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A growing number of compounds are reported to extend lifespan, but it

B Check for updates remains unclear whether they reduce mortality across the entire life course or

only at specific ages. This uncertainty persists because the commonly used log-
rank test cannot detect age-specific effects. Here, we introduce a new analy-
tical method that addresses this limitation by revealing when, how long, and to
what extent interventions alter mortality risk. Applied to survival data from 42
compounds tested in mice by the National Institute on Aging Interventions
Testing Program, it identified 22 that reduced mortality at certain ages, more
than detected by the log-rank test, while 15 increased mortality at certain ages.
Most compounds were effective only within restricted age ranges; just 8
reduced mortality late in life, when burdens of aging are greatest. Compared to
conventional methods, this approach uncovers more beneficial and harmful

effects, offers deeper insight into timing and mechanism, and can guide
development of future anti-aging therapies.

The search for pharmacological interventions that extend the healthy
lifespan has increased markedly in recent years, spurred by the dis-
covery of a wide range of compounds, such as rapamycin and acar-
bose, that lengthen life of model organisms'>. Whether these life-
extending agents act broadly by reducing mortality hazard throughout
the lifespan or only affect mortality during part of the life course
remains unclear, in part due to the limitations of statistical tests usually
used in aging research. The log-rank test* is the most commonly used
statistical tool to determine whether an intervention, be it pharma-
cologic, genetic, or nutritional, is life-extending. However, its use as
the primary and often only tool for this purpose is questionable for
several reasons. First is its requirement for proportional hazards (PH)
between compared groups, implying that treatment effects on mor-
tality remain constant over time*®°. This assumption does not align with

the evidence that many interventions exert varying impacts at differ-
ent life stages’. For example, in an earlier analysis of data from the
Interventions Testing Program (ITP), we found that many interventions
do not adhere to the PH assumption, thus challenging the applicability
of the log-rank test in these contexts’. When the PH assumption is not
met, there are many analytic tools that can be used®’. Our previous
approach for these interventions used the Gehan test, which is more
robust to the constant PH consistency requirement and more sensitive
to effects during early adulthood®. Despite its strengths, the Gehan test
has its own drawback: a diminished sensitivity to effects manifesting at
later life stages, when mortality and morbidity rates are highest™.

To assess the effects of interventions on the final phase of the
aging process, methods like the Wang-Allison and the Gao-Allison test
have been developed to determine if treatments extend the maximum
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lifespan™". However, these tests do not evaluate whether an inter-
vention specifically reduces age-specific mortality in the last phase of
life when frailty, cognitive impairment, chronic disease, and other
burdens of senescence peak. Although the Gompertz model has been
used for evaluating age-specific or time-varying effects, it is limited by
its strict parametric assumptions about the shape of the hazard
function®. The limitations of these approaches underscore the need
for a more flexible tool for evaluating longevity interventions, espe-
cially one that accommodates potentially variable impacts of treat-
ments across an organism’s lifespan. Such methods should pinpoint
when, for how long, and to what extent an intervention significantly
alters the mortality risk. This capability is particularly crucial for
identifying interventions that mitigate mortality toward the end of life
when the exponential increase in the burden of senescence is greatest.
Numerous statistical methods for assessing the time-varying efficacy
of drugs, including chemotherapeutics, have been developed and
published®'**, However, these approaches have not seen widespread
adoption in clinical trials, nor have they been applied in longevity
studies®. A key barrier to their use is the lack of accessible imple-
mentations, coupled with the need for substantial user expertise to
effectively tune these models.

In response to these challenges, we introduce a nonparametric
method termed the Temporal Efficacy Profiler (TEP), which estimates
the time-varying hazard ratio and visualizes age-specific effects on
mortality risk. TEP can identify when, for how long, and to what extent
an intervention significantly influences mortality risk, thereby over-
coming the major limitations of traditional methods like the log-rank
test. In our approach, we employ the Rebora method, implemented in
the bshazard’R package, to calculate the age-specific mortality risk for
the treatment (A7,ogemen:(6)) and control (Acouro/(£)) arms separately?.
Rebora et al. utilized B-splines within generalized linear Poisson
models, incorporating a robust model selection process that auto-
mates tuning and eliminates the need for users to manually select
smoothing parameters. TEP is defined as:

