-intrinsic defects of CD8" T cells.
To further assess their functionality, we rechallenged young and
old CAR-T cells against HER2-overexpressing B16 melanoma cells
invitro. Aged CAR-T cells exhibited a higher killing capacity thanyoung
CAR-Tcells (Fig.1e) and anincreased capacity to produce interferon-y
(IFNy) and tumor necrosis factor (TNF) (Fig. 1f,g) when compared to
young CAR-T cells, thus reflecting the acquisition of a T, phenotype. Of
note, no differences were observed between young and old CAR-T cells
when culturedinthe presence of IL-2 (Extended DataFig. 1d,e). Despite
providing enhanced cytotoxicity, Ty, cells exhibit limited prolifera-
tive and self-renewing capacities and are more prone to develop an
exhausted phenotype. Indeed, old CAR-T cells under chronic stimu-
lation in vitro had lower IFNy and TNF production (Extended Data
Fig.1f,g), with no differencesin the expression of exhaustion markers
suchas programmed cell death protein1(PD1), T cellimmunoglobulin
and mucin domain-containing protein 3 (TIM3), lymphocyte activation

gene 3 (LAG3) or thymocyte selection-associated high-mobility group
box protein (TOX) (Extended Data Fig. 1h-I). Altogether, these results
indicate that age greatly influences the composition of CAR-T cell
infusion products, favoring the accumulation of T, cells with higher
cytotoxic properties but limited functions upon multiple rechallenges.
To determine whether aging would be a limiting factor for
CAR-T cell efficacy, we next challenged the HER2-directed CAR-T cells
invivo (Fig.2a). Specifically, we adoptively transferred young and old
CAR-T cells (CD45.1") into mice (CD45.2") bearing HER2' B16 tumors. We
observed that only CAR-T cells derived from young mice and expanded
withIL-7 and IL-15 but not those derived from aged mice could control
tumor growth (Fig. 2b,c). No differences were observed between young
and old CAR-T cells when expanded in IL-2 (Extended Data Fig. Im).
Young CAR-T cells are able to persist long-term in vivo, generating a
pool of CD44'CD62L'TCF1" CAR-T cellsinthe spleen that can potentially
generate tumor-specific Ty, cells that can migrate to the tumor micro-
environment (TME). Strikingly, the numbers of transferred (CD45.1%)
and CAR-expressing (Thyl.1") aged T cells were nearly undetectable
30 days after ACT in the spleen (Fig. 2d-f). Aged CAR-T cells com-
pletely lacked amemory or stem phenotype, as shown by the absence
of CD44'CD62L" (Fig. 2g) or TCF1* T cells (Fig. 2h), underscoring their
poor ability to persist in vivo, consistent with their T, commitment.
Interestingly, aged CAR-T cells partially improved their persistence
when transferred into older hosts, suggesting that age-dependent
changesin the microenvironment can alsoinfluence CAR-T persistence
(Extended Data Fig. 1n; gating strategy in Extended Data Fig. 2).

NAD decline drives mitochondrial dysfunctionin
aged CAR-T cells

The development and maintenance of stem-like properties relies on the
T cell capacity to boost mitochondrial metabolism>***>, Mitochondrial
dysfunction has been extensively studied as a hallmark of aging?**®
but whether mitochondrial defects are the main driver of the loss of
stemness in aged CD8" T cells has not yet been elucidated.

To thisend, we first compared the mitochondrial profile of freshly
isolated CD8" T cells derived from the spleens of young and aged mice
by examining mitochondrial membrane potential and mitochondrial
mass by staining with tetramethylrhodamine (TMRM) and MitoTracker
green, respectively. CD8" T cells presented an age-dependent drop
in both mitochondrial membrane potential and mass (Fig. 3a,b).
Moreover, old CD8" T cells accumulated mitochondrial reactive oxy-
gen species (Extended Data Fig. 3a). Overall, these data suggest the
acquisition of mitochondrial dysfunctioninagedT cells, as previously
reported” *. Accordingly, old CD8" T cells displayed a reduced basal
and maximal oxygen consumption rate (OCR) upon T cell receptor
stimulation (Extended Data Fig. 3b,c). To demonstrate that these mito-
chondrial deficiencies were cell-intrinsic defects induced by aging, we
proved that mitochondrial activity was dampenedin all T cell popula-
tions (naive T cell (Ty), Ty and Ty) (Extended Data Fig. 3d,e). Simi-
larly, naive CD8" T cells also presented an age-dependent progressive
decrease inmitochondrial activity without altering mitochondrial size
(Extended Data Fig. 3f-h). Electron microscopy (EM) confirmed these
findings, as no differences were detected inthe number or size of mito-
chondria (Fig. 3c,d) butaged naive CD8" T cells had areduced number
of cristae (Fig. 3c,e), afeature of mitochondria with reduced activity.

To identify age-specific mechanisms driving mitochondrial
dysfunction and CAR-T cell failure, we performed liquid chromatog-
raphy with tandem mass spectrometry (LC-MS/MS) to analyze the
metabolome of CD8" T cells derived from young and old mice. Inter-
estingly, aged CD8" T cells had higher abundance for 15 metabolites,
mostly related to purine and pyrimidine synthesis, such as adenosine
diphosphate (ADP) riboside, adenosine monophosphate or guanosine
monophosphate (Fig. 3f), and lower abundance for 11 metabolites when
compared toyoung CD8" T cells (Supplementary Table 1). Amongst the
low-abundance metabolites, the levels of NAD were the most reduced
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Fig.1| CAR-T cells generated from aged mice are unable to preserve stem-

like properties. a, HER2-directed CAR-T cells were generated from CD8" T cells
isolated from spleens of young (8 weeks old) and old (>80 weeks old) mice.
Onday 3, T cells were further expanded in the presence of IL-2 or IL-7 and IL-15.

b, Representative CD44 and CD62L dot plots of young and old CAR-T cells on

day 7 upon expansion with IL-2 or IL-7 and IL-15. ¢, Proportion of CAR-T cells

with Ty, (CD44°CD62L") and T, (CD44"CD62L") phenotype (n = 3 biologically
independent samples). d, Levels of TCF1 within the Ty, population of young

and old CAR-T cells on day 7 (n = 3 biologically independent samples). e, Killing
capacity of young and old CAR-T cells expanded with IL-7 and IL-15 upon coculture

with B16-HER2 cells at a 2:1 effector-to-target ratio. The graph s representative
ofthreeindependent experiments; error bars represent technical replicates.

f, Proportion of IFNy" CAR-T cells expanded with IL-7 and IL-15upon coculture
with B16-HER2 cells (n = 4 biologically independent samples). g, Proportion of
TNF* CAR-T cells expanded with IL-7 and IL-15 upon coculture with B16-HER2
cells (n=4biologically independent samples). Data are presented as the mean
values + s.e.m. Statistical analysis was performed using a two-way analysis of
variance (ANOVA) with Tukey’s multiple-comparison test (c,d) or unpaired t-test
(f.g), as appropriate. Panel a created with BioRender.

(Fig. 3f). We and others have shown that supplementation with NAD
precursors canincrease NAD cellular levels and ameliorate mitochon-
drial function*. To this end, we treated aged and young T cells with the
NAD precursor nicotinamide mononucleotide (NMN) and analyzed
their mitochondrial activity. Interestingly, we found that, while NMN
was able toimprove the mitochondrial activity of young T cells, T cells
derived fromaged mice wereirresponsive to NMN treatment (Fig. 3g).
Similarly, old T cells treated with the NAD precursor nicotinamide ribo-
side (NR), which we previously reported to prevent T cell exhaustion®,
were not able to prevent TOX upregulation upon chronicinvitro stimu-
lations, in contrast to younger counterparts (Fig. 3h). Overall, our
findings demonstrate that aged CD8" T cells accumulate important
mitochondrial defects associated with NAD decline, which cannot be
reversed through the administration of conventional NAD precursors.

Restoration of NAD levels rescues functionality of
aged CAR-T cells

Aninvestigation by Camacho-Pereira et al. revealed that one of the main
triggering factors of NAD decline in WAT, muscle and liver during aging
isthe systemic upregulation of CD38 (ref.27). CD38is a multifunctional
enzyme that degrades NAD and modulates NAD homeostasis in a vari-
ety ofimmune cells***. CD38-mediated NAD-degradation leads to the
production of substrates (namely, cyclic ADP-ribose and nicotinic acid
adenine dinucleotide phosphate) that are subsequently involvedin the

regulation of Ca** signaling and the production of adenosine, animpor-
tantmetabolite withimmunosuppressive functions****, Moreover, it has
beenreported that CD38 canalso mediate the degradation of NAD pre-
cursors, including NMN and NR*. Thus, we tested whether CD38 could
impact aged CD8" T cells function by (1) limiting NAD metabolism and
mitochondrial activity and (2) preventing responsiveness to NAD precur-
sors. Weinvestigated how CD38levels change during T cell agingand we
found that CD38is expressed to ahigher levelin old CD8" T cells, inboth
restingand activated states (Fig. 4a). Importantly, thisphenomenonwas
observedinall CD8"T cell populations (Ty, Tgy and Tey,) (Extended Data
Fig.4a). To determine whether CD38is alimiting factor of mitochondrial
activity in aged CD8" T cells, we measured mitochondrial membrane
potential in T cell subpopulations with high (CD38") and low (CD38"")
CD38 expression. Importantly, we found that, in aged CD8" T cells but
notinyounger controls,only CD38" T cells displayed reduced mitochon-
drial activity (Fig. 4b,c). Moreover, young CD8" T cells transduced with
aCD38-overexpressing construct exhibited alimited generation of T,
cells and decreased mitochondrial DNA (mtDNA) content (Extended
DataFig. 4b,c), recapitulating the features of aged CD8" T cells. These
results suggest that CD38 can modulate the mitochondrial activity and
fate decision of CD8" T cells, creating a link among CD38, aging, mito-
chondrial fitness and maintenance of T cell stemness.

