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Abstract

Clinical diagnosis typically incorporates physical examination, patient history, and various 

laboratory tests and imaging studies, but makes limited use of the human immune system’s 

own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed 

immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological 
Diagnosis (Mal-ID), an interpretive framework to screen for multiple illnesses simultaneously or 

precisely test for one condition. This approach detects specific infections, autoimmune disorders, 

vaccine responses, and disease severity differences. Human-interpretable features of the model 

recapitulate known immune responses to SARS-CoV-2, Influenza, and HIV, highlight antigen-

specific receptors, and reveal distinct characteristics of Systemic Lupus Erythematosus and Type-1 

Diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical 

interpretation of immune responses.

Introduction

Modern medical diagnosis relies heavily on laboratory testing for cellular or molecular 

abnormalities. For example, detection of pathogenic microorganisms in patients with 

appropriate clinical history and physical examination findings can indicate infectious disease 

(1). For autoimmune diseases such as systemic lupus erythematosus, multiple sclerosis, or 

type-1 diabetes, there is no single pathogenic agent to detect, and therefore a combination 

of diagnostic approaches is used, integrating data from the patient history, physical 

examination, imaging studies, testing for autoantibodies and other laboratory abnormalities, 

and exclusion of other conditions. This process can be lengthy and complicated by initial 

misdiagnoses and ambiguous symptoms (2, 3).

Diagnostic medicine currently makes minimal use of data from the adaptive immune 

system’s B cell receptors (BCR) and T cell receptors (TCR) that provide antigen specificity 

to immune responses. The genes encoding these receptors are randomly rearranged from 

gene segments in the germline DNA during the development of each B cell or T cell to 

yield a diverse repertoire of receptor specificities for antigens. In response to pathogens, 

vaccines, and other stimuli, the repertoires of BCRs and TCRs change in composition 

by clonal expansion of antigen-specific cells, introduction of additional somatic mutations 

into BCR genes, and selection processes that further reshape lymphocyte populations. Self-

reactive lymphocytes can also clonally proliferate and cause autoimmune diseases or other 

immunological pathologies. Sequencing of BCRs and TCRs from an individual has the 

potential to provide a single diagnostic test allowing simultaneous assessment for many 

infectious, autoimmune, and other immune-mediated diseases (4, 5).
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Receptor repertoire sequencing already contributes to diagnosis and treatment response 

monitoring in the specialized case of lymphocyte malignancies where the BCR or TCR 

is a marker of the cancer cells (6, 7). Moreover, prior research suggests that BCR 

sequencing can distinguish between some antibody-mediated pathologies (8). Challenges 

to broader application of these methods in clinical diagnoses include low frequencies of 

antigen-specific B cells and T cells in many patients, the high diversity of immune receptor 

genes produced by gene rearrangement during lymphocyte development, and somatic 

hypermutations that accumulate in BCRs following B cell stimulation, leading to complex 

data in which only a fraction of sequences are informative (9, 10). Other limitations are 

technical factors including varying experimental protocols for sequence library preparation, 

and differences in patient demographics or past exposures that may influence the responses 

to a given antigen (11), suggesting a need for systematic collection of larger datasets.

Previous investigations of disease or vaccination-related immune repertoires have identified, 

with varying degrees of success, highly similar receptor amino acid sequences or motifs in 

people with the same exposures, addressing relatively few immune response types (12-20). 

In contrast to direct matching of the primary amino acid sequences, other studies have used 

alternative encodings of amino acid biochemical properties, such as charge and polarity, to 

improve detection of receptor groups of potentially similar antigen specificity (21).

Recently, numerical feature representations of BCRs or TCRs derived from neural network 

methods, including protein language models and variational autoencoders, have been applied 

to immune state classification and for predictive applications such as therapeutic antibody 

optimization (22-29). Probabilistic models of receptor gene segment recombination and 

selection processes have also been applied to better understand immune receptor generation 

and expansion in response to antigenic stimuli (30). Very few studies have attempted to 

integrate BCR and TCR data for diagnostic purposes, however, and it remains unclear to 

what extent immune receptor repertoire sequence data are sufficient for generalized and 

accurate infectious or immunological disease classification.

To address these challenges, we developed and validated MAchine Learning for 
Immunological Diagnosis (Mal-ID), which combines three machine learning representations 

for both BCR and TCR repertoires to detect infectious or immunological diseases in 

patients.

Results

Integrated repertoire models of immune states

For Mal-ID, we used three models per gene locus (BCR heavy chain, IgH; and TCR beta 

chain, TRB) to recognize immune states (Fig. 1, fig. S1). IgH and TRB gene rearrangements 

are the most diverse and informative components of BCRs and TCRs because they are 

assembled from three different germline gene segment types: variable (V), diversity (D) 

and joining (J). The subsequence spanning the end of the V segment to the beginning 

of the J segment encodes the key antigen-binding complementarity-determining region 3 

(CDR3). The VDJ rearrangements of IgH become joined to constant region genes to encode 

different isotypes including IgM, IgD, IgG and IgA that have different functional properties. 
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In antigen-stimulated B cells, additional somatic hypermutation (SHM) sequence changes 

contribute to VDJ diversity and antigen binding affinity. In Mal-ID each model focused on 

different aspects of immune repertoires shared between individuals with the same immune 

state or diagnosis: gene segment frequencies and IgH SHM rates in each isotype (Model 

1), highly similar CDR3 sequence clusters (Model 2), and inferred potential structural or 

binding similarity based on embeddings of CDR3 sequences generated with the ESM-2 

protein language model (31) (Model 3). Outputs from the three BCR and three TCR models 

were combined into a final prediction of immune status with a logistic regression ensemble 

model that could resolve potential errors of individual predictors (32). The trained program 

took an individual’s peripheral blood BCRs and TCRs as input and predicted the probability 

of each disease on record (Fig. 1C). Full details of the modeling approach are provided in 

the Materials and Methods.

We applied Mal-ID to 16.2 million BCR heavy chain clones and 23.5 million TCR beta 

chain clones systematically collected from peripheral blood samples of 593 individuals, 

including patients diagnosed with Covid-19 (n=63), HIV infection (n=95) (13), Systemic 

Lupus Erythematosus (SLE, n=86), and Type-1 Diabetes (T1D, n=92), as well as influenza 

vaccination recipients (n=37) and healthy controls (n=220) (table S1). In total, 542 

individuals had paired IgH and TRB sequence data. All datasets used a standardized 

sequencing protocol to minimize batch effects. To evaluate generalizability, patients were 

strictly separated into training, validation, and testing sets (fig. S2). Any repeated samples 

from the same individual were kept grouped together during this division process, to 

ensure that data from the same individual did not leak between training and testing steps. 

We trained separate models per cross-validation fold and report averaged classification 

performance. As described below, we further tested for the potential contribution of batch 

effects and demographic differences to diagnostic accuracy.

The ensemble approach distinguished six specific disease states in 550 paired BCR and 

TCR samples from 542 individuals with a multi-class area under the Receiver Operating 

Characteristic curve (AUROC) score of 0.986 (Fig. 2A). AUROC represents the probability 

of correctly ranking a randomly chosen positive example higher than a randomly chosen 

negative example (33). In our multiclass setting, it is computed and averaged across all 

disease label pairs, weighted by their frequencies. Other performance metrics are provided in 

table S2.

Mal-ID outperformed previously reported classification approaches on our evaluation 

dataset. The CDR3 clustering model, similar to convergent or public sequence discovery 

approaches in the literature, achieved only 0.89 AUROC for BCR and 0.80 AUROC for 

TCR (Fig. 2B). Another approach based on exact sequence matches, originally reported for 

TCR sequences (12), achieved 41% accuracy for BCR data and found no hits in 40% of 

samples (fig. S3). Identical sequences across individuals were expected to be rare for IgH 

because of somatic hypermutation, but the HIV class was an exception. For TCR data, the 

exact matches technique almost always found hits, but achieved only 42% accuracy and 

0.75 AUROC and predicted that almost all samples belong to either the Covid-19 class or 

the healthy class (fig. S3). Mal-ID’s AUROC of over 0.98 represents a major increase in 

diagnostic accuracy.
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The three-model approach discriminated between autoimmune diseases, viral infections, 

and influenza vaccine recipient samples collected at day seven after vaccination, when 

B cells responding to the vaccine are usually at peak frequencies (34). The different 

BCR and TCR components of the ensemble model contributed to varying degrees for 

classification of each immunological condition (Fig. 2B, fig. S4). TCR sequencing provided 

more relevant information for lupus and type-1 diabetes, while Covid-19, HIV, and influenza 

had clearer BCR signatures. Combined BCR and TCR data performed best (table S2). 

Alone, the repertoire composition Model 1 and protein language embedding Model 3 

classifiers performed better on average than the CDR3 clustering in Model 2. The TCR 

CDR3 clustering model was the weakest, potentially because the model did not account for 

patient human leukocyte antigen (HLA) genotypes that alter the protein sequences of the 

cell surface complexes that present peptide antigens for TCR recognition. Model 2 identified 

relatively few public TCR clusters (those of highly similar sequences identified in more 

than one individual) meeting the model’s significance threshold for enrichment in Covid-19 

patients, while for T1D, relatively few public BCR or TCR clusters were chosen (table S3). 

The combination of Models 1, 2, and 3 generally had best performance, but pairing Models 

1 and 3 performed as well for many classes (fig. S4), suggesting CDR3 clustering may not 

be required for classification or is encompassed by the protein language model results.

In practice, decision thresholds to categorize patient samples into disease categories can be 

chosen depending on the consequences of different types of errors, the performance metrics 

to be optimized, and the priority given to different diseases. We illustrated how the estimated 

AUROCs translated to explicit misclassification rates for a few different case studies. 

