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Abstract
Stem cell therapy holds great promise for the regeneration and repair of damaged 
tissues and organs. Stem cell therapy has been successfully applied to treat 
diseases that cannot be cured with conventional medicine. A careful evaluation of 
the outcomes is required for successful implementation of stem cell therapy. 
Recently, artificial intelligence (AI) has opened new avenues for research in the 
stem cell therapy field. The integration of AI can assist in evaluating the quality, 
efficiency and safety of stem cells by analyzing available data. It has the potential 
to improve and accelerate progress in various aspects of stem cell research and 
therapeutic applications. AI is still in its infancy and has certain limitations, such 
as algorithm validation problems, inadequate data availability, poor data quality, 
and ethical considerations. Considering the potential of AI to improve stem cell 
research and therapeutics, this review aims to explore applications of AI in 
understanding stem cell behavior, identification and characterization, optimi-
zation of the delivery methods, stem cell modeling and prediction of mortality 
risk. In addition, this review highlights the role of AI, machine learning, deep 
learning, and other subtypes in advancing stem cell biology research. This review 
also discusses the current limitations, ethical considerations, and future 
prospective of use of AI in stem cell research and therapeutic applications.
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Core Tip: Stem cell therapy can repair and regenerate tissues and organs, and it has been successfully applied to treat diseases 
that cannot be cured with traditional medicine. The integration of artificial intelligence (AI) with stem cell therapy has the 
potential to transform the field of regenerative medicine. AI can analyze data to evaluate quality, efficiency, and safety of 
stem cells. It can accelerate the progress of stem cell research and medicine. However, the AI field is still new and has 
challenges, including algorithm validation, data availability, poor data quality, and ethical concerns.
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INTRODUCTION
Stem cells have self-renewal potential and the ability to develop into various types of specialized cells. These character-
istics make stem cells ideal candidates for regeneration and repair of lost or damaged tissues and organs. Stem cell-based 
therapies are rapidly evolving as treatment modalities for diseases that cannot be treated with conventional medicine. 
The outcomes of previously registered stem cell-based clinical trials are promising and provide hope for patients 
suffering from a wide range of diseases or conditions, including cardiovascular diseases, spinal cord injuries, neurological 
disorders, diabetes, skin disorders, and blood disorders. However, before stem cells are fully applied in clinical settings, 
certain limitations, including optimized delivery methods, quality control of stem cells, ethical considerations, and risk 
prediction for stem cell transplantation, need to be considered. In addition, developing an effective stem cell-based 
therapy requires the ability to analyze substantial amounts of complex data. This is where artificial intelligence (AI) can 
make significant contributions to advancing stem cell-based therapies[1,2].

AI is a subfield of computer science that aims to develop computer systems to mimic human intelligence, such as 
reasoning, decision making, and learning[3]. AI technology was developed with a goal to widely apply it to many fields, 
including industry, science and technology, and even in routine activities. In 1956, the computer scientist John McCarthy 
described AI as the engineering and scientific process of making intelligent machines, particularly intelligent computer 
programs[4]. As technology evolves daily, the emergence of AI has gained popularity in the scientific world, where the 
aim of AI is to develop an intelligent machine that can think like humans and imitate human behaviors, including 
reasoning, perception, planning, learning, and prediction. AI researchers have integrated a broad range of problem-
solving techniques, including machine learning (ML), artificial neural networks (ANNs), mathematical optimizations, 
and other methods, such as Bayesian networks (BNs), based on statistics and operations research to facilitate working 
processes[5,6]. Furthermore, the ability to analyze sophisticated medical data and the potential to make use of meaningful 
connections within a dataset not only contribute to diagnosis and treatment, but also to outcome prediction in a variety of 
clinical scenarios, thereby confirming the importance of AI in the healthcare industry. The increase in complex diseases 
has produced numerous opportunities to use AI technology to implement more targeted, effective, and significant 
interventions in patient care[4].

AI and stem cell therapeutics are two rapidly developing fields with numerous connections. AI is a powerful tool for 
stem cell therapy[7], as it can help researchers discover new insights by analyzing large amount of data and identifying 
new patterns. AI algorithms can help choose the best stem cells for each patient based on their genetic information and 
medical history, leading to more successful treatment outcomes. AI can inform cell therapy by providing optimal 
conditions for cell growth and quality control. The delivery of stem cells to a particular target site is also very important 
for stem cell therapy. AI can help by optimizing the route of administration to ensure that cells successfully reach the 
target site. Moreover, AI can optimize the dose and timing of cell delivery to enhance therapeutic outcomes. AI can open 
up new opportunities for investigating, diagnosing, and treating many diseases by combining the power of regeneration 
and power of computation[7]. In this review, we aim to highlight the AI applications, such as ML, deep learning (DL), 
and their subtypes, in stem cell therapy and discuss their future impact on regenerative medicine.

REGENERATIVE POTENTIAL OF STEM CELLS
Stem cells are undifferentiated cells that can self-renew and develop into various cell types[8]. They are categorized into 
four major types: Embryonic stem cells (ESCs), adult stem cells (ASCs), induced pluripotent stem cells (iPSCs), and 
neonatal stem cells. These four types of stem cells have distinct regenerative characteristics in terms of proliferation and 
differentiation into three germ layers (mesoderm, endoderm and ectoderm). ESCs and iPSCs can develop into cells from 
all three germ layers but cannot make extra-embryonic structures. ESCs are isolated from the inner cell mass of a 3-5 day-
old embryo, while iPSCs are artificially reprogrammed somatic cells that form pluripotent cell lineages unique to each 
patient and capable of treating human model diseases[9]. ASCs are multipotent stem cells that can differentiate into 
multiple tissue-specific stem cells and are found throughout the entire body in ASC niches. The discovery of multipotent 
stem cells in the bone marrow in 1961 marked the beginning of stem cell research. Neonatal stem cells are found in birth-
related tissues, such as cord blood, cord tissue, Wharton’s jelly, etc. These cells are also multipotent-like ASCs. 
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Multipotent stem cells are currently the focus of research due to their ability to treat hematological disorders, such as 
myeloma, lymphoma, and leukemia[9]. After several decades, human pluripotent stem cells were employed in pre-
clinical research. The research entailed isolating cells, determining their functions, and conducting preclinical trials. There 
has been a recent significant increase in stem cell research, particularly in its progression to clinical phases. This progress 
has been made possible by advances in technology, which eventually lead to the initiation of human clinical trials[10].

Stem cells are ideal candidates for tissue regeneration due to their potential to generate every tissue in the human 
body. Due to the success of preclinical and clinical trials, the potential applications of stem cells continue to expand, 
offering new perspectives for regenerative medicine. These innovative treatments have addressed a range of disorders 
characterized by abnormal cell development or function, such as congenital disabilities, cardiovascular diseases, neurode-
generative diseases, and retinal degeneration[11]. Despite the tremendous promise of stem cells in regenerative medicine, 
stem cells developed for patient treatment have encountered several challenges. These challenges include the inability to 
analyze complex data, challenges in identifying optimal cells for individual patients, difficulties in drug discovery, and 
disease modeling, limited understanding of stem cell behavior, challenges in delivering stem cells, costly and time-
consuming experiments involving stem cell culture and differentiation, and the ability to predict mortality risk. AI can 
make substantial contributions in these domains. The most common applications of AI in stem cell-based therapies 
include the use of computational algorithms based on ML and ANNs for performing automated cell handling, predicting 
the most optimal cell types by analyzing patient’s medical history and genetic information, cell culture optimization and 
differentiation, tissue engineering, disease diagnosis, drug development, use of robotic systems to rapidly design 
scaffolds for regenerative medicine and tissue engineering applications, and analysis of cellular images and large datasets
[1,12].

AI
The field of AI has gained popularity both inside and outside the scientific community in the last 10 years. The subject of 
AI has been extensively covered in both non-technology and technology-based studies. There are many subtypes of AI, 
including ML and DL. However, there is a lot of misconception regarding AI, ML, and DL. Despite their strong 
association, these terms cannot be used interchangeably. The key differences between AI, ML, and DL are shown in 
Table 1. AI fundamentally involves the incorporation of human intelligence into machines through a particular set of 
algorithms[13]. ML is a subset of AI and is the process that allows a computer system to learn automatically on its own 
from past events and improve without the need for explicit programming. The emphasis of ML is on the development of 
a system that can obtain data and use it for its own purposes. The whole procedure makes observations on data to 
recognize potential patterns and make better decisions based on the examples provided. The basic objective of ML is to 
enable computers to autonomously learn knowledge through experience, devoid of human involvement or assistance[13,
14]. DL is a specific subclass of ML that employs neural networks. DL neural networks mimic the ability of the human 
brain to recognize patterns, learn from experience, and make decisions. These neural networks function analogously to 
neurons in the human brain, which receive input (information), process and transmit signals (data), learn from 
experiences (training data), and adapt to new situations (improve performance). In contrast to ML, DL functions on larger 
datasets, with predictive algorithms autonomously maintained by the machines[13,14]. Figure 1 depicts the differences 
between ML and DL.

ML
The terms “machine learning” and “artificial intelligence” can be used interchangeably. However, ML is a subfield of AI. 
Samuel[15] coined the term “machine learning” and defined it as the capacity of computers to learn without specific 
modifications. This principle necessitates that humans provide machines with the necessary information for learning, 
which enables them to perform tasks or make decisions without the need for programming. A ML system is intelligent if 
it can compute a prediction based on the best chances and is prepared to learn from past mistakes. Supervised, 
unsupervised, and reinforcement learning are the three types of ML. Supervised learning addresses the challenges of 
guided learning, which involves label samples in the training data. The labeled samples will facilitate the prediction and 
classification of the test samples with the underlying mathematical model, which will optimize its parameters. 
Unsupervised learning is a category of ML that does not require labeled samples with class identifiers. Reinforcement 
learning is not completely unsupervised. Because this method lacks label examples for training, it also cannot be 
considered supervised learning. Instead of relying on manual adjustments to previously defined processing steps or 
parameters, ML studies the processing rules from model examples. ML is superior to traditional image processing 
systems, as it can handle complex multi-dimensional data evaluation problems[9].