However, CD38 is not the only enzyme impacting NAD cellular
levels in aging. For instance, alterations in NAD synthesis pathways
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Fig. 2| Age limits efficacy of CAR-T cell therapy. a, HER2-directed young or old
CAR-T cells were adoptively transferred into mice bearing B16-HER2 tumors.
Tumor growth was monitored and CAR-T persistence was determined on day 30.
b, Follow-up of tumor growth over the course of the experiment. ¢, Tumor size
(mm?®) on day 30 after tumor engraftment (n =7 saline, n=7 young and n = 6 old).
d,Number of adoptively transferred T cells (CD45.1") in spleen after 30 days of
tumor engraftment (n = 6 mice). e, Representative CD45.1/CD45.2 dot plots, gated
withinthe CD8" T cell populations in spleens. f-h, The number of CAR" (Thy1.1) (f),
CD44'CD62L" (g) and TCF1' (h) T cells, gated within the CD3*CD8'CD45.1'CD45.2"
population (n =6 mice). Data are presented as the mean values + s.e.m. Statistical
analysis was performed using a one-way ANOVA with multiple comparisons (c) or
unpaired t-test (d,f-h), as appropriate. Panel a created with BioRender.

(that is, the salvage or de novo synthesis pathways) or the activation
of NAD-consuming enzymes can strongly modulate NAD cellular lev-
els?. In particular, poly(ADP-ribose) polymerases (PARPs) have been
described as the major NAD-consuming enzymes in the cell**¢, where
their activation has often been associated with aging because of the
accumulation of age-dependent DNA damage. However, it is not known
whether this phenomenon is present in aged CD8" T cells and can
affect NAD levels and mitochondrial metabolism. To this end, we first
measured DNA damage by analyzing the phosphorylation levels of
yH2AX and found that aged CD8" T cells exhibited asignificantincrease
(Extended Data Fig. 4d). Moreover, we identified that CD38" T cells,
that is, bearing defective mitochondria (Fig. 4b), accumulated more
p-YH2AX than CD38"" T cells (Extended Data Fig. 4¢). These results
suggest that the mitochondrial defectsin aged CD8" T cells derive from
amultifactorial process impacting NAD homeostasis.

Next, we aimed to elucidate whether restoration of NAD levels is
sufficient to reinstate mitochondrial fitness and functionality of aged
CAR-T cells. To this end, we used the small molecule 78c to specifically
block the NADase activity of CD38 (ref. 47) and we combined it with
NMN supplementation. We observed that, according to the previous
data (Fig. 3g,h), NMN alone was not sufficient to increase NAD levels
inaged CD8'T cells (Fig. 4d). However, when combined with the CD38
inhibitor 78¢, NAD levels were restored to levels seen in younger con-
trols (Fig. 4d). Consequently, 78c + NMN supplementation during ex
vivo expansion of CAR-T cells repaired the mitochondrial function of
aged CAR-T cells, asshown by anincreased spare respiratory capacity
(SRC) and mitochondrial mass (Fig. 4e-g). Importantly, the effects
of the 78c + NMN treatment were observed in aged T cells but not in
younger controls, suggesting that this combination strategy is par-
ticularly beneficial in contexts where CD38 levels are aberrantly high.
Furthermore, combining 78c and NMN improved the phenotype of
the CAR-T infusion products, as shown by a heightened expression of
CD62L withinthe T, population (Fig. 4h). Similarly, inhibition of PARP
activity using olaparib alsorescued the NAD levels and mitochondrial
activity of aged CD8' T cells (Extended Data Fig. 4f,g).

To assess whether the recovery of the mitochondrial fitness was
sufficient torestore CAR-T cell functionality in vivo, we reinfused young
and old CAR-T cells with or without 78c + NMN treatment in mice bear-
ing HER2" B16 tumors. We observed that, whereas the untreated aged
CAR-T cells were unable to control tumor growth, aged CAR-T cells sup-
plemented with 78c + NMN efficiently controlled tumor growthinline
withyoung CAR-T cells (Fig. 4i,j). Importantly, treated aged CAR-T cells
prolonged their long-term survival in vivo, as shown by a significant
increase in the number of CD44*'CD62L'TCF1" CAR-T cells found in
spleens 30 days after ACT (Fig. 4k). Supplementing young CAR-T cells
withNMN + 78c during the ex vivo expansion did not result inimproved
tumor growth control (Extended DataFig. 5a) or increased persistence
in vivo (Extended Data Fig. 5b), indicating that NMN + 78c¢ treatment
restores CAR-T cell functionality specifically in the context of aging.

Additionally, we modified the HER2 CAR construct to integrate
a short hairpin RNA (shRNA) for CD38 (hereafter referred as HER2
CAR_shRNA CD38) as astrategy to modulate CD38 enzymatic activity
by reducing its expression. Upon transduction, both young and old
CDS8' T cells presented a highly significant downregulation of CD38
proteinlevels (Extended DataFig. 6a,b). HER2 CAR_shRNA CD38 T cells
generated from young CD8" T cells and expanded for 7 days in the
presence of IL-7 and IL-15 showed a similar Ty, phenotype. Interest-
ingly, downregulation of CD38 levels in old CAR-T cells resulted in a
worsened expansion of Ty, cells, even when expanded in the pres-
ence of NMN (Extended Data Fig. 6¢). To assess their functionality, we
transferred either old CAR_shRNA CD38T cells, old CAR_ shRNA CD38
T cells expanded with NMN or old control CAR-T cells expanded with
NMN + 78cinto mice bearing HER2* B16 tumors. CD38 downregulation
led to anincreased number of CAR-T cells in the spleens 30 days after
ACT (Extended Data Fig. 6d). However, the control CAR-T cells sup-
plemented with NMN + 78c but not old CAR_shRNA CD38T cells were
able to successfully control tumor growth (Extended Data Fig. 6e,f).
These results underline the importance of specifically targeting the
NADase activity of CD38 and suggest that the recovery of CAR-T cell
functionality through CD38 is NAD dependent.

To validate our findings in alternative CAR-T cell models, we
extended our study using anti-CD19_28z (ref. 48), which targets a
different antigen and contains a different costimulatory domain.
CD19-directed CAR-T cells were generated from young and old CD8*
T cells (CD45.1°) and were adoptively transferred into mice (CD45.2%)
engrafted with EL4 lymphoma cancer cells overexpressing mouse
CD19 (mCD19) (Fig. 41). Tumor control capacity was monitored over
time. Similarly to the B16-HER2 model, young CAR-T cells were able
to successfully control tumor growth, whereas old CAR-T cells failed
(Fig. 4m). Importantly, old CAR-T cells expanded in the presence
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Fig.3|Aged CD8'T cells present mitochondrial dysfunction associated with
NAD decline.a, TMRM and MitoTracker green staining in freshly isolated bulk
CD8'T cells from the spleens of young and old mice. TMRM is a cell-permeable
dye that accumulates in active mitochondria with intact membrane potential,
while MitoTracker green binds to mitochondrial proteins giving areadout of
mitochondrial activity and size, respectively (n = 5 biologically independent
samples). b, Representative TMRM and MitoTracker green dot plots of data
summarized ina. ¢, EM images of young and old naive CD8" T cells. Red arrows
indicate mitochondrial cristae. Scale bar, 1 um. d,e, The number of mitochondria
per cell (d) and the number of cristae per mitochondria (e) found by EM (n=3
biologically independent samples). Ind, dots represent the number of cells
analyzed (n=20). NS, not significant. In e, dots represent the number of
mitochondria analyzed (n = 50).f, Volcano plot representing metabolomic data
inyoung versus old CD8* T cells (n = 5 biologically independent samples).

g, Young (8 weeks old), intermediate (50 weeks old) and old (105 weeks old) CD8*
T cells were activated for 3 days and treated with the NAD precursor NMN (1 mM)
for another 2 days, after which mitochondrial activity was assessed by TMRM
staining (n = 4 biologically independent samples). h, Young and old CD8" T cells
were activated and expanded until day 7 in the presence of IL-7 and IL-15, after
which they further received three rounds of CD3 restimulation every other day
to promote an exhausted phenotype. Cells were treated with the NAD-booster
NR (I mM) and levels of the transcription factor TOX were determined on day

12 (n =3 biologically independent samples). Data are presented as the mean
values + s.e.m. Statistical analysis was performed using an unpaired t-test (a,d,e),
two-way ANOVA (g) or paired t-test (h), as appropriate. Statistical analysis of
metabolomic datawas performed using a two-way ANOVA on log,,-transformed
dataand corrected with the Benjamini-Hochberg method. FC, fold change.

of NMN and 78c recovered their functionality in vivo, as shown by
improved tumor growth control (Fig. 4m). Analysis of the spleens at
endpoint (day 17) further revealed an increased number of CD45.1"
T cells, indicating improved persistence (Fig. 4n).

