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Hematopoietic (stem) cells—The elixir of life?
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The long lifespan of humans is often not matched with health span. Thus,
there is a need for rejuvenation strategies. Here, we first discuss the evolu-
tionary benefits of the long human lifespan, particularly when coupled with an

Sciences, University of Helsinki, Helsinki,
Finland

E-mail: emilie.cerezo@helsinki.fi

and

J. Lengefeld, Helsinki Institute of Life
Science, HILIFE, Institute of Biotechnology,
Faculty of Biological and Environmental
Sciences, University of Helsinki, Helsinki,
Finland

E-mail: jette.lengefeld@helsinki.fi

(Received 15 June 2025, revised 1
September 2025, accepted 7 October 2025)

doi:10.1002/1873-3468.70215

Edited by Quan Chen

extended health span. We then highlight the importance of understanding the
complexity of aging before interfering with it. This raises the question of the
optimal target for rejuvenation. We propose the blood system and hematopoi-
etic stem cells (HSCs). Their decline is associated with dysfunction and dis-
ease in other organs, crystallizing them as a central player in organismal
aging. We present rejuvenation strategies targeting the hematopoietic system,
especially HSCs, and explore their systemic benefits. Overall, we summarize
the potential of the blood system to reverse aging.

cells;

Keywords: blood system; health stem

organismal aging; rejuvenation

span; hematopoietic

Impact statement

There is a current need to reduce the economic burden caused by
aging-related diseases. In this perspective article, we discuss the evidence
that supports that rejuvenating or delaying aging of the blood system has a
beneficial and systemic impact on human health.

The quest for longevity is an old tale [1]. Recently, an
unmatched interest in anti-aging and rejuvenation
strategies has emerged. From skincare products to
anti-aging food, a flood of new products claims their
age-defying benefits [2]. Longevity and rejuvenation
have become a global business market [3], valued at

annual investment in geroscience exceeds $10 billion,
combining public, philanthropic, and venture capital
sources [5].

Given this interest in rejuvenation, we discuss the
importance of understanding aging before reversing it.
We then identify the blood system as a key rejuvena-

more than $42 billion in 2024 [4]. Current global tion target due to its crucial role in organismal aging.
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What is aging?

From the moment we are born, several processes take
place over time, including development, adaptation,
and functional decline. Aging refers to the latter and is
often defined as time-dependent deterioration of physi-
ological functions [6]. Aging is driven by aging factors
or hallmarks, which (i) manifest during aging, (ii)
when induced accelerate aging, (iii) and when removed
slow down aging [7]. The list included the following:
cellular senescence, mitochondrial dysfunction, stem
cell exhaustion, telomere attrition, altered intercellular
communication, deregulated nutrient sensing, loss of
proteostasis, genomic instability, disabled macroauto-
phagy, chronic inflammation, dysbiosis, epigenetic
alterations, and other emerging aging factors, such as
cellular enlargement [7-12]. The aging hallmarks pro-
vide a starting point to test interventions with rejuve-
nation potential. However, the aging process remains
not fully understood and the number of aging hall-
marks is continuously expanding.

Why rejuvenate?

We live longer than ever before [13]. However, health
span—the period without chronic diseases and disabil-
ities—does not match the extending lifespan, which
increases the incidence of age-related diseases and the
associated socio-economic burden [14,15]. Reversing or
slowing aging would delay the onset of age-related dis-
eases like cardiovascular, neurodegenerative, meta-
bolic, and hematological disorders [13,16-19]. This
approach has been proposed to be economically more
beneficial than treating diseases individually [20].
Before reversing aging, it is important to first ask
why it exists in humans in the first place. Humans
have a comparatively long lifespan of ~80 years with
122 years as the oldest recorded [13,21]. What are the
reasons for this long lifespan? Theodosius Dobzhansky
said ‘Nothing makes sense in biology except in the
light of evolution’ [22]. Evolutionary aging theories
suggest that natural selection acts mostly at younger
ages when reproduction is high and mutations are
passed onto the next generation. Thus, genes that
cause decline at old age are less likely to be eliminated
by natural selection [23-25]. For humans, evolutionary
pressure may even continue after the reproductive
phase. One observation supporting this is known as
the grandmother effect, where the presence of grand-
mothers is associated with increased survival and
reproductive success of their grandchildren [26-29].
This would provide an explanation of why women live
long after their menopause. The grandmother effect is
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only observed so far in humans, orcas, and elephants
[30-32] and is most likely not the only factor connect-
ing reproductive strategies with lifespan. Interestingly,
some gene variant alleles present uniquely in humans
have been proposed to protect against cognitive
decline at old age. An interpretation is that elderly
people carrying these variant alleles maintained their
cognitive functions longer, which would similarly allow
them to support their reproductive offspring [33].
Thus, improving the health and lifespan of postrepro-
ductive individuals in our society is expected to sup-
port the fitness of younger ones. Furthermore, in
many organisms, the number of cortical neurons corre-
lates with both total lifespan and length of the devel-
opmental period [34]. The long lifespan and postnatal
development of humans may allow for more developed
brains capable of complex social interactions and the
creation of advanced tools, which both positively
impact lifespan [35]. Together, these observations sug-
gest that the long lifespan of humans evolved to allow
complex brain development and the presence of elderly
people to ensure the survival of their genes in the
younger generations.

Considering the advantages of a long lifespan, why
is lifespan limited at all? An interesting discovery was
that certain gene manipulations extend lifespan [36,37],
for example the daf-2 gene in C. elegans [36,38,39] and
potentially its human homolog [40]. Originally, