
Review Article
Dental Stem Cell-Derived Exosomes: A Review of Their
Isolation, Classification, Functions, and Mechanisms

Xiner Ning,1 Rui Liu,2 Yingying Huang,1 Zhilong Huang,1 Haodi Li,1 Qiqi Li,1

Zengyan Sheng,1 and Junjie Wu 1

1Department of Orthodontics, School of Stomatology, State Key Laboratory of Military Stomatology and
National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases,
The Fourth Military Medical University, Xi’an 710032, China
2State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration,
National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Nursing Department,
School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China

Correspondence should be addressed to Junjie Wu; wujunjiedds@163.com

Received 30 August 2023; Revised 12 July 2024; Accepted 25 July 2024

Academic Editor: Mahmood-S Choudhery

Copyright © 2024 Xiner Ning et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The scientific field concerned with the study of regeneration has developed rapidly in recent years. Stem cell therapy is a highly
promising therapeutic modality for repairing tissue defects; however, several limitations exist, such as cytotoxicity, potential
immune rejection, and ethical issues. Exosomes secreted by stem cells are cell-specific secreted vesicles that play a regulatory
role in many biological functions in the human body; they not only have a series of functional roles of stem cells and exert the
expected therapeutic effects, but they can also overcome the mass limitations of stem cells and are thus considered in the research
as an alternative treatment strategy for stem cells. Since dental stem cell-derived exosomes (DSC-Exos) are easy to acquire and
present modulating effects in several fields, including neurovascular regeneration and craniofacial soft and hard tissue regeneration
processes, they are served as an emerging cell-free therapeutic strategy in various systematic diseases. There is a growing body of
research on various types of DSC-Exos; however, they lack systematic elaboration and tabular summarization. Therefore, this
review presents the isolation, characterization, and phenotypes of DSC-Exos and focuses on their current status of functions and
mechanisms, as well as the multiple challenges prior to clinical applications.

1. Introduction

Exosomes were first identified in the year 1986 from the super-
natant of sheep erythrocytes [1]. They are small, single-
membrane, secreted organelles with a diameter of 30–200nm
that possess the same topology as cells; they are enriched in
selected proteins, lipids, nucleic acids, and glycoconjugates
[2, 3], and they exist in high quantities in body fluids [4]. There
are two forms of exosomal biogenesis: one is the endosome-
dependent budding pathway, and the other is the direct budding
pathway of the plasma membrane [3, 5]. The former pathway is
regarded in the literature as the main generation pathway that
promotes the processes of exosome germination and release,
depending on the mechanism of the endosomal sorting complex
required for transportation (ESCRT) [6]. ESCRT-Ⅰ and ESCRT-Ⅱ

initiate the germination process on the outer surface of endoso-
mal membranes, forming intraluminal vesicles and multicysts,
which participate in the protein deubiquitination process through
ESCRT-Ⅲ, drive vesicle separation [7], and fuze with the plasma
membrane to form exosomes [3]. Exosomes are selectively trans-
ported to adjacent or distant cells present in the extracellular
matrix. They play an important role in mediating cellular com-
munication, signal transduction, antigen presentation, and the
epigenetic reprograming of receptor cells by means of the direct
stimulation of receptor cells through cell surface ligands, the
transportation of functional proteins, and the delivery of RNAs
and transcription factors to the receptor cell, which, in turn,
regulate human functions [8, 9, 10, 11, 12].

Mesenchymal stem cells (MSCs) are multipotent stem
cells with the ability to self-renew and differentiate in
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multiple directions. MSCs-derived exosomes, produced by
paracrine mechanisms of MSCs, are applied as a source of
acellular therapy due to low acquisition cost, efficient func-
tion, long-term storage, and high recovery rates [3, 13].
Compared to MSCs, MSCs-derived exosomes can effectively
overcome the drawbacks of cell therapy, such as cytotoxicity,
immune rejection, difficulty in regulation, and low precision
[12]. The tissue sources of MSCs are usually bone marrow,
umbilical cord, adipose tissue, and oral tissue. Dental stem
cell-derived exosomes (DSC-Exos), compared with exo-
somes derived from other sources of MSCs such as bone
marrow mesenchymal stem cells (BMMSCs) derived exo-
somes, are easily accessible and less traumatic, and possess
fewer ethical issues, since they are collected from oral tissue
[14]. Thus, this review focuses on the status of various
researches on DSC-Exos in the field.

2. DSC-Exos

2.1. Classification. According to the most recent literature pre-
sented by Mai et al. [15], DSC-Exos can be divided into peri-
odontal ligament stem cell-derived exosomes (PDLSC-Exos),
dental pulp stem cell-derived exosomes (DPSC-Exos), stem cells
obtained from human exfoliated deciduous teeth-derived exo-
somes (SHED-Exos), gingival mesenchymal stem cell-derived
exosomes (GMSC-Exos), stem cells from apical papilla-derived
exosomes (SCAP-Exos), and dental follicle stem cell-derived exo-
somes (DFSC-Exos) [16], which is relevant in various fields, such
as osteogenesis, anti-inflammation, tissue regeneration, tumor
suppression, and the treatment of neurodegenerative diseases
(Figure 1).