DL
DL is a popular subfield of ML that computationally models the learning process and learns from data. Data processing, 
understanding human speech, and visual object perception are all accomplished using algorithms. Face identification, 
speech recognition, and computer vision have all been areas where AI has struggled throughout the years. However, DL 
has overcome these challenges. The development of DL is based on neural networks. Neural networks is a popular 
method that attempts to mimic the way a living thing learns. Neural networks are inspired by the brain’s exceptional 
capacity for complex, parallel, and non-linear computations; they have demonstrated that with an adequate number of 
neurons in their hidden layers, they can approximate any function with arbitrary precision, functioning as universal 
function approximators. It is common practice for DL models to employ hierarchical structures to link all of its layers. The 



Choudhery MS et al. AI in stem cell therapy

WJSC https://www.wjgnet.com 4 August 26, 2025 Volume 17 Issue 8

Table 1 Key differences in artificial intelligence, machine learning and deep learning

Feature AI ML DL Ref.
Definition It involves incorporating human 

intelligence into machines using 
algorithms and a set of rules

Enables computer systems to learn 
automatically from past events and 
improve accordingly without explicit 
programming

Use neural networks to learn from data [9,13-
15]

Subset 
relationship

A broader field encompassing ML 
and DL

A subset of AI A subset of M [9,13-
15]

Functionality Employs decision-making to exhibit 
intelligence

Uses algorithms to evaluate data, detect 
patterns, and make predictions. The system 
learns from data and improves over time

Analyzes data using multi-layered neural 
networks, producing output based on deep 
pattern recognition

[9,13-
15]

Learning 
approach

Can be data-driven, knowledge-
based, or rule-based

Relies on data-driven learning. Includes 
supervised, unsupervised, and 
reinforcement learning

Employs neural networks with hierarchical 
layers. Transforms simple features into 
abstract representations for better feature 
extraction

[9,13-
15]

Human 
intervention

Requires human-defined rules and 
logic

Some human intervention is needed for 
data labeling and training

Minimal human intervention. Relies on self-
managed learning processes

[9,13-
15]

Data 
dependency

Can work with smaller datasets 
and predefined rules

Needs a moderate amount of structured 
data to learn effectively

Requires enormous volumes of labeled data 
for training

[9,13-
15]

Processing 
power

Involves complicated arithmetic, 
search trees, and reasoning 
techniques

Involves complex algorithms and mathem-
atical models

Requires high computational power due to 
deep neural networks

[9,13-
15]

Efficiency Efficiency is determined by the 
effectiveness of ML and DL 
components

More efficient than AI alone but less 
efficient than DL in handling large datasets

Highly efficient for processing large datasets 
due to automated feature extraction

[9,13-
15]

Applications Encompasses diverse subfields 
including natural language 
processing, computer vision, and 
robotics

Used in applications such as 
recommendation systems, and predictive 
analysis

Best suited for tasks like image recognition, 
speech recognition, and autonomous driving

[9,13-
15]

AI: Artificial intelligence; ML: Machine learning; DL: Deep learning.

Figure 1 Machine learning vs deep learning. This figure illustrates the differences between machine learning and deep learning. Data is collected and stored 
in databases. In machine learning, human intervention is required for data validation and feature extraction before classification using a neural network. In contrast, 
deep learning automates feature extraction using deep neural networks, eliminating the need for manual input. Deep learning is more data-intensive but enhances 
accuracy and efficiency in predictions. AI: Artificial intelligence.
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output data from lower levels serves as input data for higher layers. This property allows DL models to transform simple 
data features into more abstract ones, which improves their feature representation compared to other shallow ML models 
like improving and support vector machines (SVMs). In contrast to traditional ML methods that depend on user 
experience, DL relies on data, which reduces the need for operation users. Rapid advancements in computing power, 
storage capacity, and accessibility have been associated with the sudden rise of DL as a crucial method for ML[9].

SUBTYPES OF AI
Various subtypes of AI, ML, and DL play unique roles in the field. We have focused on discussing those subtypes and 
algorithms that hold significant importance in stem cell applications, offering valuable insights for researcher in the 
fields. These include natural language processing (NLP), random forests, SVMs, convolutional neural networks (CNNs), 
ANNs, logistic regression (LR), k-nearest neighbors (k-NNs), BNs and decision trees.

CNN
CNN is a common DL method that directly learns from the input, thus eliminating the requirement for extraction of 
human features. CNNs are widely used for object recognition, picture similarity-based aggregation, and image classi-
fication. Initially, CNNs were widely employed in object identification. However, they are now used in a variety of 
applications, including visual labeling, action identification, object detection, and recognition. CNNs generate hierarchical 
and a high-level visualization of features by processing multiple levels of input images[9]. Neocognitron was the first self-
organizing neural network model developed in 1980 for a pattern recognition mechanism[16]. LeNet, an ANN with 
multiple layers, was developed by LeCun in 1998 and significantly contributed to the development of CNNs[17]. LeNet 
can identify patterns in the input images and categorize handwritten digits without any modification. Difficulties of this 
model stemmed from insufficient training data and lack of computational power, preventing this model from properly 
working in a complex environment. Many of the errors in annotation made during the large-scale image classification 
were easily managed by the subsequent construction of AlexNet CNN mode[18]. This model, which consisted of five 
convolution layers and three fully linked layers, brought significant breakthroughs in image classification with the aid of 
advanced technology. AlexNet is now considered an innovative milestone achievement in computer vision[9].

Convolution and pooling layers comprise the feature extraction portion of the CNN framework, whereas fully linked 
layers comprise the classification portion. A picture is first run through a sequence of convolution layers, followed by 
feature extraction by pooling layers and classification by fully connected layers. Feature maps of varying sizes are 
generated by the convolution layers. These maps are subsequently reduced by the pooling layers and passed on to the 
following layers. The more complicated structures in the image are detected by the neurons in the deeper layers, while 
the simpler ones, including edges, blobs, and lines, are identified by the preliminary layers. The CNN is required to 
undergo a training phase to determine the optimal weights for the images to generate high-quality results. Due to 
transmission of the error signal obtained by the loss function, which enhances the feature extraction portion, the CNN 
provides a better picture representation[9]. CNNs are widely utilized in NLP, visual identification, image segmentation, 
and medical image analysis because they are specifically designed to handle a diverse range of two-dimensional shapes. 
It is more powerful than a standard network because it can automatically extract important features from the input 
without requiring human intervention. Depending on their capacity for learning, a number of CNN variations can be 
applied in different application domains in healthcare, such as NLP, image classification, image analysis, and diagnosis
[19].

ANNs
The ANN is a subtype of ML that is built using interconnected nodes. The information in these nodes is processed like the 
natural human nervous system. The primary component of ANN is its unique structure, which gives it the ability to 
process information with great power. Its structure is made up of several interconnected information processing units or 
neurons that work together to solve specific problems. Like human neural systems, ANNs learn and gain knowledge 
through pictures. ANNs are intricately designed to use learning process to solve particular problems[20]. Every artificial 
neuron takes in information from other linked neurons, processes it, and then transmits the results to other neurons in the 
network. Each neuron’s output is determined by an activation function, which is a non-stationary function of the 
combined value of its inputs. The “signal” is an actual number. A weight that changes as the learning process progresses 
determines the signal strength at each connection. The typical arrangement of neurons is in layers, and it is possible for 
inputs to be differentially transformed by distinct levels. Signals can pass through more than one hidden layer on their 
route from the input layer to the output layer. A network with two or more hidden layers is called a deep neural network. 
Predictive modeling, adaptive control, and AI problem solving are just a few of the many applications of ANNs. They are 
capable of learning from their mistakes and drawing inferences from apparently unconnected pieces of data[15].

BNs
A BN is a graphical model with probabilities that can be utilized to construct models based on data or expert opinion. 
They can be employed for a variety of functions including investigations, reasoning, decision making in the presence of 
malfunction detection, forecasts, and even automatic insight and others. A brute force algorithm to create a graph model 
consists of building a directed acyclic graph that defines the network structure and a probability distribution over the 
vertices, or nodes, in the network. For example, the BN model can encapsulate the essential characteristics of cell differen-
tiation without the need to consider artificial boundaries of experimental conditions and intricate interactions between 
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genes. BNs often allows a biologist to systematically investigate all possible ways for various cell types and patients 
undergoing gene therapy by linking probabilistic, domain, and biological data[21].

NLP
NLP is a branch of AI and is the simulation of human conversation through a computer. NLP employs ML and DL 
language processing in tandem with computational linguistics rule-based modeling. The combination of these techno-
logies permits automatic processing of documents or data in the form of speech, particularly when it comes from a 
human. When employed in medical notes, it is possible to improve hospital triage systems, forecast outcomes of patients, 
and build algorithms for the diagnostic detection of diseases in patient records. NLP is capable of natural language 
generating in addition to natural language understanding, giving patients access to relevant information and ask 
questions from a chatbot[22].

SVMs
SVMs are supervised learning models capable of handling regression tasks and performing classification. Therefore, the 
domains of biological data categorization, regression, and cluster analysis have made extensive use of computational 
tools and algorithms. The main goal of classification analysis is to train a classification model using labeled data. New 
data is then classified based on the trained model. Biological databanks are growing at a rate that makes it imperative to 
automate the classification process with computer systems. Currently, SVMs are the most effective computer systems for 
making predictions. These machines are designed to maximize the margin between two classes so that the trained model 
will generalize well on unobserved data. Most other computer programs use the minimization of training error to create a 
classifier, which results in less effective generalization. Therefore, SVMs have been extensively used in various 
bioinformatics domains such as gene expression, transcription start site prediction, protease functional site recognition, 
and prediction of protein function[23].

Random forests
Random forest is a popular tree-based ML method that can handle “large p, small n” issues, is highly data adaptable and 
can consider for interaction as well as correlation among features. “p” represents number of predictors or features 
(variables), and “n” represents the number of observations or samples (data points). Random forests are very effective in 
the study of high-dimensional genomic data. It randomly selects a subset of potential predictor variables (e.g., genes) and 
subset of training data cases. Each tree is then built using the variables and sampled data. The collection of decision trees 
is then used to classify new data[24,25].

Decision trees
Decision trees are among the most successful supervised learning methods for regression and classification applications. 
A decision tree is constructed with a hierarchical structure, featuring terminal nodes assigned class names, branches 
designating test results, and internal nodes representing attribute assessments. It is built by constantly dividing the 
training data into smaller subgroups based on attribute values until a specific stopping criterion, such as the minimum 
number of samples or the maximum depth of the tree required to divide a node, is met[26,27].

LR
LR is a type of supervised learning commonly used for classification purposes, predicting the probability of an 
observation being classified into a specific category. This statistical method analyzes the association between a group of 
binary dependent variables and a set of independent factors. It is an effective tool for making decisions. Biomedical data 
typically consist of few samples and many variables. It is difficult to mine such high dimensional data with current 
classifiers, and the results are frequently erroneous. LR is a popular method for making predictions. Nevertheless, when 
employing LR, it is challenging to incorporate prior biological knowledge into the study. Almost every biomedical 
domain has linked domain knowledge. Building predictive models with the ability to incorporate such new knowledge 
would be beneficial. When attempting to develop a model for categorization and prediction of a given disease, it would 
be beneficial to utilize information such as the identification of a predictor variable as a biomarker. The computational 
efficiency of Bayesian LR is high and the method can integrate prior knowledge[28].

K-NNs
K-NN is one of the most basic yet useful categorization methods in ML. It is a member of the supervised learning domain 
that is extensively used in data mining intrusion detection and pattern recognition. K-NN classifiers are widely utilized in 
a variety of fields including medicine. It identifies class membership of an unlabeled sample based on class membership 
of k-labeled samples that are closest to the unlabeled samples, known as nearest neighbors[26,29].