When we assigned each patient to the immune state with the highest predicted probability, 

Mal-ID achieved 85.3% accuracy (Fig. 2A). Among misclassified repertoires, 2.9% lacked 

sequences belonging to Model 2 CDR3 clusters, making the CDR3 clustering component 

abstain from prediction. The remaining 11.8% had inconclusive predictions (Fig. 2D). Many 

misclassifications involved healthy donors predicted as having an illness, indicating that the 

model selecting classification labels based on the highest prediction probabilities resulted 

in more false positive than false negative results. Some of these errors may also have 

been caused by healthy control individuals not being screened for definitive absence of 

all the diseases in our panel. However, 92.9% of sick patients and vaccine recipients were 

identified as not being in a healthy/baseline immune state, and 87.5% had their particular 

immune state properly classified. Adult lupus patients were the most challenging disease 

category to classify (Fig. 2C). Unlike the pediatric lupus cohort, the adults were on therapy, 

which can influence immune repertoires (8). Most adult lupus patient samples had BCR 

data only. Based on this more limited data, a subset of patients was predicted as healthy 

(fig. S5). However, misclassified patients had lower Systemic Lupus Erythematosus Disease 

Activity Index (SLEDAI) scores (35) (Fig. 2E), indicating better-controlled or quiescent 

disease in response to treatment, which likely influenced the model’s tendency to classify 

them as immunologically healthy. Compared to the 85.3% overall accuracy achieved by the 

model using BCR and TCR data together, the BCR-only and TCR-only versions of Mal-ID 
had 74.0% and 75.1% accuracy (table S2), respectively, further highlighting the benefit of 

analyzing BCR and TCR data jointly when it is available.
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Disease-specific classifiers can also be trained or derived from the pan-disease model. For 

example, by labeling lupus predictions as positives and others as negatives, we extracted a 

lupus diagnosis model, which is clinically relevant due to the lack of a sensitive and specific 

lupus test (3). Adjusting the decision threshold for high lupus sensitivity, our model achieved 

97% sensitivity and 86% specificity, or 84% sensitivity and 95% specificity when optimized 

for specificity (Fig. 2F). Balanced performance of 93% sensitivity and 90% specificity was 

also possible. This proof-of-concept result suggests that a classifier based on the Mal-ID 
framework could be developed into a multi-disease test or be specialized for detecting a 

particular condition.

Limited impact of batch effects on classification

To assess Mal-ID’s generalizability, we trained a model on all the data (fig. S2), then 

tested on Covid-19 patient and healthy donor repertoires from other BCR or TCR studies 

with similar complementary DNA (cDNA) sequencing protocols. Mal-ID predicted disease 

in two BCR external cohorts (36, 37) with perfect 1.0 AUROC: all seven Covid-19 

patients received higher Covid-19 predicted probabilities than did the six healthy donors. 

However, accuracy was 69% by assignment to the immune state with highest probability: 

one Covid-19 patient was misclassified as type-1 diabetes, and three healthy donors were 

misclassified as lupus or type-1 diabetes (fig. S6A, table S4). As the base rates of disease 

have changed in this evaluation dataset containing only Covid-19 patients and healthy 

donors, the decision thresholds were tuned using a small portion of the external cohorts. 

After this tuning, the adjusted BCR model reached 100% accuracy in the remaining 

evaluation data (fig. S6B). Similar tuning could, thus, be performed for clinical contexts 

with varying disease prevalence.

In TCR external cohorts of 17 Covid-19 patients and 39 healthy donors (38-40), Mal-ID 
achieved 0.99 AUROC and 68% accuracy based on highest-probability class assignment, 

which rose to 90% accuracy after threshold tuning (fig. S6, C and D, table S4). Almost 

all Covid-19 patients and healthy donors evaluated (excluding those used for tuning, to 

avoid train-test leakage) were correctly identified, except 3 of 28 healthy donors were 

misclassified as Covid-19, and 1 of 12 Covid-19 patients was misclassified as healthy. 

Low accuracy prior to tuning was caused by misclassifications of Covid-19 patients as 

lupus due to Model 2, which also performed poorly on our primary TCR data as noted 

above. Disabling Model 2 led to no Covid-19 patients misclassified as lupus and 89% 

accuracy without tuning (along with 0.97 AUROC). High performance on external published 

cDNA-derived datasets suggested that Mal-ID learned generalizable disease-related signals, 

even when only BCR or only TCR data were available. The classification framework could 

also be retrained for other sequencing modalities, including TCR genomic DNA-templated 

sequencing data from Adaptive Biotechnologies. Observing gene segment usage distinct 

from cDNA data as previously reported (11) (fig. S7A), we trained Mal-ID to successfully 

separate six immune states in 1365 samples: common variable immunodeficiency (CVID), 

Covid-19, HIV, rheumatoid arthritis (RA), T1D, and healthy. These studies were conducted 

by different labs, introducing the possibility of batch effects, and were restricted to only 

TCR data (table S5). Mal-ID classified these disease classes with 0.97 AUROC and 

88% accuracy (fig. S7B), indicating Mal-ID could learn disease signals across sequencing 
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modalities and scales to over 150 million sequences. As in the primary Mal-ID dataset, 

misclassifications often involved healthy individuals being predicted as sick, but 96% of 

sick patients were correctly identified as having an illness. The Covid-19 and healthy data 

came from studies that were divided into multiple cohorts; for example, the Emerson et al., 
2017 study of healthy individuals included an original cohort and an independent validation 

cohort (12). Therefore, we also trained Mal-ID with these cohort divisions preserved. 

Holding out entire Covid-19 and healthy cohorts from the training process, we saw that 

Mal-ID accurately classified the independent cohorts with 1.0 AUROC and 98% accuracy 

(fig. S7C).

To test for batch effects in our primary data, we retrained Mal-ID holding out an entire 

Covid-19 cohort of 10 patients (denoted “Group B” in table S1), whose sequence libraries 

were generated from PBMCs (primarily composed of lymphocytes and monocytes) unlike 

the primary Covid-19 dataset derived from whole blood PAXgene RNA tubes, which contain 

RNA from all cell types in the blood. We also held out 13 healthy samples that were 

re-sequenced in a separate replicate batch, following independent cDNA generation and 

PCR amplification from the original RNA sample (“Group K” in table S1). All held-out 

Covid-19 samples and healthy samples (pooling the original and replicate data) were 

correctly classified. When we split each healthy donor’s replicates, both replicates were 

correctly classified for 9 of 13 healthy donors with 97% or higher correlation between 

predicted class probabilities, while two individuals had replicates with abstention from 

classification, and two had divergent classification for each replicate (fig. S8). Classification 

abstentions resulted from two replicates matching no class-associated CDR3 clusters, which 

was likely caused by these replicates having fewer IgH clones than the rest due to limited 

sequencing depth. We repeated this test, retraining Mal-ID while holding out an independent 

cohort of five lupus patients and two healthy controls (“Group G” in table S1), which 

were collected in whole blood PAXgene RNA tubes unlike the remaining lupus cohorts 

used for training. Four out of five lupus patients and two of two healthy individuals were 

correctly classified, in line with the overall accuracy of Mal-ID. The accurate classification 

of completely independent cohorts and consistent scoring of healthy replicate samples 

increases the likelihood that Mal-ID learns true biological signal rather than batch effects.

Limited impact of age, sex, and race on classification

Patient demographics also influence the immune repertoire (39-41). To evaluate how 

extraneous covariates may affect classification, we attempted to predict age, sex, or ancestry 

from the immune repertoires of healthy individuals. While sex could not be accurately 

determined, sequences carried relatively weak ancestry signals (0.78 AUROC, table S6). 

Ancestry separation was visible in gene segment usage (fig. S9A), potentially from germline 

IgH and TRB locus differences, shaping of TCR repertoires by HLA alleles that differ 

between ancestry groups, and different environmental exposures in the African ancestry 

individuals living in Africa in the data (41). Consistent with potential influences of HLA 

genotype, Mal-ID’s TCR components had less accuracy in distinguishing HIV patients and 

healthy controls from the African cohort. The corresponding IgH repertoires were more 

distinct (fig. S10), highlighting the advantage of combining BCR and TCR data.
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Previous studies noted age-related changes in gene expression, cytokine levels, and immune 

cell frequencies (42). We observed a modest age signal in healthy IgH and TRB sequences, 

achieving 0.75 AUROC for distinguishing age 50 and up, excluding 19% of samples 

that matched no CDR3 age clusters (54% accuracy including abstentions; table S6). Age 

signatures may correspond to imprinting effects from childhood exposure to viruses such as 

influenza (43) or to autoreactivity increasing with age (44). Pediatric samples had especially 

distinct TCR beta V gene (TRBV) gene usage (fig. S9B), and Mal-ID identified them with 

perfect 1.0 AUROC when it made predictions (table S6), though accuracy was 55% due 

to 45% abstention. Despite substantial differences in the remaining samples, age effects 

did not interfere with disease classification: Mal-ID accurately distinguished pediatric 

patients and controls (fig. S5C). The high Model 2 abstention rates indicated relatively few 

age-associated CDR3 sequence clusters, and showed that unsupervised clustering will not 

necessarily choose clusters that correspond to age or other desired axis of variation. Also, we 

restricted Mal-ID’s scope to B cell populations shaped by antigenic stimulation: somatically 

hypermutated IgD/IgM and class switched IgG/IgA isotypes. Studying naive B cells may 

reveal additional age, sex, or ancestry effects.