Overall, these data demonstrates that NAD metabolism, which s
greatly compromised during aging, is akey determinant of CAR-T cell
successful responses. Combined strategies to boost NAD levels, such
asNAD precursors together with a CD38 or PARP inhibitor, rejuvenates
aged CAR-T cells, ultimately leading toimproved therapeutic efficacy.

Aging and NAD metabolism determine responses
to CAR-T cell therapy

To assess the influence of aging and NAD metabolism on CAR-T clinical
application, wereanalyzed recently published anti-CD19 CAR-T datafrom

31participants withlargeB celllymphoma (LBCL) (15 responders (R) and
16 nonresponders (NoR))*.Importantly, we found that older participants
had inferior responses (Fig. 5a). Moreover, single-cell transcriptomic
analysis onbaseline peripheralblood mononuclear cells (PBMCs) of 20
participants with LBCL (10 R and 10 NoR) revealed differences in NAD
metabolic signatures of CD8" T cells from Rand NoR participants (Fig. 5b
and Extended DataFig. 7a). These differences were also detected in natu-
ralkiller (NK) cells but notin other immune cells (Extended DataFig. 7b).

Following our previous analysis on NAD-related pathways, we
focused on elucidating how CD38 is involved in CAR-T cell outcomes.
We found that CD8" T cells from NoR participants presented a ten-
dency to express higher Cd38baseline levels (Fig. 5c and Extended Data
Fig. 7c). Similarly to the NAD signature, Cd38 levels were also lower
in the NK cells of R participants (Extended Data Fig. 7d). In addition,
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Fig. 4 |Restoration of NAD levels rescues functionality of aged CAR-T cells
invivo. a, Levels of CD38 in bulk CD8* T cells upon isolation or 3 days after
activation (n =5 biologically independent samples). b, Representative TMRM
histograms of CD38" and CD38"" populationin young and old CD8" T cells 3 days
after activation. ¢, Proportion of TMRM" cells in CD38" and CD38"" populations
(n=3biologicallyindependent samples).d, NAD/NADH ratio on day 7 in old
CAR-T cells expanded with IL-7 and IL-15 and treated with NMN and/or 78¢c, a
specific inhibitor of the NADase enzymatic activity of CD38 (n = 3 biologically
independent samples). e, OCR on day 7 in old CAR-T cells expanded with IL-7

and IL-15and treated with NMN and/or 78c were measured using a Seahorse
XFe96 Analyzer. During this assay, mitochondrial fitness was assessed upon the
sequential addition of oligomycin (oligo, adenosine triphosphate synthetase
inhibitor), FCCP (mitochondrial membrane uncoupler) and rotenone + antimycin
A (Rot/AA, complexland lllinhibitors, respectively). f,g, Further analysis of

the recovery of SRC (f) and mitochondrial size (g) of old CAR-T cells treated

withNMN and 78c. Seahorse data displayed in fare representative of three
independent experiments (n = 6 technical replicates). For g, n =3 biologically
independent samples. h, CD62L levels within Ty, populations (n = 5 biologically
independent samples). Ini-k, young and old CAR-T cells treated with or without
NMN and 78c were adoptively transferred into mice bearing B16-HER2 tumors.
ij, Tumor growth (i) and tumor size at last time point (day 30) (j) (n = 9 young,
n=8oldand n=8o0ld 78c + NMN).k, Number of transferred T cells (CD45.1")
foundin spleen 32 days after tumor engraftment (n = 7 mice). Inl-n, young and
old CAR-T cells treated with or without NMN and 78c were adoptively transferred
into mice bearing EL4-mCD19 tumors (n = 8 mice per group). I,m, Tumor growth
(I) and tumor size at last time point (day 17) (m). n, Number of transferred T cells
(CD45.1%) found in spleen 17 days after tumor engraftment. Data are presented
as the mean values + s.e.m. Statistical analysis was performed using an unpaired
t-test (a,k,n), two-way ANOVA (c) or one-way ANOVA with multiple comparisons
(d-m), asappropriate.
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Fig. 5| Age and NAD metabolism determine responses to CAR-T cell therapy
in persons with cancer. a, Age of the participants at the time of diagnosis

of R (n=16) and NoR (n =15) participants with LBCL to anti-CD19 CAR-T cell
therapy. b,c, NAD metabolism (Gene Ontology: 0019674) signature score (b)
and CD38 expression levels (c) in baseline PBMCs from R (n =10) and NoR
(n=10) participants to anti-CD19 CAR-T cell therapy. Dataincluded ina-c were
taken from recently published scRNA-seq data from Haradhvala et al. (2022)
(GSE197268)*.d, CD38 levels in CD8" T cells from PBMCs derived from young and
old participants with melanoma (n =10). e, Mitochondrial activity in CD38" and
CD38""populations of CD8' T cells from PBMCs derived from participants with
melanoma, as assessed by TMRM staining (n =10). f, Schematic representation
of experimental setup to target NAD metabolism in human anti-CD19 CAR-T
cells generated from young (<28 years old) and elderly (>66 years old) healthy
donors. g, OCR curve of young and old CAR-T cells with or without NMN and 78¢c
treatment analyzed on day 10 with Seahorse XFe96. Right: further analysis of
therecovery of SRC of old CAR-T cells treated with NMN and 78¢ (n = 5 healthy

donors). Inh-1,PBMCs from young and old participants with melanoma were
used to generate hCD19_BBz CAR-T cells, which were expanded for 10 days in
the presence of IL-2, IL-7 and IL-15 with or without 78c and NMN treatment.

h, Schematic representation of experimental setup to target NAD metabolism
inhuman anti-CD19 CAR-T cells generated from young (-40 years old) and
elderly (-80 years old) participants with melanoma. i, Representative CCR7

and CD45RA dot plots, as assessed by flow cytometry. j, Further analysis of the
recovery of CCR7"CD45RA" cells of old CAR-T cells treated with NMN and 78¢
(n=5participants). k, hCD19-BBz CAR-T cells were cocultured with NALM6-GFP
cellsina1:4 effector-to-target ratio to determine killing capacity using Incucyte.
Arrows represent rechallenge of CAR-T cells with NALM6-GFP cells every

2-3 days (n =2).1, Quantification of the percentage killing at the last time

point. Here dots represent technical replicates from one of two independent
experiments. Data are presented as the mean values + s.e.m. Statistical analysis
was performed using an unpaired t-test (a-d), paired t-test (e,g,j) or one-way
ANOVA (1), as appropriate. Panels f, h created with BioRender.
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usingatranscriptomic atlas (https://tanlab4generegulation.shiyapps.
io/Tcell_Atlas/)*° of premanufactured T cells from 71 participants with
B-ALL, we found thatincreased Cd38baselinelevels across several T cell
subtypes dampened CAR-T cell persistence upon infusion (Extended
Data Fig. 6e), suggesting that CD38 is associated with the stemness
potential of CAR-T cells. Previous investigations characterized CD38
as amarker of terminally exhausted T cells in both murine (Extended
Data Fig. 7f,g) and human (Extended Data Fig. 7h) settings. Consist-
ently, TILs of NoR participants to immune checkpoint blockade (ICB)
accumulate CD8" T cell clusters that present an exhausted signature
and higher Cd38levels™, aphenomenon also observed in CD4" T cells
and myeloid cells (Extended DataFig. 7i). Our findings, however, add to
CD38aroleasanon-exhaustion-related predictive marker of CAR-T cell
persistence and efficacy. Of note, other NAD-associated pathways such
as DNA damage were also predictive of the response (Extended Data
Fig. 7j) suggesting that general NAD signaturesin baseline PBMCs could
be used to predict CAR-T cell responses.

To test whether NAD metabolism could also be targeted to reju-
venate human CAR-T cells, we first analyzed PBMCs derived from
participants with melanoma and found an age-dependent increased
expression of CD38 in CD8" T cells (Fig. 5d) but not in CD4" T cells
(Extended Data Fig. 7k). To determine whether CD38 expression was
altering mitochondrial activity, we compared TMRM staining in CD38"
and CD38"" CD8* T cells and observed that mitochondrial potential
was particularly restricted in those cells expressing higher levels of
CD38 (Fig. 5e).

Next, we generated human CD19 CAR-T cells containing a 41BB
costimulatory domain using PBMCs derived from young (<30 years old)
and old (>65 years old) healthy donors, expanded themin the presence
of IL-2,IL-7 and IL-15 and compared their mitochondrial fitness (Fig. 5f).
CAR-T cells generated from older donors displayed a significant reduc-
tion in SRC (Fig. 5g) and mitochondrial mass (Extended Data Fig. 71).
Remarkably, old CAR-T cells supplemented with 78c and NMN during
ex vivo expansion were able to revert their mitochondrial defects
and reestablish a mitochondrial profile of young CAR-T cells (Fig. 5g
and Extended Data Fig. 7I). These results suggest that age-associated
metabolic defectsin CAR-T cells are also observed in a human setting
and canbereverted by modulating NAD levels.