Referred to as the seed cell for periodontal regeneration
purposes, PDLSCs have proved to be a reliable source of
exosomes, and they present substantive potential applica-
tions in a clinical setting [17]. The exosomes of PDLSCs
possess an extremely high application potential in osteogen-
esis [18], anti-inflammation [19], angiogenesis [20], and
periodontal regeneration processes [17]. DPSCs were iso-
lated and cultured from the pulp of a human third molar

by Gronthos et al. [21] through enzymatic digestion. They
are renowned for their multidifferentiation, self-renewal, and
high proliferation abilities [22]. DPSCs can migrate to the dam-
aged tissue area, secrete a variety of functional factors, and
support the regeneration of damaged tissue, among which exo-
somes participate in the interaction of paracrine between cells
and play a therapeutic role by inducing the endogenous repair
process. SHEDs were the first heterogeneous stem cell group
isolated from deciduous incisors by Miura et al. [23]. They are
rich in growth factors and present considerable advantages in
their pluripotency and proliferation abilities [5]; therefore,
SHEDs and their exosomes have a great application potential
in various fields. GMSCs are divided into two subpopulations,
neural crest outer mesenchymal origin (N-GMSC) and meso-
dermal origin (M-GMSC), with the former being better differ-
entiated into neuronal cells [24]. Gingival tissue is considered a
good source from which to derive stem cells due to its mini-
mally invasive procedure and rapid regeneration capability fol-
lowing an injury. GMSC-Exos are involved in numerous
processes. They contain many growth factors and participate
in the differentiation and angiogenesis of osteoblasts. The glial
cell-derived neurotrophic factor family ligands and neuro-
trophic factors are involved in their processes of neuronal devel-
opment, anti-inflammatory, and tissue regeneration [25].
SCAPs were first isolated from the developing papilla of young
permanent teeth by Sonoyama et al. [26]. They were inoculated
with a tricalcium hydroxyapatite phosphonate complex culture
for a period of 4 hr and then transplanted to the dorsal subcutis
of nude mice, and the formation of pulp–dentin-like structures
was observed histologically after 8 weeks [27]. SCAP-Exos were
also shown to be an ideal stem cell source for pulp–dentin
complex and soft tissue regeneration processes [28]. DFSCs
derived from ectomesenchyme participate in the development
and eruption of teeth and form periodontal tissues. However,
relatively few studies on the exosomes of DFSC-Exos have been
conducted in recent years, which mainly involve periodontitis
treatment and periodontal tissue regeneration [29].

2.2. Isolation. Currently, there is no standardized protocol for
isolating exosomes [30]. Methods, such as differential ultra-
centrifugation [31, 32, 33], ultrafiltration [34], immunoaffi-
nity [35], and the nonspecific precipitation method [36], are
commonly used in the research. The above-mentioned isola-
tion methods are also applicable to DSC-Exos, among which
differential ultracentrifugation is adopted the most [31]. The
typical ultracentrifugation protocol includes successive centri-
fugations at increasing speeds: low-speed (102x g and 103x g)
centrifugation to pellet any contaminating cell and eliminate
dead cells, followed by higher-speed centrifugation (104x g) to
remove cell debris [37]. At each of these steps, the pellet is
thrown away, and the supernatant is used for the following
step [38]. Then, the filtered supernatant was ultracentri-
fuged (105x g) for once or twice, and the purified exosomes
were resuspended in PBS and used for further examination
[18]. Intriguingly, we counted 40 studies and found that
very few of the centrifugal forces and timings of each pro-
cedure applied in different literatures are exactly the same
(Table 1), even for centrifuges of the same brand. Besides,
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FIGURE 1: Classification of DSC-Exos.
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exosome extraction and isolation kits designed according to
the membrane structure characteristics of exosomes are also
welcomed in recent years [58, 76, 77, 78, 79, 80, 81, 82, 83].

2.3. Characterization. DSC-Exos are verified using flow cyto-
metry to assess the phenotypic characteristics. Western Blot
was employed to detect expression-specific exosome markers,
including tetraspanins (CD9, CD63, CD81) and ESCRT-
associated components (Alix and tumor susceptibility gene
101, TSG101) [59, 74, 75, 84, 85, 86] (Table 2). The total
exosome concentration was quantified using microbicincho-
ninic acid (BCA) Protein Assay Kit [65, 72], and the mor-
phology and particle size were usually assessed by the
transmission electron microscopy and the nanoparticle track-
ing analysis [72, 73, 74]. In addition, atomic force microscopy
could provide information on both surface morphology and
material properties (stiffness, adhesion) by amplitude modu-
lation and phase modulation [97].

2.4. Functions. Since DSC-Exos present modulating effects in
several fields of research, such as neurovascular regeneration

and craniofacial soft and hard tissue regeneration processes,
the research conducted on them at present is dramatically
increasing [98] (Figure 2).

One of themost essential features ofDSC-Exos is their poten-
tial to promote odontogenic differentiation and regeneration
activity. DPSC-Exos were observed in the research to regenerate
the pulp–dentin complex, mainly by mimicking the microenvi-
ronment associated with dentin development [47, 91], and pro-
mote the deposition of calcium and collagen fibers [99, 100],
while SCAP-Exo was also found to promote the formation
of dentin salivary glandular phosphoproteins and mineral-
ized nodule formations, as well as regenerate pulpal dentin-
like tissue [101, 102]. PDLSC-Exos and SHED-Exos were
also observed to promote stem cell odontogenic differentia-
tion activity [76, 90].