— ATreatment(t)
TEP(t) - ACantral(t) (1)

We considered two approaches to estimate confidence intervals (Cls)
of the hazard ratios: the asymptotic method and the bootstrap
method. Although bootstrap methods are broadly applicable, they are
computationally intensive. On the other hand, simulation studies
demonstrated that the asymptotic method is generally more con-
servative in terms of the coverage probability, especially at age
extremes (“Methods” and Fig. S1). For the asymptotic method, we
derived pointwise analytical Cls for the hazard ratio as the sum of two
asymptotically normal estimates based on the variance of the differ-
ence the log hazards for each group as shown below,

V(IOg(TEP(t))) = VR (IOg(/lTreatment(t))) + |/R (IOg(ACOntrol)(t)) (2)

where Vj represents the Rebora estimator variance”**. In addition, we
used pointwise bootstrap Cls to describe the time-varying hazard
profile*, The bootstrap method estimates Cls that are more sensitive
to differences at age extremes, but it also has slightly lower coverage
probability under the null hypothesis (Methods and Fig. S1). For
conciseness, we only present the results from the asymptotic method,
and only when corroborated by the bootstrap method. All significant
findings, along with their corresponding mortality hazard ratios, are
provided in the supplementary data files (Supplementary data files 1,
2, and 3).

In addition, we developed a color-coded visualization system to
better communicate the statistical results. The code is publicly avail-
able, and we provide a user-friendly R script with instructions to

facilitate its use by any investigator. (Github link: https://github.com/
liu-dada/Temporal-Efficacy-Profiler).

To assess the utility of this approach, we utilized publicly available
data from the ITP up to 2022, comprising 42 compounds evaluated in
over 27,000 genetically heterogeneous mice at 3 geographically dis-
tinct sites”. These agents were tested alone or in combination in 132
trials, examining the effects of sex, dosage, and age of treatment
initiation. Ten of these agents have been identified by log-rank testing
to significantly extend lifespan in at least one sex®. This is the largest
publicly available compendium of mouse survival data from tests of
compounds with lifespan-extension potential, an exemplary resource
for testing the efficacy of our analytic tool.

In this work, we introduce a new analytical tool, the TEP, and apply
it to the ITP database to challenge the conventional proportional
hazards assumption. The TEP reveals age-specific treatment effects
that the commonly used log-rank test fails to detect, uncovering both
beneficial and harmful interventions with far greater sensitivity. By
delineating when effects occur, it distinguishes drugs that only reduce
mortality in early to mid-adulthood from those that still or only act
later in life, when aging-related mortality risk is greatest. These insights
can improve drug development and enable more targeted interven-
tions, whether aimed at late-life mortality or spanning a broader por-
tion of the life course.

Results

Development and validation of the TEP to determine the timing
and impact of life-extending candidates

Figure 1 illustrates how the TEP identifies age-specific effects of an
intervention on the mortality hazard, using the ITP test of green tea
extract (GTE) in females as an example”. Details of the analysis are
described in Online Methods. It should be noted that GTE had no sig-
nificant effect on survival by log-rank testing”. Figure 1A shows the
Kaplan-Meier survival plots for treatment and control groups. These
plots indicate that the proportional hazard assumption is likely violated
due to the crossing survival curves, which was confirmed by the z-test’.

Figure 1B is a graphical representation of the mortality hazards of
the control and GTE-treated groups throughout the period of testing,
using the Rebora method*®*. The mortality hazard of the GTE-treated
group is reduced relative to that of the control group before the
median lifespan, but shortly thereafter crosses over, exceeding that of
the control group.

Figure 1C shows the application of the TEP to the GTE data. The
log ratios of the mortality hazards of GTE-treated and control groups
shown in Fig. 1B are calculated based on the mortality hazard esti-
mated by Rebora method®. Negative log hazard ratios indicate bene-
ficial effects of GTE (lower mortality hazard), while positive values
suggest detrimental effects. The 95% Cls for the mortality hazard ratio
were estimated by asymptotic and bootstrap methods, with the
asymptotic Cl shown as dashed lines. Significant beneficial effects are
marked by upper 95% Cls remaining below zero (marked in green),
whereas significant adverse effects are indicated when lower 95% Cls
exceed zero (marked in red). The duration (age range) of significance is
bounded by the ages when the 95% confidence limit crosses O, as
illustrated. This analysis reveals that GTE reduced mortality hazards
during midlife but increased mortality hazards toward the end of life.