APPLICATIONS OF AI IN STEM CELL MANUFACTURING AND THERAPEUTICS
The automation of AI can help improve stem cell manufacturing (Figures 2 and 3). AI uses mathematical models 
including data mining, DL algorithms, ML algorithms, and other subtypes to study how stem cells grow, migrate, 
interact, and adapt to different conditions. These technological developments have assisted in maintaining stem cell 
quality, identifying a reliable framework for colony classification, characterization of stem cells, identification of cellular 
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Figure 2 Development of artificial intelligence-driven stem cells-based therapeutics. Image, genetic, and patient record data from clinical and 
experimental sources are collected. The collected data undergo cleaning, normalization, and feature extraction to prepare it for artificial intelligence (AI) model 
training. Machine learning and deep learning algorithms for analysis are chosen and implemented during AI model construction. AI models are trained with processed 
data and validated using validation datasets. Predictive analysis uses AI to model diseases, predict stem cell differentiation, and direct experiments. Clinicians use AI-
assisted predictions to promote personalized medicine and regenerative therapies. AI: Artificial intelligence.

morphology and prediction of risks and outcomes of drugs[12]. All stem cell types, including mesenchymal stem cells 
(MSCs), and iPSCs can be used in combination with AI to enhance their use in research and therapy[12,30]. The 
quantitative modeling of stem cells with AI support is a potential improvement due to its promising accuracy. Using AI 
to create quantitative stem cell models has the potential to improve our understanding and use of these cells[12,30,31]. 
Stem cells have greater therapeutic success because of their immunomodulatory roles, effective homing capacity to 
injured sites, anti-inflammatory effects, and multipotentiality. However, stem cell potency and pharmacological effect-
iveness vary according to the tissue origins, method of harvest, culture expansion, stem cell handling, dosage and 
delivery route[32]. Therefore, it is challenging to standardize and optimize stem cells for clinical use. AI technologies such 
as DL and ML can overcome these limitations by providing quantitative methods to analyze stem cells. These techno-
logies can be utilized to extract significant features from stem cells such as surface markers, morphology, differentiation 
potential, secretome, and gene expression. Researchers can gain a better understanding of stem cell behavior, function, 
and potential by understanding these features. As outlined in Table 2, this can lead to improved methods for: (1) Behavior 
and characterization of stem cells; (2) Stem cell culture and differentiation; (3) Prediction of mortality risk; (4) Stem cell 
imaging-based classification; (5) Stem cell modeling; (6) Drug discovery; and (7) Optimization of delivery methods. AI 
can also help reduce the time and cost required for the development and testing of MSC, as well as MSC translation from 
bench to bedside[31]. Researchers and doctors can gain new insights of stem cell biology and function by using AI to 
model stem cells and to increase their quality and consistency for therapeutic applications.

Evaluating stem cell behavior and characterization
Stem cells replace damaged or lost tissues and generate new cells in the body and can differentiate into various cell types. 
Controlling and understanding stem cell behavior is an essential step in stem cell-based treatments. AI can provide a 
deeper understanding of cellular and molecular pathways, allowing for the development of more effective and safe stem 
cell therapies. AI combines data from various sources, such as cellular images, epigenetic markers, and gene expression 
profiles to create a comprehensive understanding of stem cell behavior. AI uses ML algorithms to identify correlations 
and patterns within the data, revealing complex relationships between stem cell behavior and various factors. It also 
helps in the identification of ideal conditions and parameters influencing stem cell behavior, such as type of culture 
media, environmental conditions (temperature and pH) and type and concentration of growth factors. AI uses NLP to 
understand and analyze the vast amounts of available research data available in the literature related to stem cell biology
[33].

One of the limitations of stem cell therapy is identifying the most effective type of stem cells for a specific disease or 
injury. There are many types of stem cells, including MSCs, ESCs, iPSCs, etc., each with its own unique characteristics and 
functions. AI can assist physicians in finding the most promising type of stem cells for a specific disease by analyzing 
patient’s medical history and genetic information[7,34]. The success of stem cell therapy is largely dependent on the 
characterization of stem cells, which is a complex and multifaceted process. Stem cell characterization involves various 
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Table 2 Artificial intelligence tools and methods in stem cell therapy

Application in stem cell therapy AI tools or methods

Behavior and characterization of stem cells Deep learning, natural language processing and machine learning

Stem cell culture and differentiation Convolutional neural networks and random forests

Prediction of mortality risk Artificial neural networks, k-nearest neighbors, logistic regression, and decision trees

Stem cells imaging based classification Deep learning and convolutional neural networks

Stem cell modeling Machine learning algorithms

Drug discovery DeltaVina, neural graph fingerprint, AtomNet, and DeepTox have been used in drug discovery

Optimization of the delivery method Convolutional neural network

AI: Artificial intelligence.

Figure 3 Representative image of artificial intelligence-supported stem cell treatment. Patient stem cells are isolated. An image of a stem cell is 
captured with the use of a microscope. Artificial neural networks, genetic algorithms, and Bayesian networks analyze stem cell characteristics. Deep learning, natural 
language processing, and machine learning predict stem cell morphology and behavior. Stem cell types are classified using convolutional neural networks, support 
vector machines, and random forests based on this biological data and expression. Stem cells are modified using growth hormones, genes, and mechanical 
stimulation for clinical use. Therapeutic stem cells are then administered to the patient. AI: Artificial intelligence.
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types of data, including protein expression profiles, gene expression patterns, metabolic activity, electrophysiological 
properties, and epigenetic modifications. These diverse data types make stem cell characterization a challenging task, 
requiring advanced analytical techniques to integrate and interpret the information. Various AI approaches, including 
BNs and ANNs, are employed based on various parameters of metabolic networks, gene regulatory networks, and 
signaling pathways[35].

Stem cell culture and differentiation
Stem cell differentiation is thought to be initiated by changes at the genetic level. These genetic changes allow stem cells 
to undergo differentiation, ultimately defining their fate. Computer simulation and mathematical modeling assist in 
understanding the process of self-renewal and differentiation properties of stem cells by simulating the entire cell 
population rather than focusing on individual cells[12]. Pluripotent stem cells have a significant function in regenerative 
medicine, disease modeling, and drug testing because they can transform into diverse cell types in an organism. ESCs and 
iPSCs are two unique types of pluripotent stem cells. ESCs are formed in the initial stages of embryo development, 
whereas iPSCs are produced through the reprogramming of genes, which involves reversing the specialization of somatic 
cells to a pluripotent state. iPSC-derived cells provide a focused investigation of cellular physiology, making them highly 
helpful for tasks such as disease research, drug screening, and regenerative medicine[36]. Moreover, the application of 
fully developed endothelial cells, obtained from iPSCs through the process of differentiation, has the capacity to be used 
for disease simulation and organ growth. Nevertheless, the presence of highly skilled researchers in consistently 
maintaining iPSCs and performing differentiation studies to obtain specific cell types requires substantial time and 
financial resources[37]. Scientists have developed a CNN algorithm called Resnet50 to accurately differentiate slight 
variations in stem cell morphology, such as changes in shape, size, and texture, specifically ESCs and iPSCs, when 
subjected to various growth conditions. The experimental conditions included three media formulations, including one 
with leukemia inhibitory factor to maintain stem cell pluripotency, another without leukemia inhibitory factor, and a 
third with insulin/transferrin/selenium to induce differentiation. The research employed transmitted light microscopy to 
monitor cell morphology changes over 24 hours. Notably, the algorithm attained an accuracy rate of 95% in recognizing 
culture conditions and cell types exclusively based on cellular shape[38].

Prediction of mortality risk
A very powerful feature of AI in stem cell therapy is its prediction of mortality risk because it requires estimating the 
risks and outcomes of stem cell transplantation with the help of cell dose, disease condition, patient factors, cell source 
and delivery route. These parameters can be useful in predicting patient survival and mortality outcomes over the stem 
cell transplanted for different types of injuries or diseases. Unquestionably, AI can help improve research objectives by 
using ANNs, LR, and decision trees methods to process images, medical files, and lab tests. This enables better patient 
selection and treatment planning[31]. For example, Shouval et al[39] developed a ML model using an alternating decision 
tree to predict the 100-day mortality rate after hematopoietic stem cell transplantation. The model, built using data 
mining methodology and validated on a large dataset, demonstrated excellent calibration. This model can help assess and 
stratify transplantation risk before the procedure, inform patient counseling during consent sessions, and guide person-
alized transplantation regimens or alternative treatment recommendations based on individual risk profiles. On the 100th 
day, the overall mortality rate was 13.9%. The data mining technique has demonstrated its ability to predict the overall 
death rate within 100 days and has further expanded this prediction to a maximum of 2 years[39].

Stem cell imaging-based classification
Microscopes are a vital instrument in the field of medicine, facilitating the detailed examination of cellular morphology 
and detection of unusual cell characteristics. In biological research, maintaining healthy cell cultures and accurately 
recognizing specific cell types are important for reliable results. Nevertheless, this process is labor-intensive and 
susceptible to mistakes. DL can overcome these limitations by effectively processing large quantities of data. CNNs can 
detect small alterations in cell morphology caused by cell culture media and conditions, which are not noticeable to the 
naked eye. It is worth investigating the feasibility of classifying the required neuronal cells exclusively using cell pictures, 
by comparing their morphology to that of well-characterized stem cells. The goal of image-based cell classification is to 
identify whether cellular differentiation can be detected at an early stage or if distinct cell types can be recognized during 
the initial phases of differentiation. If effective, the exclusive utilization of early differentiating cell pictures could 
substantially decrease the overall time and expense associated with differentiation tests. The precision of CNN 
predictions can be validated by annotating stem cells and their corresponding differentiated cell types and viewing them 
with a confocal microscope. Additionally, the expression of genes relevant to stem cells and differentiation can be 
evaluated by real-time polymerase chain reaction assays. The precision and efficiency of CNN relies on the quantity of 
images and classes, and the specific CNN model selected for image analysis.

Stem cell modeling
Modeling can help inform the fundamental principles and mechanisms of stem cell biology, as well as in optimization of 
parameters and experimental designs for manipulation of stem cells. AI may assist in the construction and refinement of 
these models by using ML algorithms to learn from experimental data and provide hypotheses or predictions. Researcher 
have developed an AI framework that can model the gene regulatory network of human ESCs using single-cell RNA 
sequencing data[40]. This methodology can help infer gene-to-gene causal relationships and identify essential regulators 
of human ESCs pluripotency[40]. Network-based screening using AI tools is a powerful method for modeling iPSCs. AI 
can be used to generate complex tissue structures with multiple cell types in the culture and maintenance of iPSCs, which 



Choudhery MS et al. AI in stem cell therapy

WJSC https://www.wjgnet.com 10 August 26, 2025 Volume 17 Issue 8

is necessary for organoid formation. These complex structures, which display the three-dimensional organization of 
tissues, offer more profound understanding of disease causes compared to simpler single-cell models[41].

Optimization of the delivery method
The method of stem cell delivery is another important aspect of the success of stem cell therapy. Stem cells can be 
delivered to sites of injury via infusion, injection, and direct transplantation. AI can assist clinicians in optimizing the 
delivery method by analyzing medical imaging scans. Two main AI applications are being developed to enhance stem 
cell distribution and performance. The primary impact is on the streamlining of stem cell production through the 
automation of AI-powered simulation and model-building processes. Secondly, mathematical modeling can be used to 
identify relationships between cellular features and their microenvironments; this can improve the efficiency of tissue 
production while keeping cell therapy safe. By utilizing this technology to enhance picture evaluation and processing, 
researchers were able to study stem cell shape, distinguish between healthy and diseased cells, and determine the 
different roles played by pluripotent stem cells. The current standard for validating monoclonality involves operating a 
microscope by hand, which is labor-intensive, expensive, and dependent on the operator’s skill set. Therefore, the basic 
idea is that an automated method can overcome observer bias[1]. One study that established the importance of this 
finding used human iPSC-derived cardiomyocytes to establish cell culture quality standards[42].

Drug discovery
The process of stem cell-related drug discovery involves the identification of molecules or other therapeutic agents that 
can stimulate tissue regeneration and facilitate the restoration of normal function. The molecular space contains an 
immense quantity of molecules, which offers both possibilities and difficulties in the field of drug discovery and 
development. Current drug development methods of stem cells are time-consuming and costly, as they require the 
synthesis and testing of a significant number of chemicals to find ideal drug candidates. Their advancement in drug 
development is limited by the lack of sophisticated technologies to test drug efficacy and safety. AI can overcome these 
problems by analyzing large datasets of chemical compounds to predict the most effective drug candidate for specific 
diseases. Various AI-based models such as DeltaVina, neural graph fingerprint, AtomNet, and DeepTox have been 
employed in drug discovery[7]. These models have improved drug discovery for stem cell-based therapies using pre-
trained models for predicting and analyzing the binding affinities between proteins and ligands, screening large chemical 
databases, predicting compound characteristics, and evaluating drug toxicity[43,44].