Most DSC-Exos have proangiogenic effects, among which
SHED-Exos and GMSC-Exos present dual regulatory effects,
inhibiting the expression of oxidative stress-induced proan-
giogenic factors and reducing the occurrence of tumor micro-
angiogenesis [28, 77, 103]; meanwhile, these exosomes also

TABLE 1: Ultracentrifugation settings for isolation of DSC-Exos.

Classification 102× g Min 103× g Min 104× g Min 105× g Min Reference

PDLSC-Exos

300 10 2,000 10 20,000 30 100,000 70,70 [39]
300 5 3,000 15 10,000 70 100,000 70,70 [18]
300 10 2,000 20 10,000 30 100,000 70 [40]
300 10 2,000 10 16,000 30 100,000 70,70 [41]
800 10 — — 10,000 30 130,000 70,70 [42]
300 10 — — 10,000 10 100,000 70,70 [43]
500 10 — — 16,000 30 150,000 70 [20]
— — 3,000 20 16,500 20 100,000 70 [44]

DPSC-Exos

300 10 — — 16,500 30 100,000 70,70 [45]
300 10 2,000 10 10,000 30 100,000 60,60 [46]
2,000 20 15,000 40 5,000 30 10,000 60 [47]
300 10 2,000 10 4,000 10 100,000 70,70 [48]
300 10 2,000 20 10,000 30 100,000 70 [49]
300 10 — — 16,500 20 120,000 150 [50]
300 10 2,000 10 20,000 30 100000 70,70 [51]
300 10 2,000 10 10,000 30 100,000 70 [52]
500 10 2,000 30 — — 100,000 60 [53]
300 10 2,000 20 10,000 40 110,000 90,90 [54]
500 10 2,000 10 10,000 60 100,000 120,70 [55]
— — 3,000 20 16,500 20 100,000 70 [56]
— — 3,000 30 10,000 30 64,000 110 [57]

SHED-Exos

300 10 2,000 10 20,000 30 100,000 70,70 [58, 59, 60, 61, 62, 63, 64]
300 10 2,000 10 10,000 30 100,000 70,70 [65]
300 10 2,000 10 10,000 30 100,000 70 [66]
— — 2,000 10 10,000 30 100,000 70,70 [67]
400 5 2,000 15 10,000 30 100,000- 90 [68]

GMSC-Exos

300 10 3,000 10 20,000 30 120,000 70 [69, 70]
300 10 2,000 20 10,000 30 100,000 70 [71]
300 10 3,000 20 10,000 30 100,000 70 [72, 73]
300 10 2,000 10 10,000 30 100,000 70,70 [74]

SCAP-Exos
— — 3,000 20 20,000 30 120,000 120 [28]
— — 2,000 10 12,000 30 100,000 70,70 [75]

Stem Cells International 3
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TABLE 2: Exosome markers for identification of DSC-Exos.

Classification Exosome markers Reference

PDLSC-Exos

CD9, CD63, glyceraldehyde-3-phosphate dehydrogenase (GADPH) [38]
CD63, TSG101, calnexin [40]
CD9, CD63, CD81, tumor susceptibility 101 (TSG101) [84]
CD9, CD63, CD81, TSG101, GADPH [18]
CD63, CD81 [44, 87]
CD9, CD63, CD81, TSG101, PTEN-induced putative kinase 1 (PINK1), Parkin,
microtubule-associated protein light chain 3 (LC3-I/II)

[41]

CD9, CD81, ALIX, β-actin [43]
CD9, GADPH, E-cadherin, N-cadherin, vimentin, forkhead box protein P3
(FOXP3), retinoic acid-related orphan receptor C (RORC)

[38]

CD63, TSG101, calnexin [40]
CD9, CD81, calnexin, TSG101 [42]
CD63, VEGF, TSG101, GADPH, β-tubulin [20]
CD63, CD81, Alix [64]

DPSC-Exos

CD63, CD81, TSG101, Alix, heat shock 70 kDa protein (HSP70) [85]
CD63, CD81 [56]
CD9, CD63, CD81 [46, 86]
CD9, CD63 [47, 52, 88]
CD9, CD81 [89]
CD9, CD63, Alix, Golgi matrix protein 130 (GM130) [55, 90]
CD9, CD63, TSG101 [91]
CD63, HSP70, TSG101 [92]
CD9, CD63, TSG101, calnexin [59]
CD9, CD63, Bcl-2, rabbit anti-human Bax and Bad [57]
CD63, TSG101, calnexin [49]
CD9, TSG101, HSP70 [50]
CD63, TSG-101, calnexin, GAPDH [54]
CD9, CD81, Alix, HSP70 [93]

SHED-Exos

CD63, TSG101 [77, 80]
CD9, CD63 [79]
Syntenin 1, HSP70, milk fat globule-epidermal growth factor 8 (MFG-E8) [63]
CD9, CD63, HSP70 [65, 66]
CD9, CD63, TSG101, calnexin [59, 61, 78]
CD9, CD63, CD81, TSG101 [67]
CD63, GM130 [64]