Figure. 1D integrates the features of Fig. 1C into an annotated
horizontal heatmap to assist in cross-compound comparisons. The
heatmap ranges from birth to the death of the last subject in either
control or treated group, starting blank and transitioning to color with
the onset of treatment. Gray indicates no significant effect, green
marks periods of significant mortality reduction, and red denotes
significant increases. The color intensity correlates with the effect size
(log HR), allowing for a direct comparison of intervention impacts
across different timelines as illustrated in Fig. 2. In this example, TEP
complements and adds value to the log-rank test, pinpointing the
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Fig. 1| Graphical representation of the TEP. Survival data are from the test of
Green Tea Extract in females.”. A Kaplan-Meier survival curves of the GTE-treated
female mice (Red) and control female mice (Black); B Age-specific mortality
hazards of GTE-treated and control mice groups; C Mortality hazard ratio between
GTE-treated and control mice groups and 95% confidence intervals shown as
dashed lines; D Life course heat map visualization of the age-specific effects of GTE
on the mortality hazard ratio. Vertical dashed lines mark the boundaries of sig-
nificant effects on the mortality hazard ratio based on the ages when the 95%
confidence intervals in panel C cross 0. Source data are provided as a Source
data file.

specific ages and durations over which GTE significantly alters age-
specific mortality hazards.

Since we added features into the established bshazard’ function,
we conducted two simulation scenarios assessing the TEP perfor-
mance. Under null and alternative hypotheses, simulation results show
the method’s robustness in estimating accurately coverage prob-
abilities for confidence intervals across life spans (Online “Methods”
and Fig. S1). The first scenario confirmed the accuracy of the asymp-
totic confidence intervals and the conservative nature over an entire
lifespan, while the second scenario demonstrated TEP’s ability to
correctly indicate treatment effects, outperforming the log-rank test in
detecting non-proportional hazards (Online “Methods” and Fig. S1).

Greater sensitivity and precision in identifying mortality-
modifying interventions
Figure 2 presents heatmaps of interventions identified by the TEP that
significantly reduced or increased the age-specific mortality hazard
during treatment. Comprehensive heatmaps generated by both the
asymptotic and bootstrap methods are provided in Supplementary
Data File 3. The hazard ratio plots, which underlie these heatmaps and
were calculated via time-varying hazard ratio analysis, are displayed in
Supplementary Data File 1 and 2 for males and females, respectively.
Interventions in Fig 2 are ranked based on the age at which their
beneficial effects ceased in males, from earliest to latest. For inter-
ventions that were identified differently by the two methods, further
investigation may be required. Readers can reorder these data as they
see fit using the spreadsheet in Supplementary Data File 3. In this
discussion, we focus on the interventions identified to be significant by
both methods.

Twenty-eight compounds, consisting either of a single agent or a
combination of two agents, at one or more doses, initiated at varying
ages, significantly modified the mortality hazard in one or both sexes at
one or more periods during the treatment period. This analysis iden-
tified 11 new compounds that significantly reduced mortality in at least
one sex during treatment but were overlooked by the log-rank test:
namely, candesartan cilexetil (CC), caffeic acid phenethyl ester (CAPE),
17-dimethylaminoethylamino-17-demethoxygeldanamycin hydro-
chloride (DMAG), enalapril, GTE, L-leucine, metformin, oxaloacetic acid
(OAA), PB125, syringaresinol (Syr), and ursodeoxycholic acid (UDCA).
The new analysis also identified 14 compounds that were detrimental
(i.e., increased mortality) in one or both sexes at one or more periods of
treatment. The duration of significant benefit or detriment varied
markedly from weeks (e.g., H2-(2-Hydroxyphenyl) benzoxazole (HBX))
to almost the entire treatment period (e.g., rapamycin +acarbose).
Most compounds only reduced mortality or only increased mortality.
Two exceptions were CC and GTE in females. Effect sizes, indicated by
the color intensity, varied markedly during the periods of benefit and
detriment. Acarbose had its greatest benefit at the initiation of treat-
ment, waning progressively thereafter. Effect sizes of other com-
pounds, such as butanediol and captopril in males, and many of the
different rapamycin trials in females, peaked during the middle of
treatment. A few interventions showed a steady increase in effect with
continued treatment (e.g., glycine in males and leucine in females).