By leveraging AI, researchers can gain valuable insights into the functionality and potential efficacy of therapeutic 
targets, saving significant time and resources. Early detection of potential safety issues during drug research reduces the 
likelihood of unfavorable outcomes. AI can aid in the development of novel molecules tailored to specific therapeutic 
objectives. The integration of AI with iPSC technology in drug research and development has gained popularity, leading 
to innovative methods for patient evaluation and drug discovery. This collaboration extends beyond image analysis to 
include genomic data analysis and disease studies. These advances enable rapid selection and analysis of new drug 
candidates using virtual screening methodologies, transforming iPSC drug discovery research by enhancing under-
standing of their interactions and effectiveness. A groundbreaking study in 2015 utilized iPSC-derived cardiomyocytes to 
assess drug cardiotoxicity. ML differentiated between regular and irregular contractions and changes in membrane 
depolarization voltage following exposure to cardioactive drugs, achieving an accuracy rate above 80%[45]. Another 
study subsequently found that computational techniques are effective in predicting treatment responses and identifying 
internal changes after treatment with specific drugs and pharmaceutical toxicity in iPSC and organoid models[46]. 
Presently, AI technology is being utilized to create efficient, non-labeled drug screening devices with enormous capacity.

ETHICAL CONSIDERATIONS
The term “artificial intelligence ethics” refers to a set of values, principles, and techniques that use widely recognized 
norms of wrong and right to guide ethical behavior in the development and use of AI technologies[47]. AI systems have 
the potential to create a wide range of problems for people and society as a whole because of their abuse, poor design, or 
unanticipated negative effects. The creation and implementation of AI systems in healthcare can be guided by specific 
medically based ethical guidelines that already exist in the fields of medicine and research. The ethical development of 
technology in the scientific and computational areas, as well as decision-making in health care, are guided by these 
concepts. Transparency, bias mitigation, and patient privacy are guaranteed by professional codes of ethics specifically 
designed for AI applications, which must be adhered to by all individuals, including clinicians and ML model developers. 
Organizations should encourage stakeholders to increase trust and sustainability by establishing strong rules and 
transparent processes that ensure ethical conduct both internally and in partnerships. Even though regulations for 
medical AI are still in their early stages, it is imperative that regulatory agencies take the lead in monitoring the ethical 
standards of AI in healthcare and making sure that these technologies put patients’ needs first[48].

The use of human ESCs has been the subject of ongoing ethical debates because their derivation typically involves the 
destruction of human embryos, raising concerns about the moral status of embryonic life. In contrast, iPSCs, which are 
generated by reprogramming adult cells, do not involve embryos and therefore pose minimal ethical concerns. The 
incorporation of AI-driven technologies in stem cell therapy raises other crucial ethical concerns that require careful 
examination. Data privacy and security is a major issue. AI systems frequently depend on large volumes of private data, 
such as health records and genetic information. This prompts critical inquiries regarding consent, ownership, and the 
susceptibility of personal data to misuse. The protection of individual rights and the preservation of public trust 
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necessitate the establishment of strong regulations and open data handling practices[49]. Ensuring patient privacy and 
data security is vital when using AI in healthcare, as it involves handling sensitive personal information, raising concerns 
about potential data breaches and unauthorized access. Moreover, the transparency and explainability of AI algorithms, 
known as the “black box” issue, pose significant challenges in healthcare settings. It is crucial to ensure that AI systems 
perform fairly and without bias for them to function ethically. When data is collected, prepared, or analyzed in a method 
that is systematically inaccurate or significantly deviates from its real value, this is known as bias in data science. Various 
factors, including incomplete data, skewed sampling methodologies, or defects in data recording, can contribute to this 
phenomenon. Prejudiced results and healthcare choices might result from AI algorithms that are educated on biased data 
and then perpetuate these mistakes. AI models can be skewed for using biased data; developing models with the wrong 
AI algorithms; or having users interact with the model in a way that does not represent their actual needs. Data can 
reflect social prejudices (such as racism, bigotry, and classism) and historical biases that influence medical practice and 
health care delivery, making the use of data to train algorithms an ever-present difficulty. The data sets utilized to train 
AI models are a common source of bias in these algorithms. These datasets could unwittingly incorporate prejudices that 
mirror past injustices or systematic unfairness that was present throughout data collecting. Because of inequalities in 
health care access or differences in the diagnosis of specific diseases across populations, diagnostic algorithms trained on 
past patient data in electronic health records may unfairly include particular demographic groups (e.g., gender, race, 
socioeconomic status, religion, or disability) over others. The creation and use of algorithms are additional potential entry 
points for bias in AI models. Unintentionally reinforcing biases in the training data might occur because of algorithmic 
design decisions like feature selection or model weights. Once implemented in practical settings, this phenomenon, which 
is referred to as algorithmic bias, has the potential to maintain and worsen preexisting inequalities. Several factors can 
lead to biased medical data. Patients’ medical records are often incomplete or missing important details because they may 
have visited or tested at more than one location. Patient portals may not be completely utilized or results may not be 
appropriately reported by patients with poorer health or information technology literacy, which can further contribute to 
incomplete data. Recognizing and addressing possible unfairness in training data, validation, model creation, and 
deployment is crucial in addressing bias in AI models[48,49]. Lack of transparency can erode trust and dependability, 
particularly when evaluating the viability, efficacy, and safety of stem cell therapies. Healthcare professionals must 
prioritize patient welfare, acting as moral agents to ensure AI systems adhere to ethical standards, including the respect 
for human dignity, accountability, and sustainability[48,50,51].

Utilizing diverse datasets and continuous monitoring to mitigate bias is crucial for designing AI systems with fairness 
in mind. It will be essential to establish ethical guidelines and regulatory frameworks to navigate these intricate issues 
and guarantee that advances are consistent with societal values. Ultimately, it is imperative that we evaluate the societal 
implications of AI and its broader implications. It is critical that we guarantee that the advantages of these technologies 
are shared fairly and do not worsen inequalities, even though they may revolutionize healthcare and agriculture. 
Promoting the public good through AI applications requires involving a wide range of people, such as ethicists, policy-
makers, and community leaders[49].

LIMITATIONS AND FUTURE DIRECTIONS
Stem cell therapy holds significant potential for improving patient outcomes and expediting recovery. Nevertheless, 
several limitations remain, including inefficient production processes, high costs, complex procedures, and human errors. 
Understanding the genetic factors that influence tissue and organ development, including morphogenesis and patterning 
is crucial. Although some studies have identified key gene regulators in various regenerative contexts, the intricate 
processes governing organ formation remain poorly understood. AI-driven approaches and constructive algorithms offer 
considerable promise for elucidating these mechanisms, streamlining stem cell-based therapy development, and reducing 
human error. However, the absence of international standards for ensuring dataset quality and reliability poses a notable 
challenge. Restrictions on dataset access, incomplete reporting of findings, and inadequate methodology descriptions 
hinder reproducibility. The application of AI in stem cell biology encompasses diverse empirical methods, but these 
approaches often lack robust theoretical foundations. Advances in AI technology and high-quality data availability are 
expanding the potential to enhance and tailor AI algorithms for regenerative medicine. Integrating AI with nanotech-
nology, genome editing, and three-dimensional bio-printing may lead to groundbreaking advancements in personalized 
regenerative medicines[52-54].

Establishing rigorous benchmarking standards and criteria is crucial for effectively designing and evaluating AI 
systems. Standardized reporting methods will significantly enhance research quality in AI applications. It is essential that 
AI systems are validated to identify the best stem cell treatments and predict results. AI models need to be built with the 
ability to precisely evaluate treatment-related risks. It is crucial that regulatory agencies such as the food and 
development authority conduct thorough clinical trials on AI-assisted therapeutic choices to ensure that they are 
supported by strong data. In addition, there are security and privacy concerns regarding the massive volumes of patient 
data that will need to be collected and analyzed for AI. AI should not replace human judgment simply because it can 
handle massive quantities of data and make complicated predictions. In the decision-making process, medical profes-
sionals must continue to be a critical component, utilizing their expertise to interpret AI recommendations and make the 
ultimate treatment decisions. With a topic as complex and individualized as stem cell biology, it is crucial that AI works 
in tandem with healthcare professionals rather than taking their jobs. There will be concerns about responsibility as AI 
becomes more integrated into healthcare decision-making. Who is to blame if a choice made by an AI system has 
unintended consequences? Who is responsible for this: The designers, the doctors, or the AI? Making sure that account-
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ability is established and that responsibility for clinical decisions is clearly defined requires the development of clear 
guidelines. Although it is still in its infancy, the collaboration between AI and stem cell research holds tremendous 
promise. More accurate and efficient treatments for many diseases will be possible as AI continues to develos and reveals 
more about stem cell biology. With AI at the forefront of implementing these advancements in healthcare, stem cell 
therapies guided by the technology might soon be standard practice, providing individuals with individualized, 
regenerative treatments that have the potential to increase their longevity and enhance their quality of life[34,55]. In the 
near future, we can anticipate the emergence of numerous algorithms and tools that will assist in developing regenerative 
therapies and predicting outcomes, providing decision support for healthcare providers.

CONCLUSION
When combined, stem cell medicine and AI have the potential to treat diseases that were previously incurable. This could 
lead to a significant transformation of healthcare. Their combined strength holds the prospect of accelerating scientific 
advancement and bringing in a new era of regenerative and personalized medicine. Utilization of AI in stem cell 
therapeutics is a highly beneficial approach and can offer unique opportunity for improving stem cell quality, under-
standing stem cell behavior, characterizing stem cell types, culture and differentiation, predicting mortality risk, stem 
cell-based image classification, drug discovery, and optimization of the delivery methods. However, because AI is at its 
primitive stage, there is need to streamline the processes and define standard criteria for evaluating the quality and 
reliability of datasets while maintaining patient privacy and confidentiality. We can expect more tools soon that can 
improve the frontiers of regenerative medicine and assist in predicting treatment outcomes and providing decision 
support to healthcare providers.

FOOTNOTES
Author contributions: Choudhery MS, Arif T, and Mahmood R conceptualized the manuscript, wrote the original version of the 
manuscript, prepared, designed, and modified the figures; Arif T and Mahmood R revised the manuscript; Choudhery MS critically 
reviewed the manuscript. All authors reviewed the manuscript, read and agreed to the final version of the manuscript.

Conflict-of-interest statement: The authors report no relevant conflicts of interest for this article.

Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. 
It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to 
distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the 
original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country of origin: Pakistan

ORCID number: Mahmood S Choudhery 0000-0003-2038-4817; Ruhma Mahmood 0000-0001-8548-7927.