GMSC-Exos

CD9, CD81, TSG101, Alix [71]
CD9, CD63, CD81, HSP70 [73]
CD9, CD63, TSG101 [74]
CD9, CD81, CD63 [72]
CD9, CD63 [81, 94]
CD9, CD81 [95]
CD9, CD63, CD81, TSG101, Runx2, BMP2/4, β-actin [96]

SCAP-Exos CD9, Ailx [28, 75]

DFSC-Exos
CD81, TSG101, HSP90 [29]
CD63, TSG101, HSP70 [92]
CD63, TSG101, actin, periostin, OPN, OCN, Runx2, GAPDH [83]
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upregulate the proangiogenic VEGF-related pathway and
promote skin-wound healing activity [65, 95].

In response to the bone loss associated with periodontitis,
odontogenic exosomes play a vital role in regulating the
inflammatory microenvironment and inducing osteogenesis.
A variety of odontogenic exosomes can reduce inflammatory
responses through immunomodulation, specifically by inhi-
biting the activity of histone proteases and matrix metallo-
proteinases (MMPs) at the site of inflammation [60, 61], thus
affecting the polarization of macrophages [69, 70, 72, 73, 88],
suppressing the production of inflammatory factors [19, 39,
45, 70, 104], affecting Th17/Treg homeostasis [28, 38, 45],
and suppressing NF-κB and TLR4 pathways [39, 71, 88], thus
improving the microenvironment. As for the osteogenic
properties, studies conducted in the literature on the effect
of PDLSC-Exos on osteogenic potential are priorities for
researchers at present. PDLSC-Exos also present a dual reg-
ulatory effect on osteogenesis: on the one hand, they promote
the processes of proliferation, migration, and the osteogenic
differentiation of MSCs, as well as the regeneration of the
alveolar bone in patients exhibiting acute periodontitis in
response to bone loss [18, 40, 43, 84, 105]; on the other
hand, they can also promote bone reconstruction behavior,
resulting in the inhibition of osteogenic differentiation under
PGE2 induction [42, 87]. DPSC-Exos, SHED-Exos, and
SCAP-Exos can also promote osteogenic differentiation
behavior, among which SCAP-Exos can present a high oste-
ogenic induction ability following inoculation on 3D PLA
scaffolds [82, 96].

SHED-Exos and GMSC-Exos exhibit highly neurologically
relevant induction properties that modulate a variety of

neurological diseases, such as Parkinson’s and TBI [62, 66, 79].
The former can promote various outcomes, neuronal axon
growth, microglia glycolytic reprograming, and polarization
toward the anti-inflammatory M2 phenotype, and thus inhibit
neuronal inflammation [63, 66, 79]; they can also promote the
occurrence of neuronal apoptosis [58]. Moreover, it can also
affect the normalized expression of tyrosine hydroxylase,
improving motor symptoms [62].

Three types of DSC-Exos, including DPSC-Exos, SHED-
Exos, and SCAP-Exos, reduced the risk of apoptosis by regulat-
ing the expression of apoptosis-related proteins. Furthermore,
DPSC-Exos and SCAP-Exos reduced the risk of apoptosis [28,
106], while SHED-Exos promoted apoptosis occurrence in vas-
cular endothelial cells and dopaminergic neurons [57].

In addition, PDLSC-Exos and DPSC-Exos could inhibit
tumor cell proliferation by way of the drug carrier [41, 49],
and GMSC-Exos were shown to induce tastebud regenera-
tion [107].

2.5. Mechanisms. DSC-Exos express rich RNA profiles [25],
mainly including messenger RNA (mRNA) [108], microRNA
(miRNA) [109], PIWI-interacting RNA (piRNA) [102], long
noncoding RNA (lncRNA) [110], and circular noncoding
RNA (circRNA) [44]. These RNA, especially miRNA, exert
as indispensable regulators of exosome functions. The func-
tions and their mechanisms of six types of DSC-Exos are
described in detail below (Figure 3 and Table 3).

2.5.1. PDLSC-Exos. PDLSC-Exos regulate the osteogenic dif-
ferentiation of cells in the human organism in both in vivo
and in vitro settings, thus promoting the expression of

Angiogenesis Bone regenerationAnti-inflammation

Odontogenic differentiation ApoptosisDrug carrier

DFSC-Exos GMSC-Exos PDLSC-Exos DPSC-Exos SHED-Exos SCAP-Exos

FIGURE 2: Pathophysiological functions of phenotypes of DSC-Exos.
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osteogenic-related proteins (including Osterix and boney-
containing protein, BGP) and forming mineralized nodules
[113]. For instance, the exosomes of inflammatory periodontal
ligament stem cells extracted from periodontitis tissues (i-
PDLSCs) following gallic acid induction could remarkably pro-
mote the osteo-differentiation of i-PDLSCs [43]. This ability is
realized by regulating adenosine receptor signaling pathways,
such as Wnt, phosphoinositide 3-kinase (PI3K/Akt), and
mitogen-activated protein kinase (MAPK) signaling pathways.
PDLSC-Exos can also inhibit the expression of an essential mol-
ecule downstream of the over-activated Wnt signaling pathway:
β-Catenin [105]. ERK plays a crucial role in the tertiary kinase
cascade reaction of theMAPK signaling pathway; its phosphory-
lation is a key mediator during enhanced BMMSCs migration
activity. The infusion of PDLSC-Exos increases the number of
exosomal protein annexin A3 (ANXA3) to facilitate the exosome
internalization process, which activates ERK and inhibits
H2O2-induced apoptosis, which activates the PI3K/AKT and