Only a fraction of interventions reduced mortality at later ages
A strength of the TEP is its ability to estimate when during the life
course and for how long an agent exerts its effect on survival. In males,
16 interventions reduced mortality hazards at some period during the
life course (Fig. 2). Of these, 9 compounds only reduced mortality risk
in early and mid-adulthood (i.e., before the median lifespan): Syr, (R/S)
-1,3-butanediol (BD), CC, captopril, enalapril, UDCA, metformin,
DMAG, and nordihydroguaiaretic acid (NDGA) at 800 ppm. The two
higher doses of NDGA had a slightly longer period of benefit, but only
for a short period beyond the median lifespan. By contrast, in females,
of the 11 agents that reduced mortality risk at some stage of life, only
GTE reduced mortality during early- to mid-adulthood.

In males, five compounds tested in 11 trials demonstrated reduced
mortality after attainment of median lifespan, although these effects
vanished before mice attained the 90% mortality benchmark: 17a-
estradiol, aspirin at 21 ppm, Protandim, high doses of NDGA, and 3 of 4
late-onset (20 mo) rapamycin treatments. Notably, only 5 of the 17
compounds that reduced mortality in males did so at ages beyond the
90% mortality threshold: canagliflozin, acarbose, 17a-estradiol, glycine,
rapamycin, and cocktails of either acarbose or metformin with rapa-
mycin. In females, in contrast to males, 10 of 11 beneficial interventions
reduced mortality mainly at ages after attainment of median lifespan.
Five compounds reduced mortality after 90% mortality, including most
trials involving rapamycin, acarbose, BD, L-leucine, and captopril.

Some compounds have adverse effects on mortality hazards
One goal of the ITP has been to ensure against possible deleterious
side effects of potential life-extending interventions, especially those
already being marketed. Until now, the ITP has only identified two life
shortening interventions using the log-rank test*’. Here the TEP
revealed 15 trials with 14 compounds that increased the mortality
hazard at one or more periods of treatment: 2 in males (HBX and INT-
767) and 12 in females (CC, metformin, DMAG, canagliflozin, 17a-
estradiol, GTE, minocycline, geranylgeranyl acetone (GGA), fish oil,
nicotinamide riboside (NR), UDCA, and MIF098) (Fig. S2).

Sex differences in the effect of pharmacological interventions

Marked sex differences in the responses to life-extending compounds
are one of the key outcomes of the ITP*, The TEP unveiled even more
sex differences. It identified 5 additional compounds that only
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benefited males: Syr, enalapril, metformin, DMAG, and UDCA, and 5
compounds that only reduced mortality in females: OAA, CAPE, PB125,
Leu, and GTE. Notably, 6 interventions, UDCA, CC, metformin, DMAG,
canagliflozin, and 17a-estradiol, exhibited beneficial effects in males
but detrimental effects in females (Fig. S2). More compounds
adversely affected survival in females (12) than in males (2). Moreover,
most compounds with negative effects exerted their effect on females

almost from the beginning of treatment. The detrimental effects
waned during the 2" year of life but sometimes reappeared in the final
stage of life.

Discussion
The TEP presented here promises to be broadly useful and impactful
for aging research. Rather than repeatedly testing different quantiles
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Fig. 2 | Life course heat maps of interventions that significantly modified
mortality hazard. Only interventions confirmed by both bootstrap and asymptotic
methods are displayed, with the asymptotic method results used as the repre-
sentative data. Interventions are ranked by the age when beneficial effects ceased in
males (from earliest to latest). The remaining interventions are ranked by cessation
age of beneficial effects in females, followed by detrimental effects in females
(ranked by cessation age of effect), and the remaining ranked from longest to
shortest duration of detrimental effects in males. Each row represents an individual
trial of one intervention in a single cohort. Each intervention involved one com-
pound or a combination of two, with dosage and starting age of treatment listed.