To further investigate the importance of aging and NAD metabo-
lism in a clinical setting, we analyzed PBMCs derived from partici-
pants with melanoma and non-small cell lung cancer. We showed that
older participants gradually accumulate C-C chemokine receptor
type 7 (CCR7)"**CD45RA" T cells while losing CCR7"CD45RA" T cells
(Extended DataFig. 8a). To test whether these phenotypic differences
could also be observed by the end of the expansion of CAR-T cells, we
generated human CAR-T cells using PBMCs from young and old par-
ticipants with melanoma using the same hCD19_BBz model (Fig. 5h).
We analyzed the phenotype of CAR-T cells and indeed observed that
old CAR-T cellshad alower proportion of CCR7"CD45RA" T cellswhen
compared toyounger controls. Treatment with NMN + 78cwas ableto
increase the proportion of this T cell subset (Fig. 5i,j). Similarly to the
CAR-T cellsgenerated from healthy donors, CAR-T cells from older par-
ticipants with melanoma presented an impaired mitochondrial func-
tion that was reverted upon expansion with NMN + 78¢ (Extended Data
Fig.8b). Of note, these differences were also observed inahuman CD19
CAR-T cellmodel containing a CD28 costimulatory domain (Extended
Data Fig. 8c-e). Old hCD19_BBz CAR-T cells expanded using only IL-2
did not present metabolic recovery upon NMN + 78c supplementa-
tion, while showing an increased proportion of CCR7"CD45RA" cells
(Extended DataFig. 8f-h).

Lastly, to investigate whether the metabolic and phenotypic
changes translated into recovery of the functionality of human
CAR-T cells,wecocultured CAR-T cellswithNALM6-GFPand tracked their
killing capacity upon multiple rechallenges performed every 2-3 days.
We observed few differences in killing capacity between young and

old CAR-T cells at early stages (Fig. 5k,1). However, old CAR-T cells
lost their tumor killing capacity upon multiple rechallenges, whereas
young CAR-T cells were able to maintain it. Importantly, old human
CAR-T cells treated with NMN + 78c recovered their functionality, as
shown by a prolonged maintenance of killing capacity upon multiple
rechallenges (Fig. 5k 1). Overall, these dataindicate that age determines
the phenotype, functionality and metabolic status of CAR-T cells and
manipulating NAD metabolism can be used as a strategy to boost their
function.

Altogether, our data demonstrate that the age-dependent NAD
decline leads to mitochondrial defects and loss of stem-like properties
inT cells, ultimately resulting in CAR-T cell failure. Moreover, we estab-
lishtherestoration of NAD cellular levels as a strategy to recover mito-
chondrial function and rejuvenate CAR-T cellsin the context of aging.

Discussion

Several drivers of aging (for example, genomic instability, epigenetic
alterations, chronic inflammation or mitochondrial dysfunction) are
alsocommondrivers of tumorigenesis, which make aging the first risk
factor associated with cancer incidence™. In this context, the field of
immuno-oncology has greatly expanded during the last decade; how-
ever, few studies have investigated how aging impactsimmunotherapy
efficacy.Inthe context of ICB, dataacquired from preclinical models and
clinical trials are currently unclear and contradictory®. In mice, some
studies have shown decreased response to anti-PD1 or anti-cytotoxic T
lymphocyte-associated protein 4 therapy in aged mice****, while other
studies have documented an intact or even superior response to PD1
and its ligands®. These discrepancies might be explained by the fact
that the expression of PD1and its ligands is altered during aging in a
cell-specific and organ-specific manner and aging affects mutagenesis
burden in the tumor, thus influencing T cell infiltration in the TME®".
Overall, in ICB, there are several factors independent of the intrinsic
effect of aging on T cells that can determine the response to therapy.
Indeed, although it is just beginning to be appreciated®, to date, no
evidence supports the notion that aging might be animportant limit-
ing factor of CAR-T cell therapy efficacy in the clinic. In this Article,
we demonstrated that CAR-T cells generated from aged mice display
qualitative defects associated with an inability to maintain stem-like
properties. We show that the lack of stem-like properties arises from
mitochondrial dysfunction derived from the decline in NAD cellular
levels and its recovery is sufficient to rejuvenate the functionality of
aged CAR-T cells. Moreover, we provide clinically relevant data show-
ing that NAD metabolic pathways can be both targeted and used as
predictive markers of CAR-T cell therapy efficacy.

The role of NAD metabolism in T cell function and antitumor
responses has been widely explored. A report from Chatterjee et al.
(2018) described a potent antitumor T helper 1and 17 hybrid cell that
was able to maintain effector functions while persisting long-term
in vivo?. Interestingly, these cells were dependent on a higher
NAD-dependent activity of the histone deacetylase SIRT1 (ref. 21).
Other studies have also applied NAD-boosting strategies to prevent
T cell exhaustion® or ameliorate CAR-T cell and TIL therapy***, pro-
viding promising results in preclinical models. As a result, the use of
NAD precursors, such asNRor NMN, is gaining relevance in the field of
immunotherapy. However, alimitation of current preclinical studiesis
thelack of aged mice included within the experimental design, which
might lead to real-world discrepancies and difficulties to move from
benchtobedside. For example, the administration of NAD precursors
asanutritional supplement hasbeenincluded in several clinical trials
to treat cardiovascular, neurodegenerative and metabolic diseases
but their efficacy has been limited when applied in older subjects. In
our study, we found that the sole administration of NAD precursorsis
indeed insufficient toimprove the fitness of aged cells. These findings
emphasize the need to find alternative or complementary strategies
to increase NAD cellular levels and benefit from its effects. For CD8*
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T cells, we explored the CD38 inhibitor 78c in combination with NAD
precursors but we cannot exclude other strategies based on additional
mechanisms of NAD homeostasis disturbance (PARP inhibitorsin com-
bination with NAD precursors). Nonetheless, notall cell types upregu-
late CD38 and might benefit from their strategy. Other immune cells,
such as macrophages, present decreased activity of quinolinate and
nicotinamide phosphoribosyltransferases during aging, both involved
in NAD synthesis pathways, and recovery of their activity reinstates
macrophage functionality®*°. These results show the importance
of maintaining NAD homeostasis during aging for optimal immune
function and suggest a tailored NAD-boosting strategy depending on
the celltype and context.

Although we focused on the intrinsic defects of CAR-T cells dur-
ing aging in this study, important factors to consider are the extrinsic
barriers that might impede CAR-T cell efficacy. Aging also fosters an
environment marked by the presence of senescent cells and systemic
low-grade chronic inflammation, known as ‘inflammaging’. Several
investigations have described changesin the composition of the TME
with aging, including anaccumulation of fibroblasts and immunosup-
pressive cell subsets associated with a senescence-associated secretory
phenotype such as myeloid-derived suppressor cells and regulatory
T cells. However, whether tumor initiation and progression are aggra-
vated during agingis still unclear, as some reports have described faster
tumor growth in aged mice while other studies support the opposite.
Similarly, itis widely discussed whether senescence might have protu-
moral or antitumoral roles. Thus, further investigation is required to
decipher the importance of an aged environment on the outcome of
antitumor and immunotherapy responses.

Inconclusion, our study found that agingis animportant limiting
factor for CAR-T cell therapy. Specifically, aged T cells present reduced
NAD cellular levels that are linked to decreased mitochondrial fit-
ness, ultimately preventing the maintenance of stem-like properties
of CAR-T cells and leading to deficient long-term survival in vivo and
tumor growth control. These findings emphasize the importance
of using aged models in the field of cancer immunology, which can
uncover mechanisms of CAR-T cell failure that are often overlooked in
preclinical studies, shedding light on novel strategies that can amelio-
rate CAR-T cell therapy.

Methods

Mice

C57BL/6 CD45.1" and CD45.1 x CD45.2 young (8 weeks old) and old
(80-105 weeks old) female mice were bred and maintained in house. For
allinvivo experiments, host C57BL/6 CD45.2" female mice (8 weeks old)
were purchased from EnVigo laboratories (C57BL/60laHsd). Donors
andrecipients ofadoptive T cell transfers were sex-matched. Mice were
housed at 22 °C with 55% relative humidity on a 12-h light-dark cycle.
Mice were fed ad libitum with Safe-150 chow. All animal experiments
were performed in the animal facility in Epalinges at the University
of Lausanne (UNIL), as approved by the veterinary authorities of the
canton of Vaud and performed in accordance with Swiss federal law
(VD3572).

Celllines

B16-HER2-mK2 and Phoenix ECO cells were a kind gift from G. Coukos
(UNIL) and were cultured in RPMI 1640-Glutamax medium supple-
mented with 10% heat-inactivated FBS and 1% penicillin-streptomycin.
EL4-mCD19 cells were a kind gift from M. L. Davila (Moffitt Cancer
Center) and were cultured in RPMI 1640-Glutamax medium supple-
mented with 10% heat-inactivated FBS and 1% penicillin-streptomycin.