MEK/ERK signaling pathways, thus inducing osteoclast
differentiation [18, 84, 87]. Meanwhile, PDLSC-Exos present a
bidirectional regulating effect on the osteogenic differentiation
process; its overexpression of miR-34c-5p inhibits osteogenesis
via targeting special AT-rich sequence-binding protein 2 and
reducing the phosphorylation of ERK1/2.

Studies have shown that PDLSC-Exos’ regulatory effects on
the osteogenic differentiation process, such as the adenosine
receptor signaling pathway described above, are closely related
to the expression level of their RNAs. RNA sequencing showed
that exosomes contain a variety of noncoding RNAs, including
antisense RNAs, long-stranded noncoding RNAs, and miRNAs,
among which Chiricosta et al. [114] highlighted in their research
the presence of noncoding RNAs and five miRNAs, including
miR24-2, miR142, miR335, miR490, and miR29, which target
the genes classified in two gene ontology categories: “Ras protein
signal transduction” and “Actin/microtubule cytoskeleton orga-
nization”. The RNA expression profiles of the exosomes were
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FIGURE 3: Mechanisms of phenotypes of DSC-Exos.
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significantly altered following the osteogenic differentiation,
and 3 circRNAs, 2 lncRNAs, and 72 miRNAs were upregu-
lated, and 39 circRNAs, 5 lncRNAs, and 35 miRNAs were
downregulated [16, 44], and when the stem cells were modi-
fied in the P2X7R gene, miR-3679-5p, miR-6515-5p, and
miR-6747-5p were also highly expressed [104]. These differ-
entially expressed RNA exomes were observed to be enriched
in pathways, such as the MAPK signaling pathway, thereby
enhancing the osteogenic capacity of PDLSCs [40].

PDLSC-Exos are expected by the researchers to solve the
problem of alveolar bone resorption behavior in patients with
chronic periodontitis based on their excellent ability to promote
osteogenic differentiation and regulate immune responses to
play an additional anti-inflammatory role. In their study, Pizzi-
cannella et al. [82] evidenced the activation of bone regeneration
and vascularization processes by rats implanted with 3D-PLA/
hGMSCs/EVs. The vascularization of periodontal ligaments was
mediated by the VEGF-VEGFR signaling pathway and the
nuclear factor kappa-light-chain-enhancer of the activated
nuclear factor kappa-light-chain-enhancer of activated B cell
(NF-κB) signaling pathway. PDLSC-Exos were observed to
modulate miR-17-5p, targeting the former pathway [20], and
mediate the PI3K/Akt signaling pathway suppressing the latter
[39, 115]. PDLSC-Exos alsomediate paracrine effects to improve
the inflammatorymicro-environment where the Gremlin 1 pro-
tein of the TGF-β/BMP signaling pathway plays a central role.
MiR-3679-5p and miR-6747-5p were highly expressed and
bound directly to the Gremlin 1 protein [104]. Moreover,
miR-155-5p was highly transferred into CD4+ T cells to further
regulate the expression of the silent mating-type information
regulation 2 homolog-1 (SIRT1), thereby affecting the balance
of T helper cells (Th17)/regulatory cells (Treg) in the inflamma-
tory microenvironment [38].

The miRNAs enriched in PDLSC-Exos discovered in the
research were not only observed to be powerful but also
diverse, and some of them are also associated with proto-
oncogenes, which indicates that exosomes also have certain
therapeutic effects on tumors [114]. In their research, Fei
et al. [41] observed that PDLSC-Exos regulate intercolonial
communication among squamous cell carcinomas with oste-
ogenic heterogeneity through the upregulation of PINK1/
parkin-mediated mitophagy, which further affected the pro-
liferation and differentiation processes of target cells.

2.5.2. DPSC-Exos. DPSC-Exos also present great application
prospects in the field of pulp–dentin complex regeneration.
The transforming growth factor β-1/drosophila mothers
against the decapentaplegic protein (Smads) pathway trig-
gered the odontogenic differentiation of DPSC lineage and
induced the formation of pulp-dentin-like neurovascular tis-
sues [90, 116]. Given that DPSC-Exos possess promising
regenerative properties, scholars have constructed a number
of novel modalities suitable for clinical settings. In their
study, Swanson et al. [48] exploited both mineralizing pri-
mary human dental pulp stem cells and an immortalized
murine odontoblast cell line MDPC-23 to design an amphi-
philic synthetic polymeric vehicle from a triblock copolymer,
which allowed for the encapsulation and controlled, tunable