The color-coded bands denote the temporal significance of drug effects: white
indicates the period before treatment onset, gray marks periods with no significant
effects, green indicates periods of significant beneficial effects, and red denotes
intervals of significant detrimental effects. The solid black triangle indicates the
median lifespan of the control group for each trial, and the open triangle marks the
age of 90% mortality of the control group. Empty cells indicate no significant
effects detected by both methods, while cells crossed indicate there is no trial
tested. Note that the reader can rearrange trials in any order using an Excel
spreadsheet (Supplementary Data File 3). Source data are provided as a Source
data file.

(i.e., median, 90th percentile, etc.), we have introduced a descriptive
approach that reveals the age-specific effects of interventions on the
mortality hazard. This opens the door to more granular insights about
the actions of an intervention. Such insights can lead to more targeted
application of interventions and a better understanding of the
underlying mechanisms. The analysis does this by providing estimates
of when and for how long during the life course an intervention
reduces (or, in the case of detrimental effects, increases) age-specific
mortality. It also provides an estimate of the effect size of an inter-
vention and how the strength of its effect changes over the course of
treatment. None of this information is attainable by the log-rank test,
the current standard for evaluating longevity interventions.

The TEP can distinguish interventions that specifically reduce
mortality during senescence from those that only affect survival dur-
ing midlife or earlier. This is important in the search for therapeutic
interventions that benefit individuals of advanced age when the bur-
dens of senescence are greatest. The TEP is also sensitive to adverse
effects, which is critical for pre-clinical models that aim to be transla-
table. Furthermore, the method is sensitive to sex differences in tim-
ing, duration, and efficacy of interventions, providing further impetus
to probe the mechanisms underlying the growing number of sexually
dimorphic traits in aging. Here, we discuss some of the ways the new
information provided by this analytic tool that can assist drug dis-
covery and the search for the underlying mechanisms that drive aging.
Additional applications will likely emerge as its adoption spreads
within the geroscience community.

A major discovery using this tool is that most interventions
exhibited age-related changes in drug efficacy across the detectable
treatment period (Fig. 2). This observation is not readily apparent by
visual inspection of most Kaplan-Meier plots and is not obtainable
from the log-rank tests. Very few interventions significantly reduced
(or increased) mortality through the entire course of treatment. Most
were only effective for less than half of the treatment duration. This
calls for explanation, and the answers are likely to lead to better
interventions and greater insight into the mechanisms of aging. The
age-specific decrease, increase, or loss of efficacy of an intervention
may reflect age-related changes in pharmacokinetics or pharmacody-
namics, leading to suboptimal dosage. This finding opens the door to
developing age-specific doses to sustain efficacy for longer periods
and raises awareness of the importance of understanding the role of
aging in pharmacokinetics. It is plausible that the aging processes or
causes of mortality change with age, and the intervention loses efficacy
because it no longer targets the underlying pathways. Whatever the
reason, this tool has uncovered a critical variable that needs to be
considered in interventional geroscience.

Another important outcome of the application of the TEP to
longevity data is the finding that only a subset of the interventions in
the ITP database affected age-specific mortality rates in the last half
of the lifespan, and even fewer affected mortality rates after the age
when 90% of the control cohort had died". Diet restriction has long
been considered an example of an intervention that retards aging
processes broadly, because it extends the age of 90% mortality,
distinguishing it from many interventions that only extend the
median lifespan®?*. Many studies, including the ITP, use the Wang-

Allison test as a discriminator for interventions that do or do not
extend the maximum lifespan based on the 90% mortality measure.
However, this test does not distinguish whether an increase in the
age of 90% mortality reflects the effects of reduced mortality
accumulated during earlier ages from the effects of the age-specific
mortality reduction at or near the age of 90% mortality. This dis-
tinction is of particular importance to a major goal of geroscience:
namely, to identify compounds and discover the underlying
mechanisms that extend the maximum lifespan by reducing age-
specific mortality during the later stages of life when the burden of
senescence is greatest. The TEP provides such a measure by indi-
cating whether the intervention specifically reduces mortality rates
in the final stage of life. Only a subset of the interventions reported
by the ITP as lifespan extending, using log-rank analysis, reduced
mortality hazard after the median lifespan, and even fewer did so at
later ages.