Preparation of murine CAR-T cells

HER2-directed CAR containing a 41BBz costimulatory domain
was cloned in the MSGV retroviral transfer vector as described
previously*°, For some experiments, an shRNA for silencing murine

Cd38 was cloned in the HER2_41BBz vector. For retrovirus produc-
tion, Phoenix ECO cells were transfected with HER2 CAR plasmid and
pCL-Eco-packaging plasmid using TurboFect transfection reagent
(LifeTechnologies) in OptiMEM medium (Thermo Fisher). After 48 h
and 72 h, supernatants were recovered and virus was collected by
ultracentrifugation (Beckman Avanti J-26). Spleens from wild-type
CD45.1 or CD45.1 x CD45.2 mice were smashed through a 70-pum cell
strainer.CD8" T cells were purified using the EasySep mouse CD8" T cell
isolation kit (StemCell), according to the manufacturer’s instructions.
CDS8'T cellswere plated at a concentration of 0.5 x 10 cells per mland
activated with Activator CD3/CD28 Dynabeads (ThermoFisher) ata2:1
bead-to-cell ratio in the presence of recombinant murine IL-2 (10 IU
per ml; PeproTech). T cells were maintained in RPMI 1640-Glutamax
medium supplemented with 10% heat-inactivated FBS, 1% penicillin—
streptomycin, 5 uM 2-mercaptoethanol (Gibco) and sodium pyruvate
(Gibco). T cells were transduced 24 h and 48 h after activation using
48-well plates precoated with RetroNectin (20 pg ml™; Takara). After
overnight coating at4 °C, 48-well plates were blocked for 30 min with
2%BSAin PBS, followed by a PBS wash before adding the concentrated
retroviruses. Retroviruses were centrifuged for 90 min at 2,000 rcf
and 32 °C. Then, T cells were added on top of the viruses and centri-
fuged for 10 min at 300 rcfand 25 °C. On day 3, activation beads were
removed and T cells were expanded using either mouse IL-2 or human
IL-7 and IL-15 (10 ng mI™%; Miltenyi Biotec). T cell media and cytokines
were replaced onday 5 and transduction efficacy was assessed on day
7.Metabolic and phenotype analyses, as well as ACT for in vivo experi-
ments, were always performed on day 7 unless otherwise stated inthe
figurelegend. Where stated, CAR-T cells were treated with NMN (1 mM;
Sigma Aldrich), 78¢ (200 nM; Sigma Aldrich) and/or olaparib (5 pM;
Lubio Science) on days 3 and 5 after activation.

Flow cytometry

The following conjugated antibodies were used for murine experi-
ments: CD3e-PercP Cy5.5 (clone 145-2C11, 100328, Biolegend, 1/50)
or PB(clone17A2, Department of Oncology, UNIL,1/100), CD4-PE Cy5
(clone RM4-5,15-0042-82, eBioscience, 1/100), CD8[3-BUV661 (clone
53.6.7,376-0081-82, Thermo Fisher, 1/100), CD45.1-PE (clone A20.1,
12-0453-82, Biolegend, 1/1,000), CD45.2-BUV395 (clone 104, 363-0454-
82, ThermoFisher,1/50), CD44-APC (cloneIM.781,103012, Biolegend,
1/100), CD62L-PECy7 (Mel-14, 25-0621-82, eBio, 1/1,000), Thyl.1-
BV605 (clone OX-7,202537, Biolegend, 1/100), CD38-APCCy7 (clone
90, 102728, Biolegend, 1/200), PD1-BV605 (clone 29F.1A12, 135220,
Biolegend, 1/200) or PD1-AF647 (clone 29F.1A12, 135230, Biolegend,
1/200), TIM3-BV421 (clone RMT3-23,119723, Biolegend, 1/200), LAG3-
PercP eFluor710 (clone C9B7W, 46-2231-82, Thermo Fisher, 1/200),
TOX-PE (clone REA473,130-120-716, Miltenyi Biotec,1/50), IFNy-APC
(clone XMG1.2,17-7311-82, Thermo Fisher,1/200) and TNF-FITC (clone
MP6-XT22, 506304, Biolegend, 1/200). TCF1 (clone C63D9, 2203S,
Cell Signaling, 1/200) was stained with an unconjugated antibody. An
additional staining was performed with secondary goat anti-rabbit
1gG (4412S, Cell Signaling, 1:250). The following conjugated antibodies
were used for human experiments: CD3-BV711 (clone UCHT1,300464,
Biolegend,1/200), CD4-BV605 (clone OKT4, 317438, Biolegend, 1/200),
CD8-APC (clone SK1, 344722, Biolegend, 1/200), CCR7-BV421 (clone
GO043H7, 353208, Biolegend, 1/100), CD45RA-PE TexasRed (clone
MEM-56, MHCD45RA17, Thermo Fisher, 1/50), CD62L-PercP Cy5.5
(clone DREG-56, 304824, Biolegend, 1/200) and CD38-AF700 (clone
HIT2,303524, Biolegend, 1/200).

Forassessmentofintracellular markers, cellswere fixed and perme-
abilized using FoxP3 fixation and permeabilization buffer (00-5523-00,
eBioscience). For live-dead discrimination, live/dead Aqua or live/
dead NIR kits were used (L34957 and L10119, LifeTechnologies). To
assess mitochondrial activity and mitochondrial size, cells were stained
with TMRM (T668;25 nM) and MitoTracker Green (M7514;100 nM) for
30 minat37 °C.For cytokine staining, T cells were restimulated using
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anti-CD3¢g-coated plates for 4 hinthe presence of brefeldin A (420601,
BioLegend, 1/1,000). For pH2AX staining, cells were stained upon
fixation and permeabilization using the PECy7-conjugated anti-H2A.X
(S139) antibody for 1 h at 4 °C (613420, Biolegend). The samples were
acquired using the CytoFLEX S (Beckman Coulter), CytoFLEXLX (Beck-
man Coulter) or Aurora (Cytek Biosciences). Data analysis was per-
formed using FlowJo (version 10.9.0).

Invivo CAR-T experiments

For the HER2_41BBz-B16 model, B16-HER2 (10°) cells were subcutane-
ously injected on the right flank of 8-week-old C57BL/6 CD45.2" mice.
After 9 days, mice were exposed to sublethalirradiation (5 Gy) followed
by one round of intravenous CAR-T cell transfer (2-3 x 10° cells per
mouse) performed on day 10. Before the transfer, mice were rand-
omized to have comparative tumor volumes. For the mCD19_28z-EL4
model, EL4-mCD19 cells (5 x 10°) cells were subcutaneously injected
into the right flank of 8-week-old C57BL/6 CD45.2" mice. After 6 days,
mice were exposed to sublethal irradiation (5 Gy) followed by one
round of intravenous CAR-T cell transfer (3 x 10° cells per mouse) per-
formed on day 7. Before the transfer, mice were randomized to have
comparative tumor volumes. Mice were monitored three times aweek
and tumor length (L; greatest longitudinal measurement) and width
(W; greatest transverse measurement) were measured with a caliper.
Tumor volumes (V) were calculated using the formula: V= (L x W?)/2.
Mice were killed at endpoint by CO, and, where indicated, tumors,
spleens and lymph nodes were collected. As permitted by the Swiss
federal law, a maximal tumor size of 1,000 m* was reached. In some
cases, this limit was exceeded on the last day of measurement and the
mice were immediately killed. No statistical methods were used to
predetermine sample sizes but our sample sizes are similar to those
reported in previous publications®'. Data collection and analysis were
not performed blind to the conditions of the experiment.

Construction of CD38 OE vector

Murine CD38 complementary DNA was synthesized and flanked with
therestriction enzymes Notl and Sall, whichwere cloned into aretrovi-
ral MSCV vector containing a Thyl.1 promoter. The construction of the
CD38 OE vector was performed by GenScript Biotech. The sequence
canbe found in Supplementary Table 2.

EM

Young and old naive CD8' T cells were sorted using the EasySep mouse
naive CD8" T cellisolation kit (StemCell). For the analysis, EM was per-
formed as described previously®. Sorted cells were fixed in their cul-
ture medium with glutaraldehyde (EM Sciences) at afinal concentration
of2.5%in phosphate buffer (0.1 M PB pH 7.4; Sigma) for 10 minat room
temperature (RT). As noted previously, they were directly postfixed
by a fresh mixture of glutaraldehyde 2.5%, osmium tetroxide 1% (EM
Sciences) and potassium ferrocyanide 1.5% (Sigma) in PB for 1 hat RT.
The samples were thenwashed three times in distilled water and spun
downinlow-melting-point agarose 2% in H,0 (Sigma), left to solidify on
ice, cutinto1-mm? cubes and dehydrated in acetone solution (Sigma)
at graded concentrations (30%, 40 min; 50%, 40 min; 70%, 40 min;
100%, 1 h twice). This was followed by infiltration in Epon (Sigma)
at graded concentrations (Epon 1:3 acetone, 2 h; Epon 3:1 acetone,
2h;Epon1,1-4h; Epon1,1-12 h) and finally polymerized for 48 h at
60 °Cinoven. Ultrathin sections of 50 nm were cut ona Leica Ultracut
(Leica Mikrosysteme) and picked up on a copper slot grid (2 X1 mm;
EM Sciences) coated with a PEI film (Sigma). Sections were poststained
with uranyl acetate 2% (Sigma) in H,O for 10 min, rinsed several times
with H,0 followed by Reynolds lead citrate in H,O (Sigma) for 10 min
and rinsed several times with H,0. Micrographs were recorded with
a transmission EM instrument (Philips CM100, Thermo Fisher Scien-
tific) witha TemCam-F416 digital camera (TVIPS). Image analysis and
quantification were carried out using ImageJ software (version 2.16.0).