To assess whether demographic differences between disease cohorts drove our classification 

results, we attempted to predict disease state from age, sex, and ancestry alone, ignoring 

sequence data. Ages by cohort were: T1D median 14.5 years (range 2-74); SLE median 

18 years (range 7-71); influenza vaccine recipient median 26 years (range 21-74); HIV 

median 31 years (range 19-64); healthy control median 34.5 years (range 8-81); Covid-19 

median 48 years (range 21-88) (table S1). The percentage of females in each cohort was 

50% (healthy controls), 52% (Covid-19), 57% (influenza vaccine recipient), 64% (HIV), 

and 85% (SLE), consistent with high representation of females in SLE (45). The ancestries 

and geographical locations of participants also differed between cohorts. Notably, 89% 

of individuals in the HIV cohort lived in Africa (13). Using only age, sex, or ancestry, 

disease AUROCs were 0.68, 0.59, and 0.79, respectively. A classifier with all three features 

achieved 0.85 AUROC, substantially lower than the 0.98 AUROC from Mal-ID retrained 

with demographics alongside sequence features (table S7, fig. S11, A and B).

To further evaluate whether the disease signal was derived primarily from BCR and 

TCR sequences, we also tested the demographics-only classifier on the external cDNA 

datasets. For TCR, it achieved 0.48 AUROC and 50% accuracy (fig. S6F), compared to 

Mal-ID’s 0.99 AUROC and 68% accuracy before threshold tuning (table S4). For BCR, 

the demographics-only classifier achieved 1.0 AUROC, identical to the standard Mal-ID 
model, because the external Covid-19 patients were all Asian while the healthy controls 

were Caucasian or African American. Nevertheless, accuracy was 58% with demographic 

features (fig. S6E), compared to 69% with Mal-ID before tuning (table S4). Demographic 

covariates, therefore, did not explain model performance on external validation data. As an 

additional test to confirm that predictions were not driven by demographics, we retrained 

with age, sex, and ancestry effects regressed out from the ensemble model’s feature matrix. 

Classification performance for individuals with known demographics dropped slightly from 

0.98 AUROC to 0.96 AUROC after decorrelating sequence features from demographic 

covariates (table S7, fig. S11C), suggesting age, sex, and ancestry had modest impacts on 

disease classification.
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Language model recapitulates immunological knowledge

To better understand the factors contributing to the high accuracy of Mal-ID classification, 

we asked which biological patterns identified each disease. Model 3 revealed which receptor 

sequences contributed most to disease predictions because BCRs or TCRs were scored 

individually, then aggregated into patient predictions. Separate models generated sequence 

predictions specialized for each BCR heavy chain V gene (IGHV) gene and isotype 

combination in the BCR case, or for each TRBV gene in TCR data (Materials and Methods). 

We calculated Shapley importance (SHAP) values (46) for the disease probabilities derived 

from each sequence category, which served as features for making Model 3’s patient 

predictions. V genes and isotypes were given priority in the aggregation model based on 

their prevalence in patients and on containing sequences distinct from other immune states 

by CDR3 features. According to V gene category contributions to disease predictions, our 

model’s classifications aligned with established immunological knowledge from data such 

as antigen-specific B cell and T cell isolation and receptor sequencing (Supplementary 

Text). For example, particular BCR V genes IGHV1-24 and IGHV2-70 were prioritized for 

Covid-19 prediction, IGHV4-34 and IGHV4-59 had greater weight for lupus, IGHV1-2 and 

IGHV4-34 for HIV, and IGHV3-23 for influenza (Fig. 3). We also decomposed the lupus 

and T1D SHAP values into TRBV gene prioritization clusters corresponding to patient age 

(figs. S12-13). In our lupus cohort, age was associated with treatment status, as the adults 

were on treatment while the pediatric cohort was treatment naive, indicating that differences 

in gene usage may also depend on treatment.

Different diseases showed varied association of IGHV gene usage in the context of 

particular BCR heavy chain isotypes. Covid-19 prediction prioritized IgG (Fig. 3A), as 

expected from prominent IgG expression by SARS-CoV-2-specific B cells (47, 48). While 

IgA contributions were minimal for Covid-19, HIV, and influenza predictions, IgA was 

informative for lupus, consistent with disease-associated IgA autoantibodies described in 

the literature (49), as well as for T1D, along with other isotypes (Fig. 3, D and E). The 

HIV model favored mutated IgM/D (Fig. 3B). Influenza predictions were driven by IgG and 

mutated IgM/D signal primarily (Fig. 3C). B cell isotype usage varied by person and across 

disease cohorts (fig. S14), but the model also considered distinct disease signal enrichment 

within each isotype to determine its priority. Other Mal-ID components were not influenced 

by isotype sampling variation: Model 1 quantified each isotype group separately, and Model 

2 was blind to isotype information. To be sure that differences in isotype proportions 

between patient cohorts were insufficient to predict disease, we attempted to predict disease 

from a sample’s isotype proportions without any sequence information, achieving only 0.68 

AUROC compared to Mal-ID’s AUROC of over 0.98.

Having validated that V gene segments and isotypes prioritizations for disease identification 

matched the literature, we assessed whether the multi-disease Mal-ID model could 

distinguish reported SARS-CoV-2 binding BCRs (50) from healthy donor sequences, 

despite having been trained for patient classification rather than sequence classification 

(Supplementary Text). Model 3 assigned higher Covid-19 probabilities to reported binders 

compared to healthy sequences for IGHV1-24, IGHV2-70, and other key V genes, with 

AUROC ranging up to 0.78 across IGHV genes and area under the precision-recall curve 
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(AUPRC) up to 6.9-fold over baseline (Fig. 4, E to G). Model 2 Covid-19 associated clusters 

identified some known binders, with up to 100% precision in IGHV1-24 and IGHV3-53 

among others, but low recall (Fig. 4, A to D). The higher ranking of experimentally 

validated, disease-specific sequences from separate cohorts suggested that the models 

learned antigen-specific sequence patterns within important IGHV genes that recapitulated 

biological knowledge gained during the extraordinary international research effort in 

response to the Covid-19 pandemic, despite the enormous diversity of immune receptor 

sequences, and despite being trained without knowledge of which Covid-19 patient BCRs 

were specific for SARS-CoV-2 antigens. Only a fraction of peripheral blood B and T 

cell receptor sequences from Covid-19 patients are thought to be directly related to the 

SARS-CoV-2 viral antigen-specific immune response (51, 52). However, cDNA sequencing 

may emphasize plasmablasts with high RNA copy counts, and excluding naive B cells may 

highlight antigen-experienced B cells during training.

We repeated the test with influenza known binders (53), finding that both models 

again prioritized binding sequences in key IGHV genes (Supplementary Text). However, 

enrichment was more muted, ranging up to 0.65 AUROC and 4.0-fold change over baseline 

AUPRC for Model 3. The relatively lower scores may be because the reference influenza-

specific antibodies were derived from studies using a small sampling of all the influenza 

antigens that have been reported over past decades, and were not derived from responses 

to the annual vaccine of the same year as the samples analyzed in our study. Differences 

in response to flu infection versus vaccination may also contribute to the relatively lower 

known binder enrichment scores: unlike the Covid-19 case where the models were trained 

with data from patients, our influenza training data was limited to vaccinated individuals 

while the known binders studied were derived from both infected and vaccinated individuals.

Finally, evaluating SARS-CoV-2-specific TCRs (54), Model 2 performed poorly, consistent 

with the relatively low Model 2 TCR patient classification performance described earlier, 

while Model 3 scores had weak enrichment for known binders, up to 0.56 AUROC 

and 1.30-fold AUPRC change in any TRBV gene (Supplementary Text). Compared to 

IgH, TRB known binders may have had less enrichment for higher Model 3 ranks over 

healthy sequences because the interactions between TCR and genetically diverse HLA 

molecules that present peptide antigens to T cells during T cell stimulation could introduce 

additional differences between cohorts and between participants within cohorts. In addition, 

activation of T cells upon peptide stimulation in culture may have resulted in some 

bystander clone activation not involved in the antigen-specific response. Further, unlike 

the IgH classification, the TCR analyses did not exclude naive T cells that could contain 

low frequencies of SARS-CoV-2 specific clones in unexposed individuals. This moderate 

performance for antigen-specific sequence identification nevertheless led to high patient 

diagnosis performance; aggregating many complementary classifiers has been previously 

shown to be capable of producing a more accurate ensemble classifier (55). Also, to produce 

patient diagnosis predictions from TCR data, sequence-level predictions were aggregated 

simply by calculating average predicted probabilities after filtering out a percentage of 

low information content sequences (Materials and Methods). The strength of the patient 

predictions achieved by averaging many sequences indicated that diseases may alter immune 

repertoires by affecting a larger proportion of clones than those that explicitly bind antigens 
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from the stimulus. Therefore, another possible explanation for the moderate enrichment 

in predicted probabilities for SARS-CoV-2 binding TCRs over healthy TCRs is that the 

classifier may have learned additional patterns other than those of TCRs that directly bind to 

the virus.

Discussion

In this study, we asked whether immune receptor sequencing could accurately determine 

a person’s disease or immune response state, based on pathogenic exposures and 

autoreactivity shaping the immune system’s collection of antigen-specific adaptive immune 

receptors. The three-part machine learning analysis framework we applied to well-

characterized datasets of six distinct immunological states classified immune responses with 

performance of 0.986 AUROC, leveraging both B and T cell signals in 542 individuals. 

We ensured models were never trained on data from a patient and then evaluated on 

other data from the same person. Faced with highly diverse repertoires containing tens 

to hundreds of thousands of distinct sequences, the Mal-ID ensemble of classifiers learned 

disease-specific patterns and prioritized meaningful sequences for prediction of specific viral 

infections and autoimmune diseases. These signatures of specific disease types overrode 

more modest differences detectable between individuals differing by sex, age, or ancestry. 

Mal-ID generalized to sequencing data from other laboratories and experimental protocols 

after additional tuning. Our architecture scaled to population-level data; in this study, we 

demonstrated its use for over 1350 samples at a time with external datasets.