Nevertheless, compounds that only reduce mortality during the
first half of adult life should not be discounted. Reducing mortality at
any stage of life can be impactful, especially when considering trans-
latability to humans. For example, the male mortality disadvantage,
compared to females, is greatest in the first half of adult life in both
humans and UM-HET3 mice®. It is noteworthy that most of the com-
pounds that are only effective in males are also only effective during
the first half of the lifespan. Castration of UM-HET3 males before
puberty eliminates this mortality disadvantage™®. If any of the com-
pounds that only eliminate the male mortality disadvantage during this
period without interfering with male reproductive function, the soci-
etal impact if clinically translatable would be great®**.

Not only is this method more sensitive to agents that reduce age-
specific mortality, but it is also more sensitive to those that increase
mortality. The ITP has never identified adverse effects using the log-
rank test until recently®>*°. This new tool revealed 15 trials involving 14
compounds that increased mortality hazards in at least one gender.
There was a marked sex difference. Only 2 trials showed detrimental
effects in males compared to 13 trials in females. Some compounds,
including canagliflozin and high doses of 17a-estradiol, markedly
reduced mortality in males but were harmful in females. This finding
has been confirmed in a recent ITP trial, where canagliflozin sig-
nificantly prolonged lifespan in males, but shortened lifespan in
females®*. These findings underscore the need for sex-specific testing
of life-extending candidates.

The TEP can detect reversals of the benefit of compounds across
the life course. GTE in females reduced mortality before the median
lifespan but increased mortality at later ages—another discriminator
not possible using the log-rank test. There is precedence for this
reversal. In humans, individuals reporting the lowest intake of dietary
protein had reduced mortality from cardiovascular disease and cancer
before 65 years of age, but this relationship reversed after 65*. Mice
with reduced branch chain amino acid intake had extended life when
the diet began in early adulthood, but their lifespan was unaffected
when the diet was initiated at a later age®. Age-related changes in
pharmacokinetics and pharmacodynamics may play a role here. For
example, blood levels of canagliflozin, whose beneficial effects in
males diminish with age, are 2-3-fold higher in older males®.
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Another strength of the TEP is its heightened sensitivity to
potential life-extending candidates. It identified over twice as many as
the log-rank test. This is due in part to its ability to identify age-specific
effects on the mortality hazard unimpeded by the requirement of the
log-rank test for consistent proportional hazard across the duration of
treatment. The newly identified compounds generally have smaller
effect sizes and shorter durations of positive effect compared to those
identified by the log-rank test. However, given their geroprotective
potential and the fact that most trials have only used one dose, they
deserve further study. It is important to emphasize that this statistical
tool should not be used as a final arbiter of any candidate for mortality
reduction and lifespan extension (or adverse effect), but rather should
be considered a screening tool for identifying potential candidates
that deserve follow-up—for example, with different doses. Type 1
errors (i.e., false positives) during initial screens are more acceptable
and preferable to false negatives.

A key strength of TEP lies in its use of the Rebora et al. bshazard
method®, which enables data-driven estimation of time-varying hazard
without requiring manual tuning. The hazard function is modeled using
B-splines, with smoothness determined by second-order differences
treated as random effects. The variance of these effects, estimated
directly from the data via Extended Quasi-Likelihood, serves as the
smoothing parameter, allowing the method to automatically adapt to
data complexity. This flexible framework, introduced by Eilers and
Marx*° and extended by Lee et al.”, allows TEP to detect both subtle and
pronounced age-specific effects, including those missed by traditional
approaches such as the log-rank test. Its ability to accommodate non-
proportional hazards is central to uncovering temporal patterns of
intervention efficacy and risk across the lifespan.

It is important to acknowledge the limitations of this method.
Although we employed both asymptotic and bootstrap methods to
identify significant effects, and we only present findings that were con-
sistently identified by both methods, effects that emerge at age extremes
(after 90% mortality) may require further validation due to the relatively
small sample size during that period. For example, the detrimental
effects observed in DMAG and metformin treatments in females were
only evident during a brief window after 90% mortality. On the other
hand, we emphasize that these detrimental effects warrant close atten-
tion, especially since many of the compounds studied are readily avail-
able over the counter, raising potential safety concerns. Compounds
showing detrimental effects, even if detected by only one method,
deserve further investigation. Another limitation is that the TEP may
require larger sample size than traditional log-rank test. While there is no
specific sample size requirement for TEP analysis, we recommend using a
sample size that meets the requirements of the log-rank test to ensure
more reliable interpretation of the results.