release of cell-derived exosomes, and modulated downstream
recipient cells towards a designed dentinogenic trajectory in
both in vitro and in vivo settings. Chen et al. [47] placed
SCAP-containing collagen gel on the root tip and filled the
cavity of the treated dental matrix with DPT-Exo and DPC-
Exo-laden scaffolds, which would be expected to recruit
SCAPs to the pulp cavity and then regenerate dental pulp-
like connective tissues containing collagen, odontoblasts, and
enriched predentin-like tissue. Furthermore, Guo et al. [91]
established a strategy using a decellularized toothmatrix com-
bined with human dental pulp stem cell aggregates containing
DPSC-Exos to simulate an odontogenesis-related develop-
mental microenvironment by implanting reconstructed
bioengineered teeth into an alveolar bone. Moreover, they
enrolled 15 patients, implanted the bioengineered teeth, and
realized the regeneration of functional teeth 12 months later
[91]. Moreover, the overexpression of calcium sensor protein
stromal interaction molecule 1 (STIM1) promoted the release
of DPSC-Exos and the mineralized matrix, further affecting
the dentin mineralization process [100].

DPSC-Exos can also address the problem of alveolar bone
resorption in periodontitis well and modulate the inflammatory
immune microenvironment. DPSC-Exos were also observed to
stimulate the migration of human DPCs and osteoblastic cells
[89] and coincidentally increased the expression of circular lyso-
phosphatidic acid receptor 1 (circLPAR1) to eliminate the inhib-
itory effect of hsa-miR-31 on osteogenesis [56]. In terms of the
regulation of immunomodulation, DPSC-Exos showed stronger
immunomodulatory activity than BMMSCs-Exos. They can
induce the transition of CD4+ cell differentiation from Th17
to Treg and decrease the secretions of pro-inflammatory factors
IL-17 and TNF-α, while releasing anti-inflammatory factors IL-
10 and TGF-β [45]. They mediated miR-1246 expression to
facilitate the macrophages converting from pro-inflammatory
to anti-inflammatory phenotypes [50, 88].

In addition to promoting hard tissue regeneration,
DPSC-Exos also have good therapeutic potential for the
soft tissue regeneration process [53]. Zhang et al. [54] co-
cultured endothelial cells and DPSCs in EV-fibrin gels and a
vascular-like structure generated by increasing the release of
VEGF and the deposition of collagen-type I, III, and IV.
Exosomes secreted by DPSCs isolated from periodontally
compromised teeth or under hypoxia-preconditioning con-
ditions led to higher expression levels of angiogenesis-related
genes/proteins and a quicker healing outcome than those
secreted from periodontally healthy ones [46, 93].

Based on its ability to cross the blood–brain barrier,
DPSC-Exos can also be applied to neurological-related dis-
eases [117]. LPS-preconditioned DPSC-Exos have the capac-
ity to regulate Schwann cell proliferation, migration, and
odontogenic differentiation processes [55]. They present neu-
roprotective efficacy, can be used to treat spinal cord injury
(SCI) by reducing macrophage M1 polarization [52], alleviate
the damage of cerebral ischemia-reperfusion injury (IRI) by
mediating the HMGB1/TLR4/MyD88/NF-κB signaling path-
way [51], and repair hippocampal neuron degeneration by
activating the cell survival PI3K-B-cell lymphoma-2 (Bcl-2)
pathway [85].
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Moreover, DPSC-Exos can also be used as drug carriers
to suppress tumor growth activity, such as glioblastomas and
breast carcinomas [49, 106], and inhibit the occurrence of
chondrocyte apoptosis [57, 97].

2.5.3. SHED-Exos. Under different pretreatment conditions,
SHED-Exos have a bidirectional induction effect on the pro-
cess of angiogenesis. In an ectopic tooth model implanted
subcutaneously in the backs of mice, SHED-Exos shuttled
miR-26a and mediated the TGF-β/SMAD2/3 signaling path-
way, contributing to the occurrences of angiogenesis and
endothelial differentiation [67]. LPS-stimulated SHED-Exos
altered 10 types of miRNA expressions to promote angiogen-
esis and also mediated the transfer processes of miR-100-5p
and miR-1246 to induce the apoptosis of vascular endothelial
cells [65, 80]. Hypoxic preconditioned SHED-Exos signifi-
cantly reduced microangiogenesis occurrence in xenografted
OSCC tumors by transferring let-7f-5p and miR-210-3p [77].

Strikingly, SHEDs have a therapeutic potential for a variety
of neurological disorders due to their neural crest origin. In a
traumatic brain injury (TBI) rat model, SHED-Exos inhibited
neuronal inflammation and promoted neuronal axon growth
through the expression of miR-124-3p [66]. In a TBI rat model,
SHED-Exos could reduce neuroinflammation outcomes by
shifting microglia polarization and improved rat motor func-
tional recovery outcomes [79]. In response to the neurological
effects of 6-hydroxydopamine, SHED-Exos were able to inhibit
6-hydroxydopamine-induced apoptosis in dopaminergic neu-
rons and also normalized the expression levels of tyrosine
hydroxylase present in the substantia nigra and striatum [58, 62].