Key innovations for Mal-ID’s performance are the trio of analysis models to extract 

signal from B and T cell receptor repertoires, as well as the way they are combined, 

fusing aggregate repertoire composition properties, detection of important sequence 

groups, and language model interpretations of individual sequences. The components are 

complementary: integrating these models outperformed them individually and suggested that 

they capture different patterns. Combining BCR and TCR repertoire data provided more 

accurate classification than either receptor type alone, potentially reflecting variation in the 

roles of B cell and T cell responses in different diseases. For example, type-1 diabetes is 

considered to be predominantly T cell mediated (56), and our T cell-only model indeed 

distinguished T1D from other classes better than our B cell-only model, but combining both 

signals further increased T1D detection performance. Similarly, lupus could be classified by 

either B or T cell information alone, which is supported by the prominence of autoantibodies 

in this condition and the known contributions of T cells to the pathology of SLE (57), but it 

was best classified by the combination of B cell and T cell models. These results confirmed 

that B and T cell information considered together in immune response analysis provided a 

more complete description of the immune state.

The CDR3 clustering and language model components of our model assessed which 

receptor sequences have highest predicted disease association. Sequences independently 

validated to be pathogen associated were distinguished from healthy donor sequences in 

the Covid-19 and influenza analyses, confirming that Mal-ID learned receptor sequence 

patterns used in the immune response to disease and vaccination. Disease category labels 

on individual sequences were not required to train these models. Additionally, the model 
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architecture revealed which sequence categories contributed most to predictions of each 

disease — which V genes and isotypes were important building blocks for the BCRs 

and TCRs deployed by the immune system. We confirmed that V genes reported in prior 

literature carry high weight in the Mal-ID prediction process. This would be consistent 

with Mal-ID learning biologically meaningful sequence features rather than fitting to 

dataset-specific artifacts. Our analysis also highlighted several V genes as characteristic 

ones not previously associated with individual disease conditions, posing hypotheses that 

can be tested in future research. Unlike comparisons limited to patients with one disease 

versus healthy individuals, which may flag generic inflammatory responses, the multi-class 

modeling approach in this study can pinpoint immune responses specific to each disease 

type. With appropriate clinical validation, a model trained with the Mal-ID framework could 

be deployed either as an assay to distinguish several infectious and autoimmune diseases 

simultaneously, or as a diagnostic test for one particular disease. For translation of these 

results to clinical practice, acceptable sensitivity and specificity values will need to be 

determined based on the clinical context.

In this study, we emphasized the use of empirical data from a large cohort of patients with 

consistently collected IgH and TRB immune receptor sequencing data. Such data come with 

potential concerns about batch effects and confounders that we attempted to address. We 

used standardized receptor sequencing protocols and bioinformatic analysis for all samples, 

and determined that models based on demographic covariates could not categorize patient 

immune status as accurately as IgH and TRB signatures. We withheld patient cohorts 

from the primary analysis and confirmed they were properly classified in a validation step. 

Performance on completely independent cohorts from other laboratories further showed that 

Mal-ID generalizes to independent data and does not fit to latent, unknown hidden variables.

The Mal-ID framework appeared to capture fundamental principles of immune responses, 

and generalize to separate clinical cohorts. The task of differentiating Covid-19, HIV 

infection, lupus, type-1 diabetes, and healthy was employed as a demonstration of the 

methodology’s potential. Additional testing will be needed to establish appropriate cutoffs in 

clinical studies for sensitivity and specificity for particular diseases with diverse and variable 

prevalence, and further evaluate optimal sample volumes and sequencing depth. Any results 

from this methodology will need to be interpreted in light of other clinical assessment and 

laboratory testing of patients. Other important topics to address will be the potential for 

multiple conditions or comorbidities in the same patient, the development of models for 

different severities or subtypes of a particular disease, the value of using other kinds of 

lymphocyte-containing specimens such as tissue biopsies, and the possibility of identifying 

evidence for diseases not included in prior models, such as ones that may occur in future 

pandemics.

Materials and Methods

Modeling approach

We performed high-throughput immune receptor repertoire sequencing on peripheral blood 

RNA from 63 Covid-19, 95 chronic HIV-1, 86 Systemic Lupus Erythematosus (SLE), 

and 92 Type-1 Diabetes (T1D) patients, along with 217 healthy controls and 37 influenza 
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vaccination recipients. We did not consider other immunological conditions such as allergy 

in patient classification. Over 16 million B cell receptor heavy chain and 23 million T 

cell receptor beta chain clones were PCR amplified with immunoglobulin and T cell 

receptor gene primers and sequenced as previously described (13, 58). Each IgH isotype 

was amplified in a separate PCR reaction. We annotated V, D, and J gene segments with 

IgBLAST v1.3.0, keeping productive rearrangements only (59). Then we grouped nearly 

identical sequences within the same person into clones using single linkage clustering, as 

described previously (13). Using the clonal lineage groupings to deduplicate the dataset, 

we kept one copy of each clone per isotype, for each replicate of a sample from a patient. 

Among BCR sequences, we analyzed class-switched IgG or IgA isotype sequences, and 

non-class-switched IgD or IgM isotype sequences that were still antigen-experienced (with 

at least 1% somatic hypermutation).

We divided individuals into three stratified cross-validation folds, each split into a training 

set and a test set (fig. S2). Each individual was assigned to one test set. Some patients 

had multiple samples; all were grouped together for the cross-validation divisions. The 

splits were respected across the training of the complete Mal-ID pipeline. The architecture 

includes three base models, which are each trained for BCR and TCR data, and an ensemble 

model where all base models are combined:

Model 1: Overall repertoire composition. The first machine learning model uses 

an individual’s IgH or TRB repertoire composition to predict disease status. Prior studies 

have reported immune status classification using deviations in B cell or T cell V(D)J 

recombination gene segment usage from healthy individuals (16, 60). Certain V gene 

segments may be more prevalent among antigen-responding V(D)J rearrangements than 

in the population of immune receptors in naïve lymphocytes, and these gene segments 

increase in frequency as antigen-specific cells become clonally expanded (47, 61), which 

can be seen in our data (fig. S7A). We previously identified class-switched IgH sequences 

with low somatic mutation (SHM) frequencies as prominent features of acute infection with 

Ebola virus or SARS-CoV-2, consistent with naïve B cells recently having class-switched 

during the primary response to infection (47, 61). V gene usage changes and other repertoire 

changes have also been described in chronic infectious or immunological conditions (8, 13). 

Therefore, we trained a logistic regression model with V/J gene counts, along with somatic 

hypermutation rate for IgH data, as features.

Model 2: Convergent clustering of antigen-specific sequences by edit 
distance. The second classifier detects highly similar CDR3 amino acid sequences shared 

between individuals with the same diagnosis, an approach we and others have previously 

reported (12-15). The CDR3s are the highly variable regions of IgH and TRB that often 

determine antigen binding specificity. For each locus, we clustered CDR3 sequences with 

the same V gene, J gene, and CDR3 length that had high sequence identity, allowing for 

some variability created by somatic hypermutation in B cell receptors. A new sample’s 

sequences can then be assigned to nearby clusters with the same constraints. We selected 

clusters enriched for sequences from subjects with a particular disease, using Fisher’s exact 

test and setting a significance threshold based on cross-validation with data derived from 
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different individuals. The same significance threshold was used for all immune conditions 

tested. These clusters represent candidate sequences predictive of a specific disease across 

individuals. To score a new sample, we assigned its sequences to the identified predictive 

clusters. For each sample, we counted how many clusters associated with each disease were 

matched, and used these counts as features in a logistic regression model to predict immune 

status.

Model 3: Immune receptor sequence features extracted from a large language 
model. Small changes to immune receptor amino acid sequences can alter receptor 

structure and function, while different structures with divergent primary amino acid 

sequences can bind the same target epitope (62). We used a protein language model, which 

transforms BCR and TCR amino acid sequences into a lower-dimensional representation, to 

estimate functional similarities between sequences that extend beyond sequence alignment. 

Specifically, we used ESM-2, a self-supervised model trained to predict masked amino 

acids from the remaining sequence context of a protein, learning complex statistical 

relationships between residues in each sequence and encoding functional and evolutionary 

relationships across sequences (31). Prior autoencoder models, which also convert immune 

receptor sequences to a latent representation, have enabled classification and clustering of 

functionally related sequences (26, 28). However, ESM-2 is a large language model with 

substantially more parameters that is trained on a much larger compendium of over 65 

million proteins across the tree of life, which allows it to learn richer latent representations 

that encode properties of a broad diversity of protein structures and functions (31). We 

developed machine learning models with a two-stage training strategy to predict patient-

level disease status based on ESM-2-derived representations of their immune repertoire. 

First, we trained machine learning models to map ESM-2 derived 640-dimensional latent 

representations of each receptor sequence from each patient sample to a surrogate disease 

state corresponding to the disease state of the patient. Each model is specialized to one 

IGHV gene and isotype combination in the BCR case, or to one TRBV gene in the 

TCR case. Somatic hypermutation rate was used as an additional feature in the BCR 

case (hypermutation does not occur in TCRs). Then we trained a second-stage model that 

aggregates predicted probabilities of disease state of all sequences in a patient sample, again 

grouped by IGHV gene and isotype or by TRBV gene, to predict disease state at the patient 

level.

Ensemble of B and T cell models: Finally, we combined all three classifiers (overall 

repertoire composition, clustering by edit distance, and language model representation) for 

IgH and three for TRB into the final Mal-ID ensemble predictor of disease (fig. S1). As 

with the individual component models in Mal-ID, we trained a separate metamodel for each 

cross-validation group, maintaining strict separation of each individual’s data into training, 

validation or test datasets.