The number of mitochondria per cell was quantified. For assessing
mitochondrial cristae, each dot represents the crista number in one
mitochondrion from one high-magnitude EM image of a live cell.

Seahorse XFe96 analysis

OCRs were determined using a Seahorse Bioanalyzer XFe96. Briefly,
CD8' T cells were resuspended in Seahorse XF basic medium sup-
plemented with 10 mM glucose, 1 mM sodium pyruvate and 2 mM
glutamine (pH7.4,at37 °C). CD8' T cells were plated ina Cell-Tak-coated
(22.4 pg ml™?) Seahorse XFe96 microplate (2 x 10° cells per well). The
injection ports were loaded with 1 M oligomycin, 2 uM carbonyl
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and 0.5 uM
rotenone-antimycin. During sensor calibration, cells were incubated
in a 37 °C non-CO, incubator for 45 min. Data were analyzed using
Seahorse Wave (version 2.4.3).

Killing assay

To determine the killing capacity of murine CAR-T cells, the IncuCyte
ZOOM systemwas used. Specifically, 10* B16-HER2 cells containing the
red fluorescent protein mK2 were plated in flat-bottom 96-well plates.
After 4 h of incubation, young or old CAR-T cells expanded with IL-2 or
IL-7 and IL-15 were added on top at a 2:1 effector-to-target ratio. Upon
coculture, plates were placed immediately in the IncuCyte ZOOM sys-
tem for 3 days. Killing capacity was determined by quantifying the red
areaand normalizing to negative controls (that is, B16-HER2 mK2 cells
culturedinthe absence of CAR-T cells). To evaluate the killing capacity
of human CAR-T cells upon multiple rechallenges, 10° NALM6-GFP cells
were seeded in a flat-bottom 96-well plate and CAR-T cells were added
ataneffector-to-target ratio of 1:4. Subsequently, 10° NALM6-GFP cells
wereadded every2-3 days for repeated tumor challenges. The cytotoxic
activity of CAR-T cells was monitored over 23 days by measuring the
GFPsignal density (objects per mm?) using the IncuCyte ZOOM system.

Metabolomics

The intracellular level of different metabolites was determined by
performing LC-MS/MS analysis. For metabolite extraction, cell lysates
were extracted by the addition of methanol and H,0 (4:1), followed by
homogenization with ceramicbeadsinthe Cryolys Precellys 24 sample
homogenizer. Homogenized extracts were then centrifuged for 15 min
at4,000g and 4 °C and the resulting supernatant was collected and
evaporated to dryness inavacuum concentrator. Dried extracts were
resuspended in methanol and H,0 before LC-MS/MS analysis. Raw
LC-MS/MS datawere processed using the Agilent Quantitative analysis
software. Raw data can be found in Supplementary Table 1.

NAD ELISA

For NAD and reduced NAD (NADH) quantification, the NAD/NADH
quantitation kit (SigmaAldrich) was used. For each sample, 1x10°
cells per sample were collected and the manufacturer’s instructions
were followed.

mtDNA and nuclear DNA (nDNA) measurement
DNA was isolated using the DNeasy kit (Qiagen), according to the
manufacturer’sinstructions. To determine the mtDNA-tonDNA ratio,
qPCR was performed using Power SYBR green master mix (Thermo
Fisher) and analyzed on the 7900HT system (Applied Biosystems) to
estimate the relative values for mtDNA (COXI) and nDNA (NDUFVI).

Forward COXI:5-TGCTAGCCGCAGGCATTAC-3’

Reverse COXI:5-GGGTGCCCAAAGAATCAGAAC-3’

Forward NDUFVI:5-CTTCCCCACTGGCCTCAAG-3’

Reverse NDUFVI:5-CCAAAACCCAGTGATCCAGC-3’

In vitro exhaustion model
CD8' T cells were isolated and activated using plates coated with
Ultra-LEAF anti-mouse CD3e (3 pg ml™, Biolegend) and soluble
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Ultra-LEAF anti-mouse CD28 (1.5 pg ml™, Biolegend). After 3 days, cells
werewashed and expanded for 4 days inthe presence of IL-7and IL-15. On
days7,9and11, CD8T cells were restimulated using CD3-coated plates.
FreshmediumandIL-7andIL-15were added to the wellsat the time of res-
timulation. Whereindicated, cells were treated with NR (1 mM) ondays 7,
9and11. Phenotypic and functional readouts were performed onday 12.

Preparation of human CAR-T cells

Human blood samples were obtained from healthy young donors
(aged 25-28 years) and elderly donors (aged 66-70 years). To gener-
ate CAR-T cells, CD3" T cells were negatively isolated using the Roset-
teSep human T cell enrichment cocktail (StemCell, 15061). T cells were
treated with ACK lysis buffer (Gibco, A10492-01) and resuspended in
RPMI1640 medium (Gibco, 21875158) supplemented with 10% FBS, 1%
penicillin-streptomycin, 1 mM sodium pyruvate (Gibco, 11360-070)
and 10 mM HEPES (Gibco, 15630-056). For stimulation, T cells were
cultured with CD3/CD28-activating Dynabeads (Gibco, 11132D) at a
1:1bead-to-cell ratio. The following day, T cells were transduced with
the hCD19_41BBz (FMC63 scFv) or hCD19_CD28z lentiviral vector at
a multiplicity of infection of 4. Recombinant human IL-2 (Proleukin,
Roche) ora cytokine combination of IL-2, IL-7 (Peprotech,200-07) and
IL-15 (Peprotech, 200-15) was added every other day to a final concen-
tration of 30 IU per mland 10 ng ml™, respectively. Cells were counted
andfed every 2 days until day 10, after which they were cryopreserved.
AlIT cell functional assays were conducted in media without cytokines.
For the generation of CAR-T cells from participants with melanoma,
2 x10°frozen PBMCs from young (aged 40-44 years) and elderly (aged
79-84 years) donors were seeded inaround-bottom 96-well plate and
processed as described above.

Donations from healthy volunteers were approved by the Comis-
sion Cantonale d’Ethique de la Recherche Genéve (CCER). Samples
from participants with cancer were taken from a biobank supported
by the study protocol CCER 2016-01237. Writteninformed consent was
obtained fromallindividuals.

Reanalysis of public single-cell RNA sequencing (sScCRNA-seq)
data

An scRNA-seq dataset of human baseline PBMCs from 20 partici-
pants with LBCL was obtained from the Gene Expression Omnibus
(GSE197268). Metadata onage and response to therapy were obtained
from the supplementary material of the associated publication®. To
exclude low-quality cells and outliers, the following quality control
filters were applied on the scRNA-seq data: percentage of mitochon-
drial genes < 25%, number of detected genes = 300-5,000, number of
UMIs =500-20,000 and log,, genes per UMI > 0.6. Raw counts were
normalized using a standard loglp normalization implemented in
Seurat (version 5.0.1)*. Broad cell types for each scRNA-seq sample
were predicted using the scGate tool and its default PBMC model®*.
CDS8T cellsubtypes were annotated using ProjecTILs** and a published
reference map of human CDS T cell subtypes®®. Gene signatures for NAD
metabolism and DNA repair were downloaded from MSigDB® under
the ‘Gene Ontology biological process’ subset. On the basis of these
gene sets, signature scores were calculated using the UCell method
with default parameters®®. Statistical comparisons (Wilcoxon test)
were performed at the sample level by averaging signature scores for
each participant and cell type. To assess the expression of CD38 in the
context of markers of stemness and exhaustion, we interrogated two
multistudy reference maps of murine® and human® tumor-infiltrating
T cells. For each T cell subtype, we calculated the normalized average
expression of CD38, HAVCR2, TOX and TCF7.

Statistical analysis

Allstatistical analyses were performed using GraphPad Prism version
10.0.3. The sample size (n) is stated in each figure legend together
with the statistical test adopted. Data are shown as the mean +s.e.m.