The method currently does not explicitly consider uncertainty in
the Time axis, so the ages at which the treatment effect becomes
nonzero are presented as point-estimates without confidence inter-
vals. However, this limitation did not preclude consistent findings
between similar treatments across several cohorts, such as the early
effects of ACE inhibitors (Enalapril and Captopril) or early effects of
different doses of NDGA. Statistically testing whether two different
treatments have the same effect relative to control is more complex
(testing whether the ratio of two hazard ratios is 1) and may require
comparisons across cohorts.

While this methodology facilitates the estimation of time-varying
treatment effects in comparison to a control, future enhancements
could include explicit testing and quantification of differences
between active treatments in terms of both timing and the extent of
changes in mortality hazard ratios. It would be particularly insightful to
assess different dosages of a single compound to pinpoint the optimal
dosage for specific age intervals.

In conclusion, this new analytic tool will lead to a better under-
standing of the impact of interventions on survival, especially in the

field of aging research. Testing interventions on survival across the life
course is not only time-consuming but also expensive. From such
studies, we should derive not just a p value but also gain insight into
the ages when interventions are effective or deleterious. This method
can provide a more comprehensive evaluation of lifespan interven-
tions, thereby enhancing our understanding of the mechanisms of
aging and age-related risk factors.

Methods

Data availability, mouse model, and husbandry

The datasets employed in this study are sourced from the Mouse Phe-
nome Database (MPD; phenome jax.org), encompassing all data from the
Interventions Testing Program (ITP) spanning from 2004 to 2022. This
dataset incorporates 13 distinct cohorts, integrating data across three
research facilities to ensure the robustness and reproducibility of the
findings. The ITP employed the UM-HET3 mouse line, a genetically het-
erogeneous model, chosen for its relevance to the genetically diverse
human population. UM-HET3 mice are bred according to a specific
crossbreeding protocol: BALB/cBy] females are mated with C57BL/6)
males to produce F1 hybrid females, which are then bred with F1 hybrid
males derived from mating C3H/HeJ females with DBA/2) males. This
breeding strategy is designed to maximize genetic diversity within the
model, thereby approximating the genetic variability inherent in human
populations and increasing the translational value of the research find-
ings. The mice designated for longevity assays were maintained under
controlled environmental conditions, with a constant ambient tem-
perature of 25 °C and a regulated photoperiod of 12 h light/12 h darkness.
Nutritional needs were met with ad libitum access to the Purina 5LG6
diet, alongside specific drugged food formulations as per experimental
requirements. Housing protocols were optimized for social enrichment
and welfare, accommodating up to three males or four females per
standard laboratory enclosure, in accordance with established ethical
guidelines. Rigorous daily health assessments were conducted by trained
staff to monitor the well-being of the subjects, promptly identify mor-
bidity signs, and implement early intervention strategies as necessary.
This proactive health management approach minimized unnecessary
suffering and ensured the reliability of longevity data. The specifics of
drug administration, including dosage, frequency, and duration, as well
as the rationale behind the selection of intervention agents, are detailed
in the original published reports, providing a comprehensive overview of
the therapeutic strategies explored in this body of research.

Description of the temporal efficacy profiler

TEP adapted the Rebora method (implemented in “bshazard” package
in R*, v1.1) to generate a nonparametric smoothed estimate of the
baseline hazard rate for both treatment and control groups separately.
We included site as an adjustment covariate within the models. We
considered male and female as different groups, since most pro-
longevity interventions exhibit significant sex differences, with more
than half demonstrating efficacy exclusively in males®. In our analysis,
mortality events occurring prior to the initiation of treatment were
excluded to ensure that the hazard ratio estimates accurately reflect
the treatment’s effect on survival. This exclusion criterion is crucial for
eliminating bias arising from pre-treatment mortality, thus enhancing
the validity of our findings.

The confidence intervals for the treatment hazard ratio were
estimated using asymptotic and bootstrap methods. First, we used
1000 bootstrapped replications to estimate the confidence
intervals®>*, this method is similar to that reported previously in the
analysis of the age-specific effects of sex®. Second, we employed the
asymptotic method to derive pointwise analytical confidence intervals
(Cls) for the hazard ratio. This was achieved by summing two asymp-
totically normal estimates based on the variance of the difference in
log hazards between the groups, which was estimated by the Rebora
method®.