S-Editor: Wang JJ 
L-Editor: Filipodia 
P-Editor: Zhao S

REFERENCES
1 Umar TP. Artificial intelligence and improvement of stem cell delivery in healthcare. Electron J Gen Med 2023; 20: em516 [RCA] [DOI: 

10.29333/ejgm/13383] [FullText]
2 Goyal P, Malviya R. Developments in Stem Cell Therapy by Utilizing Artificial Intelligence. Curr Pharm Des 2023; 29: 2223-2228 [RCA] 

[PMID: 37818583 DOI: 10.2174/0113816128266696230926094423] [FullText]
3 Khaleel M, Jebrel A, Shwehdy DM. Artificial intelligence in computer science. Int J Electr Eng Sustain 2024; 2: 1-21 [DOI: 

10.5281/zenodo.10937515] [FullText]
4 Srinivasan M, Thangaraj SR, Ramasubramanian K, Thangaraj PP, Ramasubramanian KV. Exploring the Current Trends of Artificial 

Intelligence in Stem Cell Therapy: A Systematic Review. Cureus 2021; 13: e20083 [RCA] [PMID: 34873560 DOI: 10.7759/cureus.20083] 
[FullText] [Full Text(PDF)]

5 Tai MC. The impact of artificial intelligence on human society and bioethics. Tzu Chi Med J 2020; 32: 339-343 [RCA] [PMID: 33163378 DOI: 
10.4103/tcmj.tcmj_71_20] [FullText] [Full Text(PDF)]

6 Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, Liu X, Wu Y, Dong F, Qiu CW, Qiu J, Hua K, Su W, Wu J, Xu H, Han Y, Fu C, Yin Z, Liu M, 
Roepman R, Dietmann S, Virta M, Kengara F, Zhang Z, Zhang L, Zhao T, Dai J, Yang J, Lan L, Luo M, Liu Z, An T, Zhang B, He X, Cong S, 
Liu X, Zhang W, Lewis JP, Tiedje JM, Wang Q, An Z, Wang F, Zhang L, Huang T, Lu C, Cai Z, Wang F, Zhang J. Artificial intelligence: A 
powerful paradigm for scientific research. Innovation (Camb) 2021; 2: 100179 [RCA] [PMID: 34877560 DOI: 10.1016/j.xinn.2021.100179] 
[FullText] [Full Text(PDF)]
Nosrati H, Nosrati M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics (Basel) 2023; 8: 442 7

https://creativecommons.org/Licenses/by-nc/4.0/
http://orcid.org/0000-0003-2038-4817
http://orcid.org/0000-0003-2038-4817
http://orcid.org/0000-0001-8548-7927
http://orcid.org/0000-0001-8548-7927
https://referencecitationanalysis.com/articles?id=10.29333%2fejgm%2f13383
https://dx.doi.org/10.29333/ejgm/13383
https://dx.doi.org/10.29333/ejgm/13383
https://dx.doi.org/10.29333/ejgm/13383
https://referencecitationanalysis.com/InCiteJournalInfo?id=7643
https://referencecitationanalysis.com/articles?id=10.2174%2f0113816128266696230926094423
http://www.ncbi.nlm.nih.gov/pubmed/37818583
https://dx.doi.org/10.2174/0113816128266696230926094423
https://dx.doi.org/10.2174/0113816128266696230926094423
https://dx.doi.org/10.2174/0113816128266696230926094423
https://dx.doi.org/10.5281/zenodo.10937515
https://dx.doi.org/10.5281/zenodo.10937515
https://dx.doi.org/10.5281/zenodo.10937515
https://referencecitationanalysis.com/InCiteJournalInfo?id=164285
https://referencecitationanalysis.com/articles?id=10.7759%2fcureus.20083
http://www.ncbi.nlm.nih.gov/pubmed/34873560
https://dx.doi.org/10.7759/cureus.20083
https://dx.doi.org/10.7759/cureus.20083
https://dx.doi.org/10.7759/cureus.20083
https://rcastoragev2.blob.core.windows.net/07b7608d9e88650dc1710ed74ebd8a1b/PMC8635466.pdf
https://rcastoragev2.blob.core.windows.net/07b7608d9e88650dc1710ed74ebd8a1b/PMC8635466.pdf
https://rcastoragev2.blob.core.windows.net/07b7608d9e88650dc1710ed74ebd8a1b/PMC8635466.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=171506
https://referencecitationanalysis.com/articles?id=10.4103%2ftcmj.tcmj_71_20
http://www.ncbi.nlm.nih.gov/pubmed/33163378
https://dx.doi.org/10.4103/tcmj.tcmj_71_20
https://dx.doi.org/10.4103/tcmj.tcmj_71_20
https://dx.doi.org/10.4103/tcmj.tcmj_71_20
https://rcastoragev2.blob.core.windows.net/5d548e96dd4c556b4e76563b20ae8df1/PMC7605294.pdf
https://rcastoragev2.blob.core.windows.net/5d548e96dd4c556b4e76563b20ae8df1/PMC7605294.pdf
https://rcastoragev2.blob.core.windows.net/5d548e96dd4c556b4e76563b20ae8df1/PMC7605294.pdf
https://referencecitationanalysis.com/articles?id=10.1016%2fj.xinn.2021.100179
http://www.ncbi.nlm.nih.gov/pubmed/34877560
https://dx.doi.org/10.1016/j.xinn.2021.100179
https://dx.doi.org/10.1016/j.xinn.2021.100179
https://dx.doi.org/10.1016/j.xinn.2021.100179
https://rcastoragev2.blob.core.windows.net/71fe812c244f19bc01955d4b7b21621d/PMC8633405.pdf
https://rcastoragev2.blob.core.windows.net/71fe812c244f19bc01955d4b7b21621d/PMC8633405.pdf
https://rcastoragev2.blob.core.windows.net/71fe812c244f19bc01955d4b7b21621d/PMC8633405.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=163507


Choudhery MS et al. AI in stem cell therapy

WJSC https://www.wjgnet.com 13 August 26, 2025 Volume 17 Issue 8

[RCA] [PMID: 37754193 DOI: 10.3390/biomimetics8050442] [FullText]
8 Choudhery MS, Arif T, Mahmood R, Harris DT. Stem Cell-Based Acellular Therapy: Insight into Biogenesis, Bioengineering and 

Therapeutic Applications of Exosomes. Biomolecules 2024; 14: 792 [RCA] [PMID: 39062506 DOI: 10.3390/biom14070792] [FullText] [Full 
Text(PDF)]

9 Ramakrishna RR, Abd Hamid Z, Wan Zaki WMD, Huddin AB, Mathialagan R. Stem cell imaging through convolutional neural networks: 
current issues and future directions in artificial intelligence technology. PeerJ 2020; 8: e10346 [RCA] [PMID: 33240655 DOI: 
10.7717/peerj.10346] [FullText] [Full Text(PDF)]

10 Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. 
Stem Cell Rev Rep 2020; 16: 3-32 [RCA] [PMID: 31760627 DOI: 10.1007/s12015-019-09935-x] [FullText] [Full Text(PDF)]

11 Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm (2020) 2023; 4: e291 [RCA] [PMID: 
37337579 DOI: 10.1002/mco2.291] [FullText] [Full Text(PDF)]

12 Mukherjee S, Yadav G, Kumar R. Recent trends in stem cell-based therapies and applications of artificial intelligence in regenerative 
medicine. World J Stem Cells 2021; 13: 521-541 [RCA] [PMID: 34249226 DOI: 10.4252/wjsc.v13.i6.521] [FullText] [Full Text(PDF)]

13 Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to Machine Learning, Neural Networks, and Deep Learning. 
Transl Vis Sci Technol 2020; 9: 14 [RCA] [PMID: 32704420 DOI: 10.1167/tvst.9.2.14] [FullText] [Full Text(PDF)]

14 Soori M, Arezoo B, Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognit Rob 2023; 3: 
54-70 [DOI: 10.1016/j.cogr.2023.04.001] [FullText]

15 Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev 1959; 3: 210-229 [DOI: 10.1147/rd.33.0210] [Full
Text]

16 Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. 
Biol Cybern 1980; 36: 193-202 [RCA] [PMID: 7370364 DOI: 10.1007/BF00344251] [FullText]

17 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444 [RCA] [PMID: 26017442 DOI: 10.1038/nature14539] [FullText]
18 Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-fei L. ImageNet 

Large Scale Visual Recognition Challenge. Int J Comput Vis 2015; 115: 211-252 [RCA] [DOI: 10.1007/s11263-015-0816-y] [FullText]
19 Jović D, Preradović L, Jović F, Kremenović M, Lukić D, Antonić M, Unčanin N, Jović M. Optimizing adipose-derived stromal vascular 

fraction storage: Temperature and time impact on cell viability in regenerative medicine. Medicine (Baltimore) 2024; 103: e39859 [RCA] 
[PMID: 39312305 DOI: 10.1097/MD.0000000000039859] [FullText]

20 Khan W, Daud A, Khan K, Muhammad S, Haq R. Exploring the frontiers of deep learning and natural language processing: A comprehensive 
overview of key challenges and emerging trends. Nat Lang Process J 2023; 4: 100026 [DOI: 10.1016/j.nlp.2023.100026] [FullText]

21 Di Serio C, Scala S, Vicard P. Bayesian networks for cell differentiation process assessment. Stat 2020; 9: e287 [RCA] [DOI: 
10.1002/sta4.287] [FullText]

22 Locke S, Bashall A, Al-Adely S, Moore J, Wilson A, Kitchen GB. Natural language processing in medicine: A review. Trends Anaesth Crit 
Care 2021; 38: 4-9 [RCA] [DOI: 10.1016/j.tacc.2021.02.007] [FullText]

23 Yang ZR. Biological applications of support vector machines. Brief Bioinform 2004; 5: 328-338 [RCA] [PMID: 15606969 DOI: 
10.1093/bib/5.4.328] [FullText]

24 Bian Q, Cahan P. Computational Tools for Stem Cell Biology. Trends Biotechnol 2016; 34: 993-1009 [RCA] [PMID: 27318512 DOI: 
10.1016/j.tibtech.2016.05.010] [FullText]

25 Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics 2012; 99: 323-329 [RCA] [PMID: 22546560 DOI: 
10.1016/j.ygeno.2012.04.003] [FullText]

26 Zaman WSWK, Karman SB, Ramlan EI, Tukimin SNB, Ahmad MYB. Machine Learning in Stem Cells Research: Application for Biosafety 
and Bioefficacy Assessment. IEEE Access 2021; 9: 25926-25945 [DOI: 10.1109/ACCESS.2021.3056553] [FullText]

27 Kotsiantis SB. Decision trees: a recent overview. Artif Intell Rev 2013; 39: 261-283 [RCA] [DOI: 10.1007/s10462-011-9272-4] [FullText]
28 Avali VR, Cooper GF, Gopalakrishnan V. Application of Bayesian logistic regression to mining biomedical data. AMIA Annu Symp Proc 2014; 

2014: 266-273 [RCA] [PMID: 25954328] [FullText]
29 Suyal M, Goyal P. A Review on Analysis of K-Nearest Neighbor Classification Machine Learning Algorithms based on Supervised Learning. 