In terms of inducing the osteogenic differentiation of
cells, SHED-Exos can act on various types of MSCs.
SHED-Exos were shown to increase the expression of mito-
chondrial transcription factor A (TFAM) in DPSCs by trans-
ferring TFAM mRNA [111] and, when bound to matrix
proteins, such as type-I collagen and fibronectin, they can
be endocytosed by DPSCs in a dose-dependent and saturable
manner and trigger the P38MAPK pathway, further enhancing
bone metabolism activity [76]. It was observed that SHED-Exos
specifically promoted BMMSCs osteogenesis and inhibited lipo-
genesis based on the upregulation of the expression levels of
osteogenic factors Runx2 and p-Smad5 and the reduction in
the expression levels of lipogenic markers PPARγ and lipid dro-
plets [64, 68]. Moreover, SHED-Exos also increased the migra-
tion, proliferation, and osteogenic differentiation processes of
PDLSCs, promoted the cell cycle transition fromG1 to S phases,
and enhanced Runx2 expression and mineralization [78], and
Wang et al. [59] showed that BMP/Smad signaling and Wnt/
β-catenin were activated by enhanced Smad1/5/8 phosphoryla-
tion and increased nuclear β-catenin protein expression, which
further promoted the osteogenic differentiation of PDLSCs.

In the field of anti-inflammatory research, similar to the
previous two exosomes, SHED-Exos were also proven to
abrogate inflammatory responses. However, the research
conducted on this behavior tends to focus more on the ther-
apeutic role concerning other forms of inflammation than on
periodontitis. For instance, SHED-Exos can repress the

chondrocyte inflammation of the temporomandibular joint
by delivering factors, such as miR-100-5p targeted mTOR
[61], significantly inhibits carrageenan-induced acute inflam-
mation in mice by inhibiting the activity of tissue proteinase B
and MMPs at the site of inflammation [60], attenuate the
inflammatory response in rat pulpitis by upregulating Treg
[101], and suppress the LPS-induced activation of the NF-κB
signaling pathway in human microglial cells by inducing the
significant upregulation of phagocytic activity occurring in
M0 cells [63].

2.5.4. GMSC-Exos. GMSC-Exos promote the migration of pre-
osteoblasts and the osteogenic differentiation ofMC3T3-E1, thus
aiding the formation of bone structure and remodeling the alve-
olar bone [74]. The increased expression levels of osteogenic
and angiogenic markers, such as RUNX2, VEGFA, OPN,
and COL1A1, in living construct 3D-PLA/GMSCs/exosomes
evidenced the activation of bone regeneration and vascularization
processes [82]. Diomede et al. [96] showed improved osteogenic
properties located at the injury site following the implantation of a
3D PLA scaffold, GMSCs compounded with GMSC-Exos, into the
cranial cortical bone tissues of rats with injuries. In their study, Shi
et al. [95] combined GMSC-Exos with hydrogel to promote
collagen re-epithelialization and remodeling, angiogenesis, and
neurite ingrowth activities, which effectively improved skin-
wound healing outcomes in diabetic rats. In addition, GMSC-
Exos significantly reduced skin and vascular dysfunctions
associated with attenuation and aging processes by eliminating
oxidative stress-induced gene expression levels [103]. The study
proved that GMSC-Exos reduced the inflammatory immune
response of periodontitis by regulating the Wnt5a-mediated
RANKL pathway [71], and pretreatment of GMSC-Exos with
TNF-α could upregulate miR-1260b to further inhibit Wnt5a,
thereby contributing to the resolution of inflammation [69].

The anti-inflammatory ability of GMSC-Exos is reflected
in their ability to inhibit lipid accumulation in a high-lipid
microenvironment, reduce the release of inflammatory fac-
tors, and promote the conversion of macrophages into an
anti-inflammatory phenotype [72, 73]. Kou et al. [70] showed
that this was the result of the activation of the pro-
inflammatory cytokines TNF-α and IFN-α by GMSC-Exos,
mediating the Fas/Fap-1/Cav-1 axis that regulates SNARE-
mediated exosomes and IL-1RA secretion in stem cells, which
contributes to accelerated wound healing results.

Moreover, GMSC-Exos can also be applied to nerve as well
as bud regeneration processes. GMSC-Exos can promote periph-
eral nerve regeneration activity by activating the c-Jun N-
terminal kinase-regulated repair phenotype of Schwann cells
[94] and can significantly increase the number and diameter
of nerve fibers and promote myelin formation following a com-
bination with biodegradable chitin conduits [81]. In their
research, Yu et al. [112] suggested that GMSC-Exos can also
be used as a cell-free therapeutic approach for glaucoma, and
pretreatment with TNF-α substantially enhanced their neuro-
protective effects on retinal ischemia-reperfusion injury. More-
over, Zhang et al. [107] observed that GMSC-Exos increased the
expression levels of CK14 and regenerated-type I, II, and III
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tastebud cells and further promoted the innervation of regener-
ated tastebuds.

2.5.5. SCAP-Exos. In the field of tissue regeneration, whether
analyzed in vivo or in vitro, SCAP-Exos promoted pulp–dentin
complex formation. SCAP-Exod were introduced into the root
fragment containing BMMSCs and transplanted subcutaneously
into immunodeficient mice. Dentin was evident in the root
fragment [28], and the gene and protein expression levels of
dentin sialo phosphoprotein and mineralized nodule formation
were significantly increased [118]. This result may be related to
the differential expression of piRNA in the exosomes.Wang et al.
[102] observed that the 21 differentially expressed piRNAs were
mainly involved in biological regulation, cellular processes,
metabolic processes, and binding and catalytic activities, which
are closely related to the biological functions of MSCs that are
closely bound to the dentin regeneration process. In another
study, SCAP-Exos also promoted soft tissue regeneration and
angiogenesis via delivering exosomal Cdc42 [119].