B and T cell receptor repertoire sequencing

We assembled immune receptor repertoires from 63 Covid-19, 95 chronic HIV-1, 86 

Systemic Lupus Erythematosus (SLE), and 92 Type-1 Diabetes (T1D) patients, along with 

217 healthy controls and 37 influenza vaccination recipients. Disease and demographic 
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metadata are listed in table S1 in aggregate and for every individual. Venipuncture blood 

was collected in PAXgene Blood RNA Tubes or Tempus Blood RNA tubes, or isolated as 

PBMCs; the sample type is also enumerated in table S1. Ethics approvals for study of the 

sample sets were provided by Stanford University IRBs #8629, #13952, #35453, #48973, 

#55650, and #55689; Oklahoma Medical Research Foundation IRBs #05-04, #06-12, 

#09-21, and #11-53; Providence St. Joseph Health IRB study number STUDY2020000175; 

University of Pennsylvania IRB #849398; and Duke University for the dataset previously 

deposited under SRA BioProject PRJNA486667. Informed consent was obtained from study 

participants. Most non-Covid-19 cohort samples were collected before the emergence of 

SARS-CoV-2, except for the influenza vaccine cohort and some of the diabetes cohort 

and associated healthy controls. Covid-19 samples were collected early in the pandemic. 

Among Covid-19 patients, we excluded mild cases, samples prior to seroconversion, and 

patients known to be immunosuppressed. These filters limited model training data to 

active disease samples to improve our chances of learning patterns for the disease-specific 

minority of receptor sequences. However, we wanted to avoid creating an artificially simple 

classification problem from filtering to trivially separable immune states. To this end, we 

included both treatment-naive and treated SLE patients, and our HIV cohort included 

patients regardless of whether they generated broadly neutralizing antibodies to HIV. 

Had we instead restricted our analysis to HIV-infected individuals who produce broadly 

neutralizing antibodies, we may have created a more easily separable HIV class, due to the 

unusual characteristics of those antibodies (13).

Across these diverse immune states, over 16.2 million B and 23.5 million T cell receptor 

clones were sampled, PCR amplified with immunoglobulin and T cell receptor gene primers, 

and sequenced as previously described (13, 58). Briefly, we amplified T cell receptor 

beta chains and each immunoglobulin heavy chain isotype in separate PCR reactions 

using random hexamer-primed cDNA templates, and performed paired-end Illumina MiSeq 

sequencing. To reduce the potential for batch effects, data collection followed a consistent 

protocol. Only IgH sequencing was performed for some older cohorts processed before the 

study was extended to include TRB sequencing. Paired-end reads were merged with FLASH 

(Fast Length Adjustment of SHort reads) v1.2.11. Samples were demultiplexed by matching 

barcodes to the sample reads, and the barcodes and primers were trimmed. We annotated 

V, D, and J gene segments and junctional bases with IgBLAST v1.3.0, keeping productive 

rearrangements only (59). Sequences with poor IGHV matches (IgBLAST IGHV segment 

alignment score less than 200) or poor TRBV matches (IgBLAST TRBV segment match 

alignment score less than 80) were removed. Using IgBLAST’s identification of mutated 

nucleotides, we calculated the fraction of the IGHV gene segment that was mutated in any 

particular sequence; this is the somatic hypermutation rate (SHM) of a B cell receptor heavy 

chain. On the other hand, T cell receptors are known not to exhibit somatic hypermutation 

in humans. We also restricted our dataset to CDR-H3 and CDR3β segments with eight 

or more amino acids; otherwise the edit distance clustering method below might group 

short but unrelated sequences. Sequence data are deposited at the Sequence Read Archive 

under BioProject accession numbers PRJNA486667, PRJNA491287, and PRJNA1147802. 

Processed data is deposited on the Synapse platform at https://synapse.org/malid, both in 

Zaslavsky et al. Page 16

Science. Author manuscript; available in PMC 2025 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://synapse.org/malid


Adaptive Immune Receptor Repertoire (AIRR) Rearrangement Schema format and in an 

internal format (63).

We grouped nearly identical sequences within the same person into clones, as described 

previously (13). To do so, for each individual, we grouped all nucleotide sequences from 

all samples (including samples at different timepoints) across all isotypes, and ran single-

linkage hierarchical clustering to infer clonal lineages. This process iteratively merged 

sequence clusters from the same individual with matching IGHV/TRBV genes, IGHJ/TRBJ 

genes, and CDR-H3/CDR3β lengths, and with any cross-cluster pairs having at least 95% 

CDR3β sequence identity by string substitution distance, or at least 90% CDR-H3 identity, 

which allows for BCR somatic hypermutation (13).

We used the clonal lineage groupings to deduplicate the dataset. For each replicate of a 

sample from a patient, we kept one copy of each clone per isotype — choosing the sequence 

with the highest number of RNA reads. Similarly, we kept one copy of each TCRβ clone. 

Any replicates with fewer than 100 IgG, 100 IgA, and 500 IgD or IgM clones, or with fewer 

than 500 TRB clones, were rejected.

Among BCR sequences, we kept only class-switched IgG or IgA isotype sequences, and 

non-class-switched but still antigen-experienced IgD or IgM sequences with at least 1% 

SHM. By restricting the IgD and IgM isotypes to somatically hypermutated BCRs only, we 

ignored any unmutated cells that had not been stimulated by an antigen and were irrelevant 

for disease classification. The selected non-naive IgD and IgM receptor sequences were 

combined into an IgM/D group.

On average, any two patients had 0.0003% IgH and 0.166% TRB sequence overlap, 

underscoring the enormous diversity of T cell receptor and especially B cell receptor 

sequences, as would be expected from random sequence generation by the V(D)J 

recombination process followed by additional BCR somatic hypermutation.

Cross-validation

We divided individuals into three stratified cross-validation folds, each split into a training 

set and a test set (fig. S2). Each individual was assigned to one test set. Some patients 

had multiple samples; all were grouped together for the cross-validation divisions. The 

splits were respected across the training of the complete Mal-ID pipeline. Stratified cross-

validation preserved the global imbalanced disease class distribution in each fold. We 

also carved out a validation set from each training set. What remained of the training 

set was further subdivided into two parts we call “train-1” and “train-2”. The repertoire 

classification, CDR3 clustering, and language model base classifiers were trained on the 

training set and evaluated on the validation set. Then using the base models with highest 

validation set performance, the ensemble model was trained on the validation set, and then 

evaluated on the test set. In the case of multi-stage models like Models 2 and 3, the sequence 

classification stage was fit on the train-1 set, then the patient level aggregation stage 

was fit on train-2. When we used logistic regression classification models, regularization 

hyperparameters were tuned with additional nested cross-validation. This training process 

happens separately for each fold; in other words, one collection of models is trained using 
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fold 1’s training, validation, and test sets, then a separate set of models is trained using fold 

2’s training, validation, and test sets, and so on. On average in any fold, we observed 0.05% 

of IgH and 5.3% of TRB sequences shared between any pair of the train, validation, and test 

sets.

Since any single repertoire contains many clonally related sequences, but is very distinct 

from other people’s immune receptors, we made sure to place all sequences from an 

individual person into only the training, validation, or the test set, rather than dividing a 

patient’s sequences across the three groups. Otherwise, the prediction strategies evaluated 

here could appear to perform better than they actually would on brand-new patients. Given 

the chance to see part of someone’s repertoire in the training procedure, a prediction strategy 

would have an easier time of scoring other sequences from the same person in a held-out set. 

Had we not avoided this pitfall, models may also have been overfitted to the particularities 

of training patients. For the minority of individuals with multiple samples, we accordingly 

made sure that, in each cross-validation fold, all samples from the same person were 

grouped together into one of the training, validation, or test sets, as opposed to being spread 

across multiple sets. This principle was also respected for all nested cross-validation.

Finally, for the purpose of external cohort validation, we repeated the model training 

procedures with a “global” fold designed to incorporate all the data, by having only a 

training set and a validation set but no test set (fig. S2). Repertoires from independent 

external studies are used in place of the test set at evaluation time.

Evaluation metrics

Models were trained with the python-glmnet implementation of logistic regression (with 

multinomial loss and regularization strength tuned through cross-validation), as well as 

with the scikit-learn implementations of random forests (with 100 trees) and support vector 

machines (in “each class versus the rest” mode, with linear kernel and default regularization 

strength hyperparameter C=1.0). In all cases, we used prevalence-balanced class weights 

inversely proportional to input class frequencies. Predicted labels from all test sets were 

concatenated for global accuracy evaluation. Performance metrics that take predicted class 

probabilities as input, including AUROC and AUPRC, were computed separately for each 

fold, because probabilities may be on different scales in each fold and should not be 

combined into a global AUROC or AUPRC score. For overall performance, we report 

multi-class AUROC and AUPRC calculated in a one-versus-one fashion, taking the class 

size-weighted average of the binary AUROCs/AUPRCs calculated for each pair of classes, 

allowing each class a turn to be the positive class in the pair. For each disease class’s 

individual performance, we report multi-class AUROC calculated in a one-versus-rest 

fashion. The AUROC and AUPRC measures do not reflect classification abstention, because 

abstained samples have no predicted class probabilities and cannot be included in the 

computation of metrics that use predicted probabilities. On the other hand, every abstention 

hurts label-based metrics like accuracy: each abstention counts as a prediction error. All 

analyses were performed and plotted with software versions python v3.9.17, numpy v1.24.3, 
pandas v1.5.3, scipy v1.11.1, scikit-learn v1.2.2, python-glmnet v2.2.1, pytorch v2.0.1, 
bio-transformers v0.1.17, matplotlib v3.7.1, and seaborn v0.12.2.
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Model 1: Disease classifier using overall BCR or TCR repertoire composition features

For each sample, we created IgG, IgA, IgM/D, and TRB summary feature vectors by 

tallying IGHV/TRBV gene and IGHJ/TRBJ gene usage, counting each clone once. We 

ranked IGHV or TRBV genes by training set prevalence and excluded the bottom half, 

to avoid overfitting to minute differences in rare V gene proportions between cohorts. To 

account for different total clone counts across samples, we normalized total counts to sum 

to one per sample. Then we log-transformed and Z-scored (i.e. subtracted the mean and 

divided by the standard deviation, to achieve zero mean and unit variance) the matrix 

representing how counts are distributed across V-J gene pairs. Finally, we performed a PCA 

to reduce the count matrix to fifteen dimensions. All transformations were computed on 

each training set and applied to the corresponding validation and test sets. In addition, for 

each sample’s subset of BCR sequences belonging to each isotype, we calculated the median 

sequence somatic hypermutation rate and the proportion of sequences that are somatically 

hypermutated (with at least 1% SHM). Only BCRs have somatic hypermutation, so we 

did not include mutation rate features of TCRs. In total, we arrived at 51 features across 

IgG, IgA, and IgM/D (fifteen count matrix principal components and two mutation rate 

features per isotype) for the IgH repertoire composition model, and 15 features for the TRB 

repertoire composition model.