Int J Eng Trends Technol 2022; 70: 43-48 [DOI: 10.14445/22315381/IJETT-V70I7P205] [FullText]
30 Joy DA, Libby ARG, McDevitt TC. Deep neural net tracking of human pluripotent stem cells reveals intrinsic behaviors directing 

morphogenesis. Stem Cell Reports 2021; 16: 1317-1330 [RCA] [PMID: 33979602 DOI: 10.1016/j.stemcr.2021.04.008] [FullText] [Full Text
(PDF)]

31 Mota SM, Rogers RE, Haskell AW, McNeill EP, Kaunas R, Gregory CA, Giger ML, Maitland KC. Automated mesenchymal stem cell 
segmentation and machine learning-based phenotype classification using morphometric and textural analysis. J Med Imaging (Bellingham) 
2021; 8: 014503 [RCA] [PMID: 33542945 DOI: 10.1117/1.JMI.8.1.014503] [FullText] [Full Text(PDF)]

32 Choudhery MS. Strategies to improve regenerative potential of mesenchymal stem cells. World J Stem Cells 2021; 13: 1845-1862 [RCA] 
[PMID: 35069986 DOI: 10.4252/wjsc.v13.i12.1845] [FullText] [Full Text(PDF)]

33 Issa J, Abou Chaar M, Kempisty B, Gasiorowski L, Olszewski R, Mozdziak P, Dyszkiewicz-Konwińska M. Artificial-Intelligence-Based 
Imaging Analysis of Stem Cells: A Systematic Scoping Review. Biology (Basel) 2022; 11: 1412 [RCA] [PMID: 36290317 DOI: 
10.3390/biology11101412] [FullText] [Full Text(PDF)]

34 Chen YM, Hsiao TH, Lin CH, Fann YC. Unlocking precision medicine: clinical applications of integrating health records, genetics, and 
immunology through artificial intelligence. J Biomed Sci 2025; 32: 16 [RCA] [PMID: 39915780 DOI: 10.1186/s12929-024-01110-w] [Full
Text]

35 Shende P, Devlekar NP. A Review on the Role of Artificial Intelligence in Stem Cell Therapy: An Initiative for Modern Medicines. Curr 
Pharm Biotechnol 2021; 22: 1156-1163 [RCA] [PMID: 33030129 DOI: 10.2174/1389201021666201007122524] [FullText]

36 Choudhery MS, Mahmood R. Insight into generation of induced mesenchymal stem cells from induced pluripotent cells. World J Stem Cells 
2022; 14: 142-145 [RCA] [PMID: 35126833 DOI: 10.4252/wjsc.v14.i1.142] [FullText] [Full Text(PDF)]

37 Coronnello C, Francipane MG. Moving Towards Induced Pluripotent Stem Cell-based Therapies with Artificial Intelligence and Machine 
Learning. Stem Cell Rev Rep 2022; 18: 559-569 [RCA] [PMID: 34843066 DOI: 10.1007/s12015-021-10302-y] [FullText] [Full Text(PDF)]
Hassan E, Hossain MS, Saber A, Elmougy S, Ghoneim A, Muhammad G. A quantum convolutional network and ResNet (50)-based 
classification architecture for the MNIST medical dataset. Biomed Signal Process Control 2024; 87: 105560 [DOI: 

38

https://referencecitationanalysis.com/articles?id=10.3390%2fbiomimetics8050442
http://www.ncbi.nlm.nih.gov/pubmed/37754193
https://dx.doi.org/10.3390/biomimetics8050442
https://dx.doi.org/10.3390/biomimetics8050442
https://dx.doi.org/10.3390/biomimetics8050442
https://referencecitationanalysis.com/InCiteJournalInfo?id=3676
https://referencecitationanalysis.com/articles?id=10.3390%2fbiom14070792
http://www.ncbi.nlm.nih.gov/pubmed/39062506
https://dx.doi.org/10.3390/biom14070792
https://dx.doi.org/10.3390/biom14070792
https://dx.doi.org/10.3390/biom14070792
https://rcastoragev2.blob.core.windows.net/c2ea9f59318bd8fd01c02d5295adf2e6/biomolecules-14-00792.pdf
https://rcastoragev2.blob.core.windows.net/c2ea9f59318bd8fd01c02d5295adf2e6/biomolecules-14-00792.pdf
https://rcastoragev2.blob.core.windows.net/c2ea9f59318bd8fd01c02d5295adf2e6/biomolecules-14-00792.pdf
https://rcastoragev2.blob.core.windows.net/c2ea9f59318bd8fd01c02d5295adf2e6/biomolecules-14-00792.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=18900
https://referencecitationanalysis.com/articles?id=10.7717%2fpeerj.10346
http://www.ncbi.nlm.nih.gov/pubmed/33240655
https://dx.doi.org/10.7717/peerj.10346
https://dx.doi.org/10.7717/peerj.10346
https://dx.doi.org/10.7717/peerj.10346
https://rcastoragev2.blob.core.windows.net/d3659277f20c7266b1f598cf183a53c8/PMC7680049.pdf
https://rcastoragev2.blob.core.windows.net/d3659277f20c7266b1f598cf183a53c8/PMC7680049.pdf
https://rcastoragev2.blob.core.windows.net/d3659277f20c7266b1f598cf183a53c8/PMC7680049.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=21606
https://referencecitationanalysis.com/articles?id=10.1007%2fs12015-019-09935-x
http://www.ncbi.nlm.nih.gov/pubmed/31760627
https://dx.doi.org/10.1007/s12015-019-09935-x
https://dx.doi.org/10.1007/s12015-019-09935-x
https://dx.doi.org/10.1007/s12015-019-09935-x
https://rcastoragev2.blob.core.windows.net/11e69c93ac9b99b8d43b9f34aa77e218/PMC6987053.pdf
https://rcastoragev2.blob.core.windows.net/11e69c93ac9b99b8d43b9f34aa77e218/PMC6987053.pdf
https://rcastoragev2.blob.core.windows.net/11e69c93ac9b99b8d43b9f34aa77e218/PMC6987053.pdf
https://referencecitationanalysis.com/articles?id=10.1002%2fmco2.291
http://www.ncbi.nlm.nih.gov/pubmed/37337579
https://dx.doi.org/10.1002/mco2.291
https://dx.doi.org/10.1002/mco2.291
https://dx.doi.org/10.1002/mco2.291
https://rcastoragev2.blob.core.windows.net/89fdab92b826c897088aab6d50bd7710/MCO2-4-e291.pdf
https://rcastoragev2.blob.core.windows.net/89fdab92b826c897088aab6d50bd7710/MCO2-4-e291.pdf
https://rcastoragev2.blob.core.windows.net/89fdab92b826c897088aab6d50bd7710/MCO2-4-e291.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=23605
https://referencecitationanalysis.com/articles?id=10.4252%2fwjsc.v13.i6.521
http://www.ncbi.nlm.nih.gov/pubmed/34249226
https://dx.doi.org/10.4252/wjsc.v13.i6.521
https://dx.doi.org/10.4252/wjsc.v13.i6.521
https://dx.doi.org/10.4252/wjsc.v13.i6.521
https://www.f6publishing.com/forms/main/DownLoadFile.aspx?Type=Digital&TypeId=1&id=10.4252%2fwjsc.v13.i6.521&FilePath=E196400561C95B668E2C232BF8BCD50160C3B026D9350DFFADE9C21EDF79AC1E91D04972788A1148088FDA4A7B87934161F765B3312E160A
https://www.f6publishing.com/forms/main/DownLoadFile.aspx?Type=Digital&TypeId=1&id=10.4252%2fwjsc.v13.i6.521&FilePath=E196400561C95B668E2C232BF8BCD50160C3B026D9350DFFADE9C21EDF79AC1E91D04972788A1148088FDA4A7B87934161F765B3312E160A
https://www.f6publishing.com/forms/main/DownLoadFile.aspx?Type=Digital&TypeId=1&id=10.4252%2fwjsc.v13.i6.521&FilePath=E196400561C95B668E2C232BF8BCD50160C3B026D9350DFFADE9C21EDF79AC1E91D04972788A1148088FDA4A7B87934161F765B3312E160A
https://referencecitationanalysis.com/InCiteJournalInfo?id=22927
https://referencecitationanalysis.com/articles?id=10.1167%2ftvst.9.2.14
http://www.ncbi.nlm.nih.gov/pubmed/32704420
https://dx.doi.org/10.1167/tvst.9.2.14
https://dx.doi.org/10.1167/tvst.9.2.14
https://dx.doi.org/10.1167/tvst.9.2.14
https://rcastoragev2.blob.core.windows.net/2c52f9557eb93d9a11e95df9780c55f4/PMC7347027.pdf
https://rcastoragev2.blob.core.windows.net/2c52f9557eb93d9a11e95df9780c55f4/PMC7347027.pdf
https://rcastoragev2.blob.core.windows.net/2c52f9557eb93d9a11e95df9780c55f4/PMC7347027.pdf
https://dx.doi.org/10.1016/j.cogr.2023.04.001
https://dx.doi.org/10.1016/j.cogr.2023.04.001
https://dx.doi.org/10.1016/j.cogr.2023.04.001
https://dx.doi.org/10.1147/rd.33.0210
https://dx.doi.org/10.1147/rd.33.0210
https://dx.doi.org/10.1147/rd.33.0210
https://referencecitationanalysis.com/articles?id=10.1007%2fbf00344251
http://www.ncbi.nlm.nih.gov/pubmed/7370364
https://dx.doi.org/10.1007/BF00344251
https://dx.doi.org/10.1007/BF00344251
https://dx.doi.org/10.1007/BF00344251
https://referencecitationanalysis.com/InCiteJournalInfo?id=17166
https://referencecitationanalysis.com/articles?id=10.1038%2fnature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://dx.doi.org/10.1038/nature14539
https://dx.doi.org/10.1038/nature14539
https://dx.doi.org/10.1038/nature14539
https://referencecitationanalysis.com/InCiteJournalInfo?id=11510
https://referencecitationanalysis.com/articles?id=10.1007%2fs11263-015-0816-y
https://dx.doi.org/10.1007/s11263-015-0816-y
https://dx.doi.org/10.1007/s11263-015-0816-y
https://dx.doi.org/10.1007/s11263-015-0816-y
https://referencecitationanalysis.com/InCiteJournalInfo?id=16719
https://referencecitationanalysis.com/articles?id=10.1097%2fmd.0000000000039859
http://www.ncbi.nlm.nih.gov/pubmed/39312305
https://dx.doi.org/10.1097/MD.0000000000039859
https://dx.doi.org/10.1097/MD.0000000000039859
https://dx.doi.org/10.1097/MD.0000000000039859
https://dx.doi.org/10.1016/j.nlp.2023.100026
https://dx.doi.org/10.1016/j.nlp.2023.100026
https://dx.doi.org/10.1016/j.nlp.2023.100026
https://referencecitationanalysis.com/articles?id=10.1002%2fsta4.287
https://dx.doi.org/10.1002/sta4.287
https://dx.doi.org/10.1002/sta4.287
https://dx.doi.org/10.1002/sta4.287
https://referencecitationanalysis.com/articles?id=10.1016%2fj.tacc.2021.02.007
https://dx.doi.org/10.1016/j.tacc.2021.02.007
https://dx.doi.org/10.1016/j.tacc.2021.02.007
https://dx.doi.org/10.1016/j.tacc.2021.02.007
https://referencecitationanalysis.com/InCiteJournalInfo?id=4280
https://referencecitationanalysis.com/articles?id=10.1093%2fbib%2f5.4.328
http://www.ncbi.nlm.nih.gov/pubmed/15606969
https://dx.doi.org/10.1093/bib/5.4.328
https://dx.doi.org/10.1093/bib/5.4.328
https://dx.doi.org/10.1093/bib/5.4.328
https://referencecitationanalysis.com/InCiteJournalInfo?id=22914
https://referencecitationanalysis.com/articles?id=10.1016%2fj.tibtech.2016.05.010
http://www.ncbi.nlm.nih.gov/pubmed/27318512
https://dx.doi.org/10.1016/j.tibtech.2016.05.010
https://dx.doi.org/10.1016/j.tibtech.2016.05.010
https://dx.doi.org/10.1016/j.tibtech.2016.05.010
https://referencecitationanalysis.com/InCiteJournalInfo?id=9686
https://referencecitationanalysis.com/articles?id=10.1016%2fj.ygeno.2012.04.003
http://www.ncbi.nlm.nih.gov/pubmed/22546560
https://dx.doi.org/10.1016/j.ygeno.2012.04.003
https://dx.doi.org/10.1016/j.ygeno.2012.04.003
https://dx.doi.org/10.1016/j.ygeno.2012.04.003
https://dx.doi.org/10.1109/ACCESS.2021.3056553
https://dx.doi.org/10.1109/ACCESS.2021.3056553
https://dx.doi.org/10.1109/ACCESS.2021.3056553
https://referencecitationanalysis.com/InCiteJournalInfo?id=2805
https://referencecitationanalysis.com/articles?id=10.1007%2fs10462-011-9272-4
https://dx.doi.org/10.1007/s10462-011-9272-4
https://dx.doi.org/10.1007/s10462-011-9272-4
https://dx.doi.org/10.1007/s10462-011-9272-4
https://referencecitationanalysis.com/articles?id=pmid%2f25954328
http://www.ncbi.nlm.nih.gov/pubmed/25954328
https://dx.doi.org/
https://dx.doi.org/
https://dx.doi.org/10.14445/22315381/IJETT-V70I7P205
https://dx.doi.org/10.14445/22315381/IJETT-V70I7P205
https://dx.doi.org/10.14445/22315381/IJETT-V70I7P205
https://referencecitationanalysis.com/InCiteJournalInfo?id=21542
https://referencecitationanalysis.com/articles?id=10.1016%2fj.stemcr.2021.04.008
http://www.ncbi.nlm.nih.gov/pubmed/33979602
https://dx.doi.org/10.1016/j.stemcr.2021.04.008
https://dx.doi.org/10.1016/j.stemcr.2021.04.008
https://dx.doi.org/10.1016/j.stemcr.2021.04.008
https://rcastoragev2.blob.core.windows.net/212b502f63849c19c768f55decab70bf/PMC8185472.pdf
https://rcastoragev2.blob.core.windows.net/212b502f63849c19c768f55decab70bf/PMC8185472.pdf
https://rcastoragev2.blob.core.windows.net/212b502f63849c19c768f55decab70bf/PMC8185472.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=167161
https://referencecitationanalysis.com/articles?id=10.1117%2f1.jmi.8.1.014503
http://www.ncbi.nlm.nih.gov/pubmed/33542945
https://dx.doi.org/10.1117/1.JMI.8.1.014503
https://dx.doi.org/10.1117/1.JMI.8.1.014503
https://dx.doi.org/10.1117/1.JMI.8.1.014503
https://rcastoragev2.blob.core.windows.net/2f9dbe861045c91d9bd1044f9e15ee1e/PMC7849042.pdf
https://rcastoragev2.blob.core.windows.net/2f9dbe861045c91d9bd1044f9e15ee1e/PMC7849042.pdf
https://rcastoragev2.blob.core.windows.net/2f9dbe861045c91d9bd1044f9e15ee1e/PMC7849042.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=23605
https://referencecitationanalysis.com/articles?id=10.4252%2fwjsc.v13.i12.1845
http://www.ncbi.nlm.nih.gov/pubmed/35069986
https://dx.doi.org/10.4252/wjsc.v13.i12.1845
https://dx.doi.org/10.4252/wjsc.v13.i12.1845
https://dx.doi.org/10.4252/wjsc.v13.i12.1845
https://www.f6publishing.com/forms/main/DownLoadFile.aspx?Type=Digital&TypeId=1&id=10.4252%2fwjsc.v13.i12.1845&FilePath=656A08775D375F703FF99AC065247B03A886F27F0014A5A44CD34A15C995A0D0A750D01A623E71527D5DD4EDACFDDC644E2272589934BA20
https://www.f6publishing.com/forms/main/DownLoadFile.aspx?Type=Digital&TypeId=1&id=10.4252%2fwjsc.v13.i12.1845&FilePath=656A08775D375F703FF99AC065247B03A886F27F0014A5A44CD34A15C995A0D0A750D01A623E71527D5DD4EDACFDDC644E2272589934BA20
https://www.f6publishing.com/forms/main/DownLoadFile.aspx?Type=Digital&TypeId=1&id=10.4252%2fwjsc.v13.i12.1845&FilePath=656A08775D375F703FF99AC065247B03A886F27F0014A5A44CD34A15C995A0D0A750D01A623E71527D5DD4EDACFDDC644E2272589934BA20
https://referencecitationanalysis.com/articles?id=10.3390%2fbiology11101412
http://www.ncbi.nlm.nih.gov/pubmed/36290317
https://dx.doi.org/10.3390/biology11101412
https://dx.doi.org/10.3390/biology11101412
https://dx.doi.org/10.3390/biology11101412
https://rcastoragev2.blob.core.windows.net/213646fc1c8e7e827a81ff9d3d78f7af/PMC9598508.pdf
https://rcastoragev2.blob.core.windows.net/213646fc1c8e7e827a81ff9d3d78f7af/PMC9598508.pdf
https://rcastoragev2.blob.core.windows.net/213646fc1c8e7e827a81ff9d3d78f7af/PMC9598508.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=12389
https://referencecitationanalysis.com/articles?id=10.1186%2fs12929-024-01110-w
http://www.ncbi.nlm.nih.gov/pubmed/39915780
https://dx.doi.org/10.1186/s12929-024-01110-w
https://dx.doi.org/10.1186/s12929-024-01110-w
https://dx.doi.org/10.1186/s12929-024-01110-w
https://referencecitationanalysis.com/InCiteJournalInfo?id=7378
https://referencecitationanalysis.com/InCiteJournalInfo?id=7378
https://referencecitationanalysis.com/articles?id=10.2174%2f1389201021666201007122524
http://www.ncbi.nlm.nih.gov/pubmed/33030129
https://dx.doi.org/10.2174/1389201021666201007122524
https://dx.doi.org/10.2174/1389201021666201007122524
https://dx.doi.org/10.2174/1389201021666201007122524
https://referencecitationanalysis.com/InCiteJournalInfo?id=23605
https://referencecitationanalysis.com/articles?id=10.4252%2fwjsc.v14.i1.142
http://www.ncbi.nlm.nih.gov/pubmed/35126833
https://dx.doi.org/10.4252/wjsc.v14.i1.142
https://dx.doi.org/10.4252/wjsc.v14.i1.142
https://dx.doi.org/10.4252/wjsc.v14.i1.142
https://www.f6publishing.com/forms/main/DownLoadFile.aspx?Type=Digital&TypeId=1&id=10.4252%2fwjsc.v14.i1.142&FilePath=9FB28821F6BF41AE3E51B7B63031494D0875C788C1785033EDD90AFED6D88537C930EFF5D722F2ECA002AA96E619F5F1DFA1286A36C4217D
https://www.f6publishing.com/forms/main/DownLoadFile.aspx?Type=Digital&TypeId=1&id=10.4252%2fwjsc.v14.i1.142&FilePath=9FB28821F6BF41AE3E51B7B63031494D0875C788C1785033EDD90AFED6D88537C930EFF5D722F2ECA002AA96E619F5F1DFA1286A36C4217D
https://www.f6publishing.com/forms/main/DownLoadFile.aspx?Type=Digital&TypeId=1&id=10.4252%2fwjsc.v14.i1.142&FilePath=9FB28821F6BF41AE3E51B7B63031494D0875C788C1785033EDD90AFED6D88537C930EFF5D722F2ECA002AA96E619F5F1DFA1286A36C4217D
https://referencecitationanalysis.com/InCiteJournalInfo?id=21606
https://referencecitationanalysis.com/articles?id=10.1007%2fs12015-021-10302-y
http://www.ncbi.nlm.nih.gov/pubmed/34843066
https://dx.doi.org/10.1007/s12015-021-10302-y
https://dx.doi.org/10.1007/s12015-021-10302-y
https://dx.doi.org/10.1007/s12015-021-10302-y
https://rcastoragev2.blob.core.windows.net/839d9d325ee095c9192d5b92fb09dba6/PMC8930923.pdf
https://rcastoragev2.blob.core.windows.net/839d9d325ee095c9192d5b92fb09dba6/PMC8930923.pdf
https://rcastoragev2.blob.core.windows.net/839d9d325ee095c9192d5b92fb09dba6/PMC8930923.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=3665


Choudhery MS et al. AI in stem cell therapy

WJSC https://www.wjgnet.com 14 August 26, 2025 Volume 17 Issue 8

10.1016/j.bspc.2023.105560] [FullText]
39 Shouval R, Labopin M, Bondi O, Mishan-Shamay H, Shimoni A, Ciceri F, Esteve J, Giebel S, Gorin NC, Schmid C, Polge E, Aljurf M, 

Kroger N, Craddock C, Bacigalupo A, Cornelissen JJ, Baron F, Unger R, Nagler A, Mohty M. Prediction of Allogeneic Hematopoietic Stem-
Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and 
Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study. J Clin Oncol 2015; 33: 3144-3151 [RCA] [PMID: 
26240227 DOI: 10.1200/JCO.2014.59.1339] [FullText]

40 Del Sol A, Jung S. The Importance of Computational Modeling in Stem Cell Research. Trends Biotechnol 2021; 39: 126-136 [RCA] [PMID: 
32800604 DOI: 10.1016/j.tibtech.2020.07.006] [FullText]

41 Vo QD, Saito Y, Ida T, Nakamura K, Yuasa S. The use of artificial intelligence in induced pluripotent stem cell-based technology over 10-year 
period: A systematic scoping review. PLoS One 2024; 19: e0302537 [RCA] [PMID: 38771829 DOI: 10.1371/journal.pone.0302537] [FullText]

42 Orita K, Sawada K, Koyama R, Ikegaya Y. Deep learning-based quality control of cultured human-induced pluripotent stem cell-derived 
cardiomyocytes. J Pharmacol Sci 2019; 140: 313-316 [RCA] [PMID: 31113731 DOI: 10.1016/j.jphs.2019.04.008] [FullText]

43 Tripathi A, Misra K, Dhanuka R, Singh JP. Artificial Intelligence in Accelerating Drug Discovery and Development. Recent Pat Biotechnol 
2023; 17: 9-23 [RCA] [PMID: 35927896 DOI: 10.2174/1872208316666220802151129] [FullText]

44 Sahoo A, Dar GM. A comprehensive review on the application of artificial intelligence in drug discovery. Appl Biol Chem J 2021; 2: 34-48 
[DOI: 10.52679/tabcj.2021.0007] [FullText]

45 Lee EK, Kurokawa YK, Tu R, George SC, Khine M. Machine learning plus optical flow: a simple and sensitive method to detect cardioactive 
drugs. Sci Rep 2015; 5: 11817 [RCA] [PMID: 26139150 DOI: 10.1038/srep11817] [FullText] [Full Text(PDF)]

46 Matsuda N, Odawara A, Kinoshita K, Okamura A, Shirakawa T, Suzuki I. Raster plots machine learning to predict the seizure liability of 
drugs and to identify drugs. Sci Rep 2022; 12: 2281 [RCA] [PMID: 35145132 DOI: 10.1038/s41598-022-05697-8] [FullText] [Full Text(PDF)]

47 Bawack RE, Fosso Wamba S, Carillo KD. A framework for understanding artificial intelligence research: insights from practice. J Enterp Inf 
Manag 2021; 34: 645-678 [RCA] [DOI: 10.1108/JEIM-07-2020-0284] [FullText]

48 Hanna MG, Pantanowitz L, Jackson B, Palmer O, Visweswaran S, Pantanowitz J, Deebajah M, Rashidi HH. Ethical and Bias Considerations 
in Artificial Intelligence/Machine Learning. Mod Pathol 2025; 38: 100686 [RCA] [PMID: 39694331 DOI: 10.1016/j.modpat.2024.100686] 
[FullText]