P values < 0.05 were considered significant. Data distribution was
assumed to be normal but this was not formally tested. All statistical
tests used were two-sided.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

scRNA-seq data from the previous study*’ are publicly available from
the Gene Expression Omnibus under accession number GSE197268.
RNA-seq data from the previous study®° are publicly available online
(https://tanlab4generegulation.shinyapps.io/Tcell_Atlas/). The remain-
ing data are available within the article and Supplementary Informa-
tion or from the corresponding authors upon request. Source dataare
provided with this paper.
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Extended DataFig. 1| Aged CAR-T cells are unable to maintain stem-like
properties. (a) Proportion of CD8" T, (CD44 CD62L"), T, (CD44"CD62L") and

Tem (CD44°CD62L) cells in the spleens of young and old mice. On the right,
representative CD44/CD62L dot plot (n = 5 biologically independent samples).
(b) Proportion of T, cells (CD44*CD62L") upon activation of young and old naive
CD8'T cells and expansion under effector-like (IL-2) or memory-like (IL-7 IL-15)
conditions (n =10 biologically independent samples). (c) Mean fluorescence
intensity (MFI) of TCF-1withinyoung and old T, populations expanded from
naive CD8" T cells with IL-7 and IL-15 (n = 4 biologically independent samples).

(d) Killing capacity against B16-HER2 tumor cells of young and old CAR-T cells
expanded with IL-2 (n =3 biologically independent samples). () Proportion of
IFNy*and TNFa* young and old CAR-T cells expanded with IL-2 upon rechallenge
with B16-HER2 tumor cells (n = 4 biologically independent samples).

(f) Proportion of IFNy"and TNFa* young and old exhausted CAR-T cells generated

upon chronic stimulation invitro (n = 3 biologically independent samples).

(g) MF1 of IFNy and TNFa within IFNy* and TNFa" populations, respectively, of
young and old exhausted CAR-T cells generated upon chronic stimulation in vitro
(n=3biologicallyindependent samples). (h-I) Levels of the exhaustion markers
PD-1, TOX, TCF-1, LAG3 and TIM3 in young and old exhausted CAR-T cells (n=3
biologically independent samples). (m) Growth of B16-HER2 tumors after ACT of
young and old CAR-T cells expanded with IL-2 (n = 6 mice per group). (n) CAR-T
cells (CD45.1") generated from young or old mice were adoptively transferred
into young or old recipient mice bearing B16-HER2 tumors. Number of CD45.1"
CD8'T cells were analyzed in the spleens 20 days post-ACT (n=9Y>Y,n=50>Y,
n=8Y>0,n=80>0).Dataare represented as mean values +/- SEM. Statistical
analysis was performed using two-way ANOVA (A-C), unpaired ¢-test (E, Gand M)
or one-way ANOVA with multiple comparisons (F, H-land N), as appropiate.
ns=p>0.05.
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Extended DataFig. 3| Aged CD8" T cells present signs of mitochondrial
dysfunction. (a) Mitochondrial ROS levels assessed by MitoSOX staining
inyoungand old CD8" T cells after 3 days of activation (n = 5 biologically
independent samples). (b) OCR curve of young and old CD8" T cells after 3 days
ofactivation. In (c), basal OCR and maximal OCR values are represented (n =3
biologically independent samples, in C, dots represent technical replicates

from one representative experiment). (d) Mitochondrial membrane potential,
as assessed by TMRM staining, of T,, T, and T,,,, populations gated within CD8"
T cells of splenocytes derived from young and old mice (n = 5 biologically
independent samples). (e) Mitochondrial size, as assessed by MitoTracker Green

staining, of T,,, T, and T, populations gated within CD8" T cells of splenocytes
derived from young and old mice (n = 5 biologically independent samples).
Naive CD8' T cells (CD44 CD62L") were isolated from splenocytes of young,
intermediate and old mice and stained with TMRM (f) or MitoTracker Green

(g) (n=4Dbiologically independent samples). In (h), representative TMRM/
MitoTracker Green dot plots are shown (n = 4 biologically independent samples).
Data are represented as mean values +/- SEM. Statistical analysis was performed
using unpaired ¢-test (A and C), two-way ANOVA (D and E), or one-way ANOVA
with multiple comparisons (F and G), as appropiate. ns=p > 0.05.
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Extended Data Fig. 4 | NAD metabolismis altered inaged CDS8" T cells. (a) Levels

of CD38 within T,, T, and T,,, populations in young and old CD8" T cells isolated
from splenocytes (n = 5 biologically independent samples). (b) Proportion of
T..cellson day 7 upon activation of naive CD8" T cells derived from young mice
(8 weeks old) transduced with a CD38 OE vector and expanded under effector

(IL-2) or memory (IL-7 IL-15) polarizing conditions (n = 9 biologically independent

samples). (c) mtDNA/nDNA ratioin young CD8 + T cells overexpressing CD38

after 7 days of expansion with IL-7 and IL-15 (n = 9 biologically independent

samples). (d) DNA damage, as assessed by pH2AX staining, in freshly isolated

CD8' T cells from young and old mice (n = 4 biologically independent

samples). () pH2AX levelsin CD38" and CD38"" CD8" T cells from young

and old mice (n =4 biologically independent samples). HER2-directed CAR-T
cells were generated from old mice and expanded in the presence of IL-7 and
IL-15+ NMN + 78c + Olaparib (PARPi). On day 7, NAD/NADH ratio (f) and SRC

as assessed by Seahorse XFe96 Analysis (g) were determined (n =3, in (G) dots
represent technical replicates from one representative experiment). Data are
represented as mean values +/- SEM. Statistical analysis was performed using
unpaired t-test (A and D), paired ¢-test (B and C), two-way ANOVA (E), or one-way
ANOVA with multiple comparisons (F and G), as appropiate. ns=p > 0.05.
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Extended Data Fig. 5| Modulation of NAD levels does not improve efficacy transferred CAR-T cells (CD45.1'Thy1.1") found in spleen after 41 days post-tumor
of young CAR-T cells. Her2-directed CAR-T cells were generated using isolated engraftmentis displayed in (b) (n = 6 Young, n =7 Young NMN + 78c). Data are

CD8'T cells from young mice (8 weeks old), expanded in the presence of IL-7 and represented as mean values +/- SEM. Statistical analysis was performed using
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bearing B16-HER2" tumors. Tumor growth is displayed in (a), while number of
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | CD38 downregulation does not improve functionality of
aged CAR-T cells. Young and old CD8' T cells were activated and transduced with
anHer2 CAR or an Her2 CAR vector modified to contain an shRNA for CD38.On
day 3, after transduction, CAR-T cells were expanded in the presence of IL-7 and
IL-15until day 7.In (a), protein levels of CD38 as assessed by flow cytometry on
day 7. Arepresentative histogramis shown in (b) (n = 3 biologically independent
samples). (c) CD44/CD62L plots of young and old Her2 CAR T cells (Ctrl vs shRNA
CD38) at day 7 of expansion. For (d), (e) and (f), old Her2 CAR-T cells, old Her2_

shRNA CD38 CAR-T cells (expanded in the presence of NMN) or old Her2 CAR-T
cells expanded in the presence of NMN + 78c were adoptively transferred at day
10 into mice bearing B16-HER2 tumors (n = 8 per group). Number of transferred
CAR-T cells (CD45.1%) found in spleen after 32 days post-tumor engraftment is
displayed in (D). Tumor growth is displayed in (E), while tumor size at endpoint is
shownin (F). Data are represented as mean values +/- SEM. Statistical analysis was
performed using one-way ANOVA.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| NAD metabolic pathways in human CD8" T cells

and CAR-T cell responses. NAD metabolism signature score in CD8" T cell
subtypes (a) and other immune cells (b) from baseline PBMCs of responder

and non-responder patients to anti-CD19 CAR-T cell therapy. Analysis was
performed using the UCell method®® on recently published scRNAseq data from
Haradhvala et al (2022)*. From the same dataset, CD38 expression levels in
CD8'T cell subsets and other immune cells are shown in (c) and (d), respectively
(n=15R,n=16 NoR). (e) Comparison of CD38 levels in baseline PBMCs of B cell
malignancies patients presenting long-term (> 6 months) vs short-term

(< 6 months) CAR-T cell persistence upon infusion, using publicly available
RNAseq data from Chen et al (2021) (n = 71 patients)*. (f-g) Expression levels of
Tcf7, Tox, Havcr2 and Cd38 on a reference map of mouse CD8 T cells, in UMAP
space (F) and averaged by T cell subtype (G). (h) Comparison of TCF7,

TOX, HAVCR2 and CD38 expression levels in human CDS T cell subsets®.

(i) CD38 expression levels in myeloid cell, CD4* T cellsand CD8" T cells of tumor
immuneinfiltrates of responder (n =17) and non-responder (n = 31) patients to
ICB’". (j) DNA damage signature score in immune cells from baseline PBMCs of
responder and non-responder patients to anti-CD19 CAR-T cell therapy (n =10
patients)*. (k) CD38 protein levelsin CD4" T cells analyzed in PBMCs derived
from young (39-49 years old) and old (76-84 years old) melanoma patients (n = 5)
(I) Mitochondrial size, as assessed by MitoTracker Green staining, of hCD19_BBz
CAR-T cells generated from PBMCs derived from young and old healthy donors
and expanded in the presence of IL-2, IL-7 and IL-15 + /-NMN and 78c. Data are
represented as mean values +/- SEM. Statistical analyses were performed using
unpaired t-test or one-way ANOVA, as appropiate.
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Extended Data Fig. 8| Restoration of NAD metabolismimproves CAR-T cell
function and metabolism. (a) Phenotype of PBMCs derived from young and

old melanoma and non-small cell lung cancer (NSCLC) was assessed by flow
cytometry. Proportion of CCR7"CD45RA" / CCR7"**CD45RA™" cells within CD8*
Tcellsis displayed (n = 24 patients). (b) hCD19_BBz CAR-T cells were generated
from young (39-49 years old) and old (76-84 years old) melanoma patients PBMCs
and expanded usingIL-2, IL-7 and IL-15. On day 10, mitochondrial activity was
assessed using Seahorse XFe96 Analyzer (n = 3 patients). (C-E) hCD19_28z CAR-T
cellswere generated from young (39-49 years old) and old (76-84 years old)
melanoma patients and expanded using IL-2, IL-7 and IL-15 (n = 4 patients) (c) The
proportion of CCR7"CD45RA" CAR-T cells within the CD8" T cell population was

assessed by flow cytometry. (d) Mitochondrial activity was assessed performing
aMitoStress Test with Seahorse XFe96 Analyzer. (e) SRC of control and treated
(78c+NMN) old CAR-T cells. (F-H) hCD19_BBz CAR-T cells were generated from
young (39-49 years old) and old (76-84 years old) melanoma patients PBMCs and
expanded using IL-2 only (n = 5 patients) (f) The proportion of CCR7"CD45RA™
CAR-T cells within the CD8* T cell population was assessed by flow cytometry. (g)
Mitochondrial activity was assessed performing a MitoStress Test with Seahorse
XFe96 Analyzer. (h) SRC of control and treated (78c + NMN) old CAR-T cells. Data
arerepresented as mean values +/- SEM. Statistical analyses were performed
using paired ¢-test.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX O O OX OO0OS

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  SpectroFlo, CytExpert, 7500 Fast real time PCR system, Incucyte

Data analysis FlowJo 10.9.0, GraphPad Prism 10.0.3, SeaHorse Wave 2.4.3, Microsoft Excel 16.77.1, Image) 2.16.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Single-cell RNA-seq data from the previous study (Haradhvalal et al. 2022, Nat Med) are publicly available at Gene Expression Omnibus with GEO accession
GSE197268 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197268]. RNA-seq data from the previous study (Chen et al. 2021, Cancer Discov) are
publicly available at the online platform https://tanlab4generegulation.shinyapps.io/Tcell_Atlas/. The remaining data are available within the Article, Supplementary
Information, Source Data file and/or from the corresponding authors upon request. Source data are provided with this paper.




Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Sex was considered in the study designed, and sex-matched comparisons were performed. All participants gave consent.

Population characteristics For some experiments, human PBMCs were extracted from healthy donors. Young donors ranged 25-29 years old. Old
donors ranged 66-70 years old.
For some experiments, human PBMCs from non-small cell lung cancer (NSCLC) and melanoma patients were used. Patients
were aged between 39 to 85 years old.

Recruitment Donations from healthy volunteers were approved by the Comission Cantonale d’ethique de la recherche Geneve (CCER).
Samples from patients with cancer were taken from a biobank supported by the study protocol CCER 2016-01237. Written
informed consent was obtained from all individuals.
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Ethics oversight Commission Cantonale d'éthique de la recherche Genéve (CCER).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to determine sample size. Sample sizes were determined based on our previous experience and pilot
experiments thus taking in consideration the inter sample variability.

Data exclusions  Some mice were excluded due to splenomegaly.
Replication Data were successfully reproduced at least 2 or 3 times.

Randomization  For in vivo experiments, mice were allocated randomly to each experimental group, ensuring equal tumor volume in all groups before

treatment. For in vitro experiments (both mice and human), T cells derived from the same donor were splitted into several conditions and
compared.

Blinding For tumor measurements, performed with a caliper, and quantification of mitochondrial morphology by EM, investigators were blind.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Antibodies

Antibodies used

Validation

The following conjugated antibodies were used for murine experiments: CD3® - PercP Cy5.5 (clone 145-2C11, #100328, Biolegend,
1/50) or PB (clone 17A2, Department of Oncology, UNIL, 1/100), CD4 — PE Cy5 (clone RM4-5, #15-0042-82, eBioscience, 1/100) ,CD8R
- BUV661 (clone 53.6.7, #376-0081-82, Thermo Fisher, 1/100), CD45.1 — PE (clone A20.1, #12-0453-82, Biolegend, 1/1000), CD45.2 —
BUV395 (clone 104, #363-0454-82, Thermo Fisher, 1/50), CD44 — APC (clone IM.781, #103012, Biolegend, 1/100), CD62L — PECy7
(Mel-14, #25-0621-82, eBio, 1/1000), Thy1.1 — BV605 (clone OX-7, #202537, Biolegend, 1/100), CD38 — APCCy7 (clone 90, #102728,
Biolegend, 1/200), PD1 — BV605 (clone 29F.1A12, #135220, Biolegend, 1/200) or AF647 (clone 29F.1A12, #135230, Biolegend,

1/200), TIM3 —BV421 (clone RMT3-23, #119723, Biolegend, 1/200), LAG3 — PercP eFluor710 (clone CO9B7W, #46-2231-82, Thermo
Fisher, 1/200), TOX — PE (clone REA473, #130-120-716, Miltenyi Biotec, 1/50), IFNE - APC (clone XMG1.2, #17-7311-82, Thermo
Fisher, 1/200), TNF& - FITC (clone MP6-XT22, #506304, Biolegend, 1/200), TCF-1 (clone C63D9, #2203S, Cell Signaling, 1/200) was
stained with an unconjugated antibody. An additional staining was performed with secondary goat Anti-Rabbit IgG (#4412S, Cell
Signaling, 1:250). The following conjugated antibodies were used for human experiments: CD3 —BV711 (clone UCHT1, #300464,
Biolegend, 1/200), CD4 — BV605 (clone OKT4, #317438, Biolegend, 1/200), CD8 — APC (clone SK1, #344722, Biolegend, 1/200), CCR7 —
BV421 (clone GO43H7, #353208, Biolegend, 1/100), CD45RA - PE TexasRed (clone MEM-56, #MHCD45RA17, Thermo Fisher, 1/50),
CD62L — PercP Cy5.5 (clone DREG-56, #304824, Biolegend, 1/200), CD38 — AF700 (clone HIT2, #303524, Biolegend, 1/200). ). For
pH2AX staining, cells were stained upon fix/perm using the PECy7 conjugated antiH2A.X (Ser139) antibody for 1h at 4BIC (#613420,
Biolegend).

All the antibodies have been tested and validated previously by our Flow Cytometry Facility at Ludwig Cancer Institute of Lausanne.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

PhoenixECO and B16-HER2-mK2 cells were a gift from the laboratory of Prof. George Coukos (UNIL). EL4-mCD19 cells were a
gift from Marco L. Davila laboratory (Moffitt Cancer Centre, Florida).

None of the cell lines used were authenticated, but low passage number cell lines were used.

Mycoplasma contamination Cell lines were not tested for Mycoplasma.

Commonly misidentified lines  n/a

(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

We used C57BI/6 mice, exploiting the double congenic allelic system (CD45.1, CD45.2 and CD45.1/2). Young mice were 8-weeks old,
while old mice were always >80 weeks old. For in vivo experiments, host mice were purchased from EnVigo laboratories
(C57BI/60laHsd). All mice were housed in conventional animal facility of University of Lausanne and were kept in ventilated cages, at
22 C with 55% humidity and a 12 hour dark/light cycle.

None
Sex was not considered in the study
No field-collected samples were used

All animal experiments were performed in the animal facility in Epalinges at the University of Lausanne (UNIL), as approved by the
veterinary authorities of the canton of Vaud and performed in accordance with Swiss Federal Law (VD3572).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.
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Methodology

Sample preparation

Instrument
Software

Cell population abundance

Gating strategy

Cell suspensions from the spleen were obtained by mashing through a 40uM nylon cell strainer, followed by red blood cells
lysis using ACK buffer. Surface staining was performed with mAbs for 20 min at 4°C in PBS supplemented with 2% FCS (FACS
buffer).

For intranuclear staining, cells were surface stained before fixation and permeabilization using the Foxp3 transcription factor
staining kit (eBioscience: Cat. No. 00-5523) followed by intranuclear staining in Permeabilization buffer 1x (Perm buffer).

For the detection of cytokine production, CD8+ T cells were re-stimulated in vitro with anti-CD3 (3ug/ml) in the presence of
Brefeldin A (5ug/ml) for the last 4h.

CytoFLEX S (Beckman Coulter), CytoFLEX LX (Beckman Coulter) or Aurora (Cytek Biosciences)

CytExpert, SpectroFlo. FlowJo v10.9.0 was used for data analysis.

For in vitro experiments, CAR-T cells were generated from isolated CD8+ T cells from spleen, with a purity > 90%.
Characterization of CAR-T cells was performed upon expansion within viable CD8+ T cells, which represented the majority f
the analyzed cells. For in vivo experiments, CAR-T cells were detected in spleens upon processing. Cell population

represented 0.1-0.5% of total splenocytes, depending on the sample.

Gating was based on single staining control and published literature

& Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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