We fit separate logistic regression linear models on the 51-dimensional (17 x 3 isotypes) 

BCR and 15-dimensional TCR feature vectors from each sample to predict disease. Features 

were standardized to zero mean and unit variance. We repeated this feature engineering 

and model training procedure on each cross-validation fold separately. The best performing 

models, according to average validation set AUROC across three cross-validation folds for 

the disease classification task on our primary dataset, were elastic net logistic regression 

with an L1/L2 regularization ratio of 0.25 for BCR and lasso, L1-regularized logistic 

regression for TCR.

Model 2: Disease classifier by clustering CDR-H3 sequences with edit distance

We performed single-linkage clustering on CDR3β sequences from T cells with identical 

TRBV genes, TRBJ genes, and CDR3β lengths, and separately on CDR-H3 sequences 

from B cells with identical IGHV genes, IGHJ genes, and CDR-H3 lengths, as described 

previously (13). Nearest-neighbor clusters were iteratively merged if any cross-cluster pairs 

had high sequence identity: at least 90% for CDR3β or 85% for CDR-H3, allowing for 

somatic hypermutation in B cells, as measured by string substitution distance (normalized 

Hamming distance). Clustering was performed on the train-1 data sets. This process was run 

separately for each cross-validation fold.

Filter to BCR and TCR disease-specific enriched clusters: For each sequence 

cluster found in the train-1 portion of a cross-validation fold’s training set, we performed 

a Fisher’s exact test using a two-by-two contingency table denoting how many unique 

people have a particular disease and have some receptor sequences fall into the cluster. 

In other words, each cluster’s p value from the Fisher’s exact test denotes the cluster’s 

enrichment for a particular disease. This approach is consistent with prior work that selects 

a set of disease-specific enriched sequences, then counts exact matches to this sequence 
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set in new samples (12). Given a p value threshold, the full list of training set clusters 

was filtered to clusters specific for each disease type. We performed all the following 

featurization and model fitting steps for p values ranging from 0.0005 to 0.05, then selected 

the p value that led to the highest train-2 set performance as measured by the Matthews 

correlation coefficient (MCC) score, a classification performance metric that is well-suited 

to imbalanced datasets (64). The final chosen p values differed depending on the cross-

validation fold and the receptor type (i.e. BCR or TCR).

Compute BCR and TCR cluster membership feature vectors for each 
sample: For each selected enriched cluster, we created a cluster centroid: a single 

consensus sequence. Recall that each cluster member is a clone from which only the most 

abundant sequence was sampled. Rather than having each cluster member contribute equally 

to the consensus centroid sequence, contributions at each position were weighted by clone 

size, the number of unique BCR or TCR sequences originally part of each clone. Sequences 

from a sample were then matched to these predictive cluster centroids. In order to be 

assigned, a sequence must have the same IGHV/TRBV gene, IGHJ/TRBJ gene, and CDR-

H3/CDR3β length as the candidate cluster, and must have at least 85% (BCR) or 90% (TCR) 

sequence identity with the consensus sequence representing the cluster’s centroid. After 

assigning sequences to clusters, we counted cluster memberships across all sequences from 

each sample. Cluster membership counts were arranged as a feature vector for each sample: 

a sample’s count for a particular disease was defined as the number of disease-enriched 

clusters into which some sequences from the sample were matched. This featurization 

captures the presence or absence of convergent T cell receptor or immunoglobulin sequences 

(separated by locus, but without regard for IgH isotypes).

Fit and evaluate model for each locus: Features were standardized, then used to fit 

separate BCR and TCR logistic regression models mapping from cluster counts to patient 

diagnosis. The models were fit on each train-2 set and evaluated on the corresponding 

validation set. The best performing models, according to average validation set AUROC 

across three cross-validation folds for the disease classification task on our primary dataset, 

were ridge logistic regression for BCR and lasso logistic regression for TCR.

We abstained from prediction if a sample had no sequences fall into a predictive cluster; 

this indicated no evidence was found for any particular class. Abstentions hurt accuracy and 

MCC scores, but were not included in the AUROC calculation, since no predicted class 

probabilities are available for abstained samples. Fewer than 3% of samples resulted in 

abstention (table S2).

Comparison to exact matches approach: Briefly, Emerson et al. classified 

cytomegalovirus (CMV) exposure by counting the number of TRB sequences that were 

exact matches to a CMV− associated list derived from a training set of CMV+ and CMV− 

individuals (12). CMV-associated sequences were determined with a Fisher’s exact test 

using a two-by-two contingency table denoting how many unique people are CMV+ and 

have a particular sequence; the threshold on Fisher’s exact test p values was selected by 

cross-validation.
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We re-implemented this method for the Mal-ID dataset to compare the “exact sequence 

matches” featurization of Emerson et al. against the “fuzzy matches” featurization of the 

CDR3 clustering component of Mal-ID. The binary classification generative model used 

in Emerson et al. after the featurization step does not translate to our multi-class disease 

classification problem, so we instead used the same classification framework as the CDR3 

clustering model: each sample’s feature vector consisted of the number of disease-specific 

hits for each disease, normalized by the total size of the sample. Additionally, we ensured 

that both models had a consistent approach to abstention. The CDR3 clustering model 

abstains on samples that had zero matches to any disease-associated cluster; similarly, our 

implementation of Emerson et al. in the multi-class problem abstains on samples that had 

zero matches to any disease-associated sequence (i.e. there is no evidence of disease). Just 

as when training the CDR3 clustering model, the exact matches featurization and model 

fits were performed for different p value thresholds, then the best threshold was chosen by 

optimizing performance on the second part of the training set (train-2) using the MCC score. 

Therefore, the Emerson et al. and CDR3 clustering models are trained the same way in this 

comparison, differing only in whether the featurization step finds exact sequence matches or 

fuzzy matches.

Model 3: Disease classifier using language model embeddings

The analysis pipeline for classifying disease with language model embeddings of sequences 

is complex, but necessarily so because it aggregates individual sequence data to generate 

patient-level predictions.

Generate embeddings: We embedded the CDR-H3/CDR3β segments of each receptor 

sequence with the 30-layer, 150-million-parameter ESM-2 neural network (31), using the 

bio-transformers v0.1.17 implementation. A final 640-dimensional vector representation was 

calculated by averaging ESM-2’s hidden state over the original protein’s length dimension.

Train sequence-level disease classifier for each sequence category: First, we 

trained classification models to map sequences to disease labels — one model per fold and 

per sequence category, defined as an IGHV gene and isotype pair for BCR sequences or a 

TRBV gene for TCR sequences. As input data, we used ESM-2 embeddings (standardized 

to zero mean and unit variance), along with somatic hypermutation rate in the BCR case. 

To train the individual-sequence-level model, we labeled each sequence with the patient's 

immune status or disease category. These labels should be considered noisy: we do not know 

which of a patient's sequences are truly associated with their disease. Since we have no true 

sequence labels, we also cannot evaluate classification performance for the sequence-level 

classifier directly. These sequence-level classifiers were trained on the train-1 set of each 

cross-validation fold.

Aggregate sequence predictions within each sequence category: We combined 

predictions for individual BCR or TCR sequences into a patient sample-level prediction 

by the following procedure. Given a sample with n BCR (or TCR) sequences, we first 

scored each sequence with the corresponding sequence model. For example, we applied the 

IGHV3-53, IgG model to input sequences arising from the IGHV3-53 gene segment and the 
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IgG isotype. Each sequence now has a vector of k predicted probabilities, with one value 

for each of the k disease classes. These values are only comparable between sequences that 

were scored by the same model, as models for different sequence groups are not guaranteed 

to have matching calibration. Therefore, we next aggregated predicted class probabilities 

among sequences from the same sequence category, one IGHV gene and isotype (or one 

TRBV gene) at a time. To calculate the aggregate probability for each of the k classes, we 

used one of the following methods:

• Mean

• Median

• Trimmed mean: Remove the lowest 10% of sequence-level probabilities before 

calculating the mean.

• Entropy thresholded mean: Before taking the mean, remove any sequences 

whose predicted class probability vectors had high entropy, indicating they carry 

little information that could indicate a particular disease class. A sequence with 

probabilities of 1/k for all k classes would have the highest possible entropy. 

We removed sequences whose entropy was within either 10% or 20% of this 

maximal value.

This procedure gives the final k-dimensional predicted disease class probabilities vector 

for each sequence category in each sample. For example, it computes P(Covid19) among 

IGHV1-24/IgG sequences, P(HIV) among IGHV1-24/IgG sequences, and so on; then 

similarly P(Covid19) among IGHV3-53/IgA sequences, P(HIV) among IGHV3-53/IgA 

sequences, and so forth.

Map from aggregate predictions for each sequence category to a sample 
prediction: Using the aggregated sequence-level predictions, we make a final prediction 

for the sample with a second-stage model. This model was fitted in a one-versus-rest 

fashion, and the submodel for each class was trained only with features corresponding 

to that class. For example, the Covid-19-vs-rest model was provided P(Covid-19) in 

IGHV1-24/IgG, P(Covid-19) in IGHV3-53/IgG, and so on, but not P(HIV), P(Influenza), 

P(Lupus), P(T1D), or P(Healthy). This design prohibits unwanted feature leakage: deciding 

whether a sample is from a Covid-19 patient should rely only on sequence-level probabilities 

for the Covid-19 class, not any other classes. Also, we incorporated features for only the 

top 50% of IGHV or TRBV genes to avoid having far more features than samples for 

this second-stage model, and because rare V genes may not be present in all samples. 

Therefore, the number of features in this second-stage model for the BCR case was half 

the number of IGHV genes, times three isotype categories: IgG, IgA, and IgM/D excluding 

naive B cells with <1% somatic hypermutation. For TCR, which has no isotype subdivisions, 

the number of features was half the number of TRBV genes. Each sample’s features 

were reweighed according to sequence category frequencies. In the BCR case, frequencies 

were computed separately for each isotype to account for technical variation in isotype 

frequencies between sequencing runs. The aggregation model was trained on the train-2 set 

in each cross-validation fold.
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Evaluate classifier: We evaluated the pipeline by computing sample-level classification 

performance on the validation set using AUROC scores. (The one-versus-rest model 

predicted probabilities are not necessarily calibrated against each other, so we did not 

evaluate accuracy or other metrics determined by the comparison of predicted class 

probabilities for selecting a winning label). For the BCR case, the highest validation set 

performance on our primary dataset was achieved by a pipeline consisting of random 

forest sequence-level models, followed by a random forest second-stage model using mean 

aggregation. In the TCR case, the best pipeline used one-versus-rest ridge logistic regression 

sequence-level models, with a random forest second-stage model using mean aggregation 

after an entropy cutoff at 20% below the maximal entropy value (table S8). To evaluate 

feature contributions to predictions of each disease class, we ran Tree SHAP on each 

one-class-versus-rest random forest aggregation model, and averaged the SHAP feature 

importance values across positive class instances from the train-2 data used to train the 

aggregation model. SHAP values were rescaled from 0 to 1. Alternatively, to find SHAP 

clusters, we performed Louvain clustering (resolution 1.0) on the full SHAP value matrix 

in which rows represent positive class examples and columns represent features, then 

calculated average SHAP values within each cluster.

Ensemble metamodel

After training repertoire composition, CDR3 clustering, and language model embedding 

models on each fold’s training set, we combined the classifiers with an ensemble strategy. 

We used the base model versions with highest validation set performance; different base 

model versions performed best on the validation sets in our primary dataset compared to 

when Mal-ID was retrained on other datasets, such as the Adaptive Biotechnologies genomic 

DNA data. For each fold, we ran all trained base classifiers on the validation set, and 

concatenated the resulting predicted class probability vectors from each base model. We 

carried over any sample abstentions from the CDR3 clustering model (the other models 

do not abstain). Finally, we trained a ridge logistic regression classification metamodel to 

map the combined predicted probability vectors to validation set sample disease labels. We 

evaluated this metamodel on the held-out test set. To evaluate individual model component 

contributions, we refit the metamodel with subsets of features, such as only those features 

derived from models 1 and 2.

Batch effect evaluation using language model embeddings

Having integrated many datasets in this study, we sought to test whether our disease 

classification performance was driven by technical differences between batches of library 

preparation or sequencing instrument run. It would be expected in any study of human 

cohorts to identify some batch effects, given the difficulty of collecting identical samples in 

identical manner, at identical severity and timepoints, from patients suffering from diseases 

that appear in different populations at different frequencies. Notably, the IgH data collected 

for individual participants in this study were typically based on multiple Illumina MiSeq 

sequencer runs, and were combined prior to analysis. Many of our sequencing run batches 

included only one disease type, but batches that included both diseased and healthy controls 

from the same population permitted accurate classification of the disease or healthy state, 

for example, with classification of HIV-infected patients and healthy controls that were 
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sequenced together in the same batch, or SLE patients and healthy controls sequenced in the 

same batch.

Acknowledging that there were biological differences between many sequencing batches 

that were enriched for a particular disease state, and that several sequencer runs were 

performed for some sample sets, we evaluated the potential impact of these batch differences 

using the language model embeddings of BCR and TCR repertoires from the disease types 

found in multiple batches: Covid-19 patients, SLE patients, and healthy donors. We applied 

the kBET batch effect metric from the single cell sequencing literature (65). kBET measures 

whether cells from many batches are well-mixed by comparing the batch label distribution 

among each cell’s neighbors to the global distribution. In place of cells described by gene 

expression vectors, we have sequences described by language model embedding features. 

We measured kBET for every disease in every test set fold and in both BCR and TCR 

data. For example, we constructed a k-nearest neighbors graph (k = 50) with all BCR 

sequences from Covid-19 patients in test fold 1. We performed chi-squared tests for the 

difference between the batch label distribution among each sequence’s 50 nearest neighbors 

and the expected distribution from the total number of sequences belonging to each batch 

in the entire graph. After multiple hypothesis correction with a significance threshold of 

p=0.05, we measured the number of sequences for which we could reject the null hypothesis 

that the local neighborhood batch distribution is the same as the global batch distribution. 

Aggregating these results by disease across gene loci and folds, we see that the null 

hypothesis is rejected for only 18.2% of sequences on average, suggesting that the sequence 

data in the graph are well mixed according to batch (table S9). The average rejection rate 

is higher for Covid-19 BCR sequences at 44.1%, which may be influenced by disease 

severity differences between cohorts (table S1). Time point differences between batches 

may also influence kBET metrics for acute diseases like Covid-19. At earlier time points, 

Covid-19 patient repertoires may include more healthy background sequences, leading to a 

different batch overlap graph in comparison to how batches compare after clonal expansion 

of Covid-19 responding sequences. Overall, these results suggest that most sequences have 

well-mixed batch proportions amongst their nearest neighbors.

Validation on external cohorts

The best test of whether our model has learned true biological signal as opposed to batch 

effects is whether our model generalizes to unseen data from other cohorts. For the purposes 

of evaluating external cohorts, rather than using models trained on our cross-validation 

divisions of the data, we trained a set of “global” models incorporating all Mal-ID data 

without holding out a test set (fig. S2). To train the ensemble metamodel, we still held out a 

validation set, with a ratio of training set to validation set size equivalent to the ratio used in 

the cross-validation regime.

We downloaded data from other BCR and TCR Covid-19 patient and healthy donor 

repertoire studies with cDNA sequencing (36-40, 66). Among acute Covid-19 cases, we 

selected active disease timepoint samples at least two weeks after symptom onset, after 

which time we would expect seroconversion (47). We reprocessed sequences through the 

same version of IgBLAST and IgBLAST reference data used for the primary Mal-ID 
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cohorts, to ensure consistent gene nomenclature. (This was not possible for the Britanova 

et al. datasets (39, 40) because the raw sequences were unavailable, so we used their 

gene calls and confirmed the naming was consistent with our training data, especially 

for indistinguishable TRBV genes TRBV6-2/6-3 and TRBV12-3/12-4.) We embedded 

productive CDR3 sequences with the language model, then processed the downloaded 

repertoires through the entire Mal-ID model architecture. We also tuned class decision 

thresholds to adapt the model to the new base rates of disease in the data. Specifically, we 

held out several external cohort samples and reweighted their predicted class probabilities to 

optimize the MCC score. After this procedure, the winning label for each sample is chosen 

based on the class with highest predicted probability after class weights are applied. If a 

class had its probabilities reweighted by 1/5, for example, the model must be five times 

more confident to choose that class label. This procedure affected only the confusion matrix, 

accuracy, and other metrics based on predicted labels.

Additionally, we retrained Mal-ID after downloading TCR repertoire data collected with 

the Adaptive Biotechnologies genomic DNA sequencing protocol (table S5). This data was 

reprocessed with the same IgBLAST version as above, for consistency.

Predicting demographic information from healthy subject repertoires

We repeated the model training process to predict age, sex, or ancestry instead of disease. 

Input data was limited to healthy controls to avoid learning any disease-specific patterns. 

To cast this as a classification problem, age was discretized either into deciles, as a binary 

“under 50 years old” / “50 or older” variable, or as a binary “under 18 years old” / “18 or 

older” variable. Only one healthy control individual was over 80 years old, therefore our 

data do not assess repertoire changes at more extreme older ages. We excluded the healthy 

individual over 80 years old from the analysis.

For each of the demographic prediction tasks, we trained the full BCR+TCR Mal-ID 
architecture on all cross-validation folds. We note that we did not explicitly introduce data 

from allelic variant typing in germline IGHV, IGHD, or IGHJ gene segments or in HLA 

genes into our models, but such data could be expected to increase detection of ancestry in 

such datasets.

Evaluating predictive power of potential demographic confounding variables

We retrained the entire Mal-ID disease-prediction set of models on the subset of individuals 

with known age, sex, and ancestry. (As above, we excluded any individuals over 80 years 

old.) Additionally, we regressed out those demographic variables from the feature matrix 

used as input to the ensemble step. Specifically, we fit a linear regression for each column 

of the feature matrix, to predict the column’s values from age, sex, and ancestry. The 

feature matrix column was then replaced by the fitted model’s residuals. This procedure 

orthogonalizes or decorrelates the metamodel’s feature matrix from age, sex, and ancestry 

effects. We regressed out covariates at the metamodel stage because it is a sample-level, 

not sequence-level model, and age/sex/ancestry demographic information is tied to samples 

rather than sequences.
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Separately, we also trained models to predict disease from either age, sex, or ancestry 

information encoded as categorical dummy variables. Here, no sequence information was 

provided as input. Finally, we trained metamodels with both demographic features and 

sequence features, along with interaction terms between the demographic and sequence 

features to allow for interaction effects. Comparing the performance of these models to the 

demographics-only models shows the added value of adding sequence information.