Nature Communications | (2025)16:10164


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-65158-4

Data visualization

The visualization method uses a color-coded band to depict treatment
effects on hazard ratios, with the pre-treatment phase shown as a blank
band. Upon treatment initiation, a gray color indicates no detectable
effect, while significant effects are represented by changes in color
intensity: beneficial effects cause the band to turn green, with the
intensity reflecting the magnitude of negative log hazard ratios, and
detrimental effects are shown in red, with intensity corresponding to
positive log hazard ratios. The transition points where significant
effects begin or end are marked by dashed lines. Additionally, key
lifespan metrics for the control group, such as median and maximum
lifespan (when 90% have died), are highlighted to facilitate inter-
pretation. All computational analyses were conducted in R (version
4.3, Vienna, Austria). Additional R packages used for data processing,
visualization, and survival analysis include: survminer (v0.5.0), ggeasy
(v0.1.4), plyr (v1.8.9), dplyr (v1.1.4), survival (v3.8.3), ggplot2 (v3.5.2),
tidyverse (v2.0.0), tidyr (v1.3.0), and readxl (v1.4.5).

Simulation

We conducted two simulation scenarios to validate the performance of
the method under the null and alternative hypotheses. The simulations
demonstrate the model’s accuracy under known conditions with the goal
of demonstrating that the coverage of the confidence intervals was
accurate and sensitive to variation. The first scenario used simulated
datasets of similar sample size as the ITP case study with 300 controls and
150 treated under the null hypothesis (The specific sample size for each
group is provided in Supplementary Data File 4). We used a same Gom-
pertz distribution for both the treatment and control groups (Fig. S1A).
The specific Gompertz density was fit|a,b) = be"exp(-b/a(e™ - 1)) where
a=10g(300)/1200 and b= 0.001/a. These values were chosen to reflect a
similar hazard as female mice with a median survival of 741 days and a
censoring rate of 10%. We conducted 500 simulations (Fig. S1IC) and
estimated the TEP(t) hazard over the lifespan with the bootstrap (500
resamples each) and asymptotic 95% confidence intervals, and computed
the coverage probabilities of each. The results are shown in
Figs. SIE and SIG. The bootstrap confidence intervals exhibit close to
nominal coverage until the later part of the lifespan, where the coverage
rate goes below 90% (Fig. S1E). The asymptotic confidence intervals have
>95% coverage and are conservative over the full lifespan (Fig. S1G). This
indicates good accuracy of the TEP method under the null hypothesis for
the asymptotic confidence intervals, and the lower computational burden
makes this an attractive option.

In the second scenario, we examined the alternative hypothesis
where the control group (n=300) maintained the same Gompertz
parameters as previously described, while the treatment group
(n=150) was characterized by parameters a=1log(50)/1200,
b=0.0003/a. This resulted in a time-varying treatment effect, with an
early hazard ratio greater than 1 (harm) and a later hazard ratio less
than 1 (benefit), with the transition occurring around the median life-
span (Figs. S1B and S1D). To evaluate the performance of the TEP and
the log-rank test, we analyzed 100 simulated datasets by comparing
the proportion of estimated hazard ratio 95% Cls that did not include 1
for TEP, against the proportion of log-rank tests rejecting the null
hypothesis at alpha = 0.05. The Cls estimated using both bootstrap and
asymptotic methods did not contain HR =1 and correctly indicated the
direction of the treatment effect in the early part of the curve in over
90% of simulations (Figs. SIF and S1H). However, in the later part of the
curve, bootstrap Cls did not contain HR =1 and correctly indicated the
treatment effect direction in approximately 60% to 90% of simulations
(Fig. SIF), whereas asymptotic Cls did so in about 60% of cases
(Fig. SIH). Around the median lifespan, where the hazards crossed, TEP
appropriately covered HR =1 at a near-nominal rate. As expected, the
log-rank test exhibited reduced power (21%) to reject the null
hypothesis in this scenario of nonproportional, crossing hazards.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data used in this study are publicly available in the Mouse Phenome
Database (MPD; https://phenome.jax.org/projects/ITP1) and in the
Source Data files accompanying this paper. Source data are provided
with this paper.

Code availability
Code is uploaded to Github link: https://github.com/liu-dada/
Temporal-Efficacy-Profiler*
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