49 Dara M, Azarpira N. Ethical Considerations Emerge from Artificial Intelligence (AI) in Biotechnology. Avicenna J Med Biotechnol 2025; 17: 
80-81 [RCA] [PMID: 40094090 DOI: 10.18502/ajmb.v17i1.17680] [FullText] [Full Text(PDF)]

50 Yadav N, Pandey S, Gupta A, Dudani P, Gupta S, Rangarajan K. Data Privacy in Healthcare: In the Era of Artificial Intelligence. Indian 
Dermatol Online J 2023; 14: 788-792 [RCA] [PMID: 38099022 DOI: 10.4103/idoj.idoj_543_23] [FullText] [Full Text(PDF)]

51 Aufieri R, Mastrocola F. Balancing Technology, Ethics, and Society: A Review of Artificial Intelligence in Embryo Selection. Information 
2025; 16: 18 [DOI: 10.3390/info16010018] [FullText]

52 Erdoğan S. Integration of Artificial Intelligence and Genome Editing System for Determining the Treatment of Genetic Disorders. Balkan Med 
J 2024; 41: 419-420 [RCA] [PMID: 39148326 DOI: 10.4274/balkanmedj.galenos.2024.2024-080824] [FullText]

53 Olawade DB, Ige AO, Olaremu AG, Ijiwade JO, Adeola AO. The synergy of artificial intelligence and nanotechnology towards advancing 
innovation and sustainability - A mini-review. Nano Trends 2024; 8: 100052 [DOI: 10.1016/j.nwnano.2024.100052] [FullText]

54 Liang Z, Liao X, Zong H, Zeng X, Liu H, Wu C, Keremane K, Poudel B, Yin J, Wang K, Qian J. Pioneering the future of dentistry: AI-driven 
3D bioprinting for next-generation clinical applications. Transl Dental Res 2025; 1: 100005 [DOI: 10.1016/j.tdr.2024.100005] [FullText]

55 Bhavsar S, Mishra R, Srivastava A. Significance of artificial intelligence in stem cell therapy. J Stem Cell Res Ther 2024; 9: 21-24 [DOI: 
10.15406/jsrt.2024.09.00168] [FullText]

https://dx.doi.org/10.1016/j.bspc.2023.105560
https://dx.doi.org/10.1016/j.bspc.2023.105560
https://dx.doi.org/10.1016/j.bspc.2023.105560
https://referencecitationanalysis.com/InCiteJournalInfo?id=169636
https://referencecitationanalysis.com/articles?id=10.1200%2fjco.2014.59.1339
http://www.ncbi.nlm.nih.gov/pubmed/26240227
https://dx.doi.org/10.1200/JCO.2014.59.1339
https://dx.doi.org/10.1200/JCO.2014.59.1339
https://dx.doi.org/10.1200/JCO.2014.59.1339
https://referencecitationanalysis.com/InCiteJournalInfo?id=22914
https://referencecitationanalysis.com/articles?id=10.1016%2fj.tibtech.2020.07.006
http://www.ncbi.nlm.nih.gov/pubmed/32800604
https://dx.doi.org/10.1016/j.tibtech.2020.07.006
https://dx.doi.org/10.1016/j.tibtech.2020.07.006
https://dx.doi.org/10.1016/j.tibtech.2020.07.006
https://referencecitationanalysis.com/InCiteJournalInfo?id=19324
https://referencecitationanalysis.com/articles?id=10.1371%2fjournal.pone.0302537
http://www.ncbi.nlm.nih.gov/pubmed/38771829
https://dx.doi.org/10.1371/journal.pone.0302537
https://dx.doi.org/10.1371/journal.pone.0302537
https://dx.doi.org/10.1371/journal.pone.0302537
https://referencecitationanalysis.com/InCiteJournalInfo?id=15209
https://referencecitationanalysis.com/articles?id=10.1016%2fj.jphs.2019.04.008
http://www.ncbi.nlm.nih.gov/pubmed/31113731
https://dx.doi.org/10.1016/j.jphs.2019.04.008
https://dx.doi.org/10.1016/j.jphs.2019.04.008
https://dx.doi.org/10.1016/j.jphs.2019.04.008
https://referencecitationanalysis.com/InCiteJournalInfo?id=168394
https://referencecitationanalysis.com/articles?id=10.2174%2f1872208316666220802151129
http://www.ncbi.nlm.nih.gov/pubmed/35927896
https://dx.doi.org/10.2174/1872208316666220802151129
https://dx.doi.org/10.2174/1872208316666220802151129
https://dx.doi.org/10.2174/1872208316666220802151129
https://dx.doi.org/10.52679/tabcj.2021.0007
https://dx.doi.org/10.52679/tabcj.2021.0007
https://dx.doi.org/10.52679/tabcj.2021.0007
https://referencecitationanalysis.com/InCiteJournalInfo?id=20954
https://referencecitationanalysis.com/articles?id=10.1038%2fsrep11817
http://www.ncbi.nlm.nih.gov/pubmed/26139150
https://dx.doi.org/10.1038/srep11817
https://dx.doi.org/10.1038/srep11817
https://dx.doi.org/10.1038/srep11817
https://rcastoragev2.blob.core.windows.net/a5a25346aa7420635fcb46731507c2f6/PMC4490343.pdf
https://rcastoragev2.blob.core.windows.net/a5a25346aa7420635fcb46731507c2f6/PMC4490343.pdf
https://rcastoragev2.blob.core.windows.net/a5a25346aa7420635fcb46731507c2f6/PMC4490343.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=20954
https://referencecitationanalysis.com/articles?id=10.1038%2fs41598-022-05697-8
http://www.ncbi.nlm.nih.gov/pubmed/35145132
https://dx.doi.org/10.1038/s41598-022-05697-8
https://dx.doi.org/10.1038/s41598-022-05697-8
https://dx.doi.org/10.1038/s41598-022-05697-8
https://rcastoragev2.blob.core.windows.net/fd8632730834b0ff496dbfc8e6f3a0e9/PMC8831568.pdf
https://rcastoragev2.blob.core.windows.net/fd8632730834b0ff496dbfc8e6f3a0e9/PMC8831568.pdf
https://rcastoragev2.blob.core.windows.net/fd8632730834b0ff496dbfc8e6f3a0e9/PMC8831568.pdf
https://referencecitationanalysis.com/articles?id=10.1108%2fjeim-07-2020-0284
https://dx.doi.org/10.1108/JEIM-07-2020-0284
https://dx.doi.org/10.1108/JEIM-07-2020-0284
https://dx.doi.org/10.1108/JEIM-07-2020-0284
https://referencecitationanalysis.com/InCiteJournalInfo?id=17366
https://referencecitationanalysis.com/articles?id=10.1016%2fj.modpat.2024.100686
http://www.ncbi.nlm.nih.gov/pubmed/39694331
https://dx.doi.org/10.1016/j.modpat.2024.100686
https://dx.doi.org/10.1016/j.modpat.2024.100686
https://dx.doi.org/10.1016/j.modpat.2024.100686
https://referencecitationanalysis.com/InCiteJournalInfo?id=172518
https://referencecitationanalysis.com/articles?id=10.18502%2fajmb.v17i1.17680
http://www.ncbi.nlm.nih.gov/pubmed/40094090
https://dx.doi.org/10.18502/ajmb.v17i1.17680
https://dx.doi.org/10.18502/ajmb.v17i1.17680
https://dx.doi.org/10.18502/ajmb.v17i1.17680
https://rcastoragev2.blob.core.windows.net/f208de58b7b8d65a1017258e41cc9a6f/AJMB-17-80.PMC11910024.pdf
https://rcastoragev2.blob.core.windows.net/f208de58b7b8d65a1017258e41cc9a6f/AJMB-17-80.PMC11910024.pdf
https://rcastoragev2.blob.core.windows.net/f208de58b7b8d65a1017258e41cc9a6f/AJMB-17-80.PMC11910024.pdf
https://referencecitationanalysis.com/InCiteJournalInfo?id=165617
https://referencecitationanalysis.com/InCiteJournalInfo?id=165617
https://referencecitationanalysis.com/articles?id=10.4103%2fidoj.idoj_543_23
http://www.ncbi.nlm.nih.gov/pubmed/38099022
https://dx.doi.org/10.4103/idoj.idoj_543_23
https://dx.doi.org/10.4103/idoj.idoj_543_23
https://dx.doi.org/10.4103/idoj.idoj_543_23
https://rcastoragev2.blob.core.windows.net/e41249624bfe0a75d660186922248f63/IDOJ-14-788.PMC10718098.pdf
https://rcastoragev2.blob.core.windows.net/e41249624bfe0a75d660186922248f63/IDOJ-14-788.PMC10718098.pdf
https://rcastoragev2.blob.core.windows.net/e41249624bfe0a75d660186922248f63/IDOJ-14-788.PMC10718098.pdf
https://dx.doi.org/10.3390/info16010018
https://dx.doi.org/10.3390/info16010018
https://dx.doi.org/10.3390/info16010018
https://referencecitationanalysis.com/InCiteJournalInfo?id=3346
https://referencecitationanalysis.com/InCiteJournalInfo?id=3346
https://referencecitationanalysis.com/articles?id=10.4274%2fbalkanmedj.galenos.2024.2024-080824
http://www.ncbi.nlm.nih.gov/pubmed/39148326
https://dx.doi.org/10.4274/balkanmedj.galenos.2024.2024-080824
https://dx.doi.org/10.4274/balkanmedj.galenos.2024.2024-080824
https://dx.doi.org/10.4274/balkanmedj.galenos.2024.2024-080824
https://dx.doi.org/10.1016/j.nwnano.2024.100052
https://dx.doi.org/10.1016/j.nwnano.2024.100052
https://dx.doi.org/10.1016/j.nwnano.2024.100052
https://dx.doi.org/10.1016/j.tdr.2024.100005
https://dx.doi.org/10.1016/j.tdr.2024.100005
https://dx.doi.org/10.1016/j.tdr.2024.100005
https://dx.doi.org/10.15406/jsrt.2024.09.00168
https://dx.doi.org/10.15406/jsrt.2024.09.00168
https://dx.doi.org/10.15406/jsrt.2024.09.00168


Published by Baishideng Publishing Group Inc 

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA 

Telephone: +1-925-3991568 

E-mail: office@baishideng.com 

Help Desk: https://www.f6publishing.com/helpdesk 

https://www.wjgnet.com

© 2025 Baishideng Publishing Group Inc. All rights reserved.

mailto:office@baishideng.com
https://www.f6publishing.com/helpdesk
https://www.wjgnet.com

	Abstract
	INTRODUCTION
	REGENERATIVE POTENTIAL OF STEM CELLS
	AI
	ML
	DL

	SUBTYPES OF AI
	CNN
	ANNs
	BNs
	NLP
	SVMs
	Random forests
	Decision trees
	LR
	K-NNs

	APPLICATIONS OF AI IN STEM CELL MANUFACTURING AND THERAPEUTICS
	Evaluating stem cell behavior and characterization
	Stem cell culture and differentiation
	Prediction of mortality risk
	Stem cell imaging-based classification
	Stem cell modeling
	Optimization of the delivery method
	Drug discovery

	ETHICAL CONSIDERATIONS
	LIMITATIONS AND FUTURE DIRECTIONS
	CONCLUSION
	FOOTNOTES
	REFERENCES