It is fascinating to note that SCAP-Exos can also be
implemented to ameliorate cisplatin-induced nephrotoxicity
by inhibiting oxidative stress, inflammatory response, and
apoptosis behaviors. This may be achieved by suppressing
the signaling pathways, such as sirtuin 1 (SITR1), MAPK,
p53, and reactive oxygen species (ROS) [75].

2.5.6. DFSC-Exos. DFSC-Exos may promote PDLSCs to
proliferation, migration, osteogenic differentiation, and
periodontal tissue regeneration activities by activating the p38
MAPK signaling pathway [29]. Pretreatment with LPS can
further improve the therapeutic effects of DFSC-Exos on
periodontitis [83], enabling DFSC-Exos to highly express
proteins mainly involved in antioxidant and enzyme-
regulating activities and acting as an antioxidant to inhibit
ROS/JNK signaling and promote macrophages to polarize
toward the M2 phenotype via ROS/ERK signaling activity.
Furthermore, LPS-preconditioned DFSC-Exos loaded with the
HA injectable system could sustainably release exosomes and
enhance the therapeutic efficacy for periodontitis in canines [92].

3. Perspectives, Challenges, and Solutions

As an emerging cell-free treatment modality, DSC-Exos have
shown great therapeutic potential in reducing alveolar bone
loss caused by periodontitis, promoting angiogenesis to
repair tissue defects, regulating macrophage transformation
to reduce inflammatory responses, and inducing neuronal
cell proliferation and apoptosis to guide nerve regeneration
processes. Thus, the regulatory mechanisms of exosomes are
in urgent need of systematic elucidation in the literature.
Researchers in the field have explored various regulatory
pathways, such as adenosine signaling pathways mediated
by miRNAs transported by exosomes, and studied the
mechanisms of action of different dental-derived exosomes,
slowly unveiling the mechanisms of exosome action; how-
ever, the specific and systematic mechanisms still need to be
studied and elucidated in the research.

Some studies have shown that the physiological or path-
ological conditions of the tissue or cell of origin at the time of

exosome secretion [120]; the preconditioning stimuli, such
as TNF-α, hypoxia, LPS, and mechanical strain induction;
the intracellular calcium content [121] of secreted exosomes;
and the microenvironmental conditions, such as whether the
exosomes bind materials, including titin ducts, chitosan
hydrogels, β-tricalcium phosphate, and fibrin gels, can sub-
stantially affect the formation and functional role of exo-
somes. When DPSC-Exos were applied in the experiments
to fibrin-based regenerative root-filling materials, the fibrin
gels promoted exosome attraction to MSCs and further pro-
moted the proliferation of bone marrow MSCs [99]. In view
of this, in the future, we can focus on the design and devel-
opment of the exosomal culture microenvironment and
loading materials and use related biomaterials in conjunction
with the target direction of the action of exosomes to
enhance their therapeutic effects.

To date, most studies conducted on the therapeutic
application of exosomes remain in the preclinical stage, i.e.,
the animal experimental stage, and studies performed at the
clinical experimental level have yet to be implemented in the
research. The specific clinical application mode of exosomes
needs to be further explored and standardized in the litera-
ture, and its effectiveness and safety outcomes on the human
body need to be further evaluated. Some exosomes have been
proven to display a senescence phenotype, and as the num-
ber of cell culture passages increases, senescent cell deriva-
tives also exhibit a senescence-related secretory phenotype
[122]. In addition, the different separation methods are
closely related to the purity and yield outcomes of exosomes.
Therefore, it is necessary to explore the standardized proce-
dures for exosome isolation and long-term effective storage
to study exosome mass production and manufacturing tech-
nologies, to develop the application strategy of exosomes
with clinical benefits, and to ultimately establish a unified
international standard for exosome application, production
specification, and quality control methods [68].

Furthermore, in terms of product safety, there is a risk of
the co-isolation of endogenous viruses by exosomes during
the isolation process, based on the similarity between the
physical properties between viruses and exosomes and the
fact that the downstream processing steps of exosomes are
also more similar to those used for viral vaccine production.
Both being essentially composed of functional genetic mate-
rials and surface proteins, chemical inactivation may cause as
much damage to exosomes as to viruses, thereby destroying
functional surface proteins. Finding a way to maximize exo-
some function while adequately removing the virus is also
necessary to ensure exosome biosafety.

Ultimately, although many difficulties still exist in the
research and must be resolved before dental-derived exosomes
can be clinically applied, their broad clinical application pro-
spects are worthy of further research and development.

4. Conclusions

All types of DSC-Exos present considerable advantages and
characteristics in the treatment of diseases and conditions in
the oral field and are also promising for the treatment of
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other types of systemic diseases, such as oncology diseases
and Parkinson’s diseases. Prior to their clinical application, it
remains necessary to further evaluate the safety outcomes
and standardize the clinical production and application
modes of these exomes so that they can be utilized in a
real clinical setting as soon as possible.
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