Model ranking of known antigen-specific sequences

We downloaded the June 13, 2023 version of CoV-AbDab (50), and reprocessed these B 

cell receptor heavy chain sequences through the same version of IgBLAST used for our 

primary cohorts to ensure consistent V gene nomenclature. However, CoV-AbDab contains 

amino acid sequences, rather than nucleotide sequences as in our internal data, so we used 

the protein version of IgBLAST (“igblastp”) and quantified somatic hypermutation based 

on the percentage of mutated amino acids. We filtered to antibody sequences known to 

bind to SARS-CoV-2 (including weak binders, but excluding sequences shown to selectively 

bind certain viral variants but not others), and only kept sequences from human patients 

or vaccinees. We clustered the selected SARS-CoV-2 binders with identical IGHV gene, 

IGHJ gene, and CDR-H3 lengths and at least 95% sequence identity, using single linkage 

clustering as in the pipeline for our primary cohorts. As a result, several related sequences 

were combined and replaced by a consensus sequence. This preprocessing was repeated for 

influenza-specific antibody sequences from human patients and vaccinees (53), excluding 

H5N1 and H7N9 vaccine or infection data because those strains are not included in the 

seasonal flu vaccine that our classifier was trained to distinguish.

Similarly, we downloaded the ImmuneCode MIRA database (54), version 002.1, and 

reprocessed these T cell receptor beta chain sequences with our pipeline’s standard 

IgBLAST version for consistent V gene nomenclature. As above, we filtered to productive 

sequences from patients with acute Covid-19, and also to only the TRBV genes present 

in our dataset, as any others would not be compatible with the sequence model, which 

uses V gene segment identity as a feature. Among the remaining SARS-CoV-2 associated 

sequences, we deduplicated those with identical TRBV genes, TRBJ genes, and CDR3β 
sequences.

We scored the external databases of known binder sequences using Models 2 and 3 trained 

on the global fold. Isotype designations were not available in the BCR antigen-specific 

datasets; we applied our IgG sequence models because many antigen-specific B cells in 

Covid-19 have been reported to express IgG (47, 48, 67). Correspondingly, we compared 

to IgG sequences from healthy donors in the global fold’s validation set, which were 

held out from training. To perform the statistical test shown for a particular V gene (e.g. 

IGHV1-24 for the Covid-19 analysis), we conducted a one-sided permutation test to assess 

whether known binder sequences had higher model 3 predicted Covid-19 class probabilities 

compared to sequences from healthy individuals. The permutation test ensured that all 

sequences originating from each healthy donor individual retained their grouping (i.e. 

had consistent binder/non-binder labels) throughout the process of performing 1000 label 

permutations. Since the known binders have low prevalence and since permutation affects 
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the prevalence, we computed the AUPRC fold change over baseline prevalence in each 

permutation, then calculated the p-value as the proportion of permutations whose AUPRC 

fold change was greater than the observed AUPRC fold change in the original data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. MAchine Learning for Immunological Diagnosis (Mal-ID) framework.
(A) BCR heavy chain and TCR beta chain gene repertoires are amplified and sequenced 

from blood samples of individuals with different disease states. Question marks indicate 

that most sequences from patients are not disease specific. (B) Machine learning models 

are trained to predict disease using several immune repertoire feature representations. These 

include protein language models, which convert each amino acid sequence into a numerical 

vector. (C) An ensemble disease predictor is trained using the three BCR and three TCR 

base models. The combined model predicts disease status of held-out test individuals. (D) 

For validation, the disease prediction model allows introspection of which V genes carry 

disease-specific signal, which can be validated against prior literature. Within each V gene, 

previously published BCR and TCR sequences known to be disease associated can be tested 

for whether they have higher disease association. (E) The final trained model can be applied 

as a multi-disease assay, or as a diagnostic test for one disease. The same model will achieve 

a range of sensitivities and specificities depending on the chosen decision threshold.
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Fig. 2. Mal-ID classifies disease using IgH and TRB sequences.
(A) Disease classification performance on held-out test data by the ensemble of three B 

cell repertoire and three T cell repertoire machine learning models, combined over all 

cross-validation folds. The number of predictions (values in boxes) for each combination 

of true and predicted labels is shown, for a total of n=550 paired BCR and TCR samples. 

(B) Disease classification performance, calculated as multi-class one-vs-one area under 

the receiver operating curve (AUROC) scores, divided column-wise by model architecture 

(individual base models or ensembles of base models) and row-wise by whether BCR data, 

TCR data, or both were incorporated. Model 1 refers to the repertoire composition classifier, 

model 2 refers to the CDR3 clustering classifier, and model 3 refers to the protein language 

model classifier. The CDR3 clustering models abstain from prediction on some samples, 

while the other models do not abstain; to make the scores comparable, abstentions were 

forcibly applied to the other models. The BCR-only results also include BCR-only patient 

cohorts (n=66 samples) not present in TCR-only or BCR+TCR evaluation. (C) AUROC 
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scores for each class versus the rest from the full ensemble architecture including models 

1, 2, and 3 with both BCR and TCR data. (D) Difference of probabilities of the top 

two predicted classes for correct versus incorrect ensemble model predictions. A higher 

difference implies that the model is more certain in its decision to predict the winning 

disease label, whereas a low difference suggests that the top two possible predictions were 

a toss-up. Results were combined across all cross-validation folds. Each box represents the 

interquartile range (IQR) between the 25th and 75th percentiles of the data, with the line 

inside the box representing the median value. Whiskers extend to the farthest values within 

1.5 times the IQR from the edges of the box. Data points represent individual samples, 

with total sample number n indicated below each boxplot. One-sided Wilcoxon rank-sum 

test: p value 1.599 x 10−15, U-statistic 6052. (E) SLEDAI clinical disease activity scores 

for adult lupus patients who were either classified correctly or misclassified as healthy 

by the BCR-only ensemble model, used here because the adult lupus data was primarily 

BCR-only. SLEDAI scores were only available for some patients. Boxes represent data 

interquartile ranges with median lines, and whiskers show data extremes up to 1.5 times the 

IQR from the box. Data points represent individual samples, with total sample number n 

indicated below each boxplot. One-sided Wilcoxon rank-sum test: p value 4.242 x 10−3, U-

statistic 48. (F) Sensitivity versus specificity, averaged over three cross-validation folds, for 

a lupus diagnostic classifier derived from the pan-disease classifier. Two possible decision 

thresholds are highlighted. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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Fig. 3: Disease-associated IGHV genes and isotypes prioritized by Model 3 using protein 
language embeddings.
Shapley importance (SHAP) values quantifying the contribution of average sequence 

predictions from each IGHV gene and isotype category to Model 3’s prediction of a 

sample’s disease state are plotted for (A) Covid-19 (averaged over n=14 positive samples), 

(B) HIV (n=21 positive samples), (C) influenza vaccination (n=8 positive samples), (D) 

lupus (n=22 positive samples), and (E) type-1 diabetes (n=22 positive samples).
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Fig. 4. Models 2 and 3 learn SARS-CoV-2 antigen-specific sequence patterns from Covid-19 
patient data and can distinguish between known SARS-CoV-2-specific antibody sequences and 
healthy donor sequences.
For this comparison, validated SARS-CoV-2-binding sequences from the CoV-AbDab 

database (50) and a subset of healthy donor sequences were held out from training. Known 

binder detection using Model 2 or Model 3 predictions of sequence association to disease 

was evaluated separately for each IGHV gene; performance is shown for IGHV1-24 and 

compared across IGHV genes. (A to D) Model 2 identifies a conservative set of public 

clones enriched in Covid-19 patients which match some known binders. In panels (A) and 

(C), the number of predictions (values in boxes) for each combination of true and predicted 

labels is shown for a total of n=1856 sequences that use IGHV1-24. Model 2’s precision and 

recall across IGHV genes is shown, with binding predictions determined: (A and B) based 

on shared IGHV gene, IGHJ gene, and CDR3 length with any Covid-19 cluster identified 

in Model 2’s training procedure; or (C and D) with an additional 85% CDR3 sequence 

identity threshold. (E to H) Model 3 ranks known binders higher than healthy sequences 

based on predicted Covid-19 probability (E), with relative AUPRC ranging up to 6.9-fold 

over baseline prevalence (F) and AUROC up to 0.78 across IGHV genes (G). Permutation 

test in panel (E) to assess whether IGHV1-24 known binders have higher ranks than healthy 

donor sequences, with consistent labels maintained during the permutation process across 

sequences from each healthy donor: p value 0. In panel (E), boxes represent interquartile 

ranges (IQR) with median value lines superimposed; whiskers extend to data points within 

1.5 times the IQR from the box edges; and data points represent individual sequences 

using IGHV1-24, with total sequence number n indicated below each boxplot. (H) Model 3 

maintains reasonable performance (AUROC up to 0.75) for sequences that are not evaluated 

by Model 2’s clustering (sequences for which Model 2 identified no SARS-CoV-2 clusters 

with matching IGHV gene, IGHJ gene, and CDR3 length). (I) At equivalent precision, 

Model 3 generally exhibits higher recall than Model 2, identifying more true binders but 

with increased false positives. IGHV genes where Model 3 has higher recall than Model 2 
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are shown in blue. For each IGHV gene, recall was calculated for Models 2 and 3 at Model 

2’s precision shown in (B), with no sequence identity constraint applied during matching to 

Model 2 clusters. Data points represent n=34 individual V genes in panels (B), (D), (F), (G), 

(H), and (I). Point size indicates number of identical values plotted at a particular location 

for panels (B), (D), and (I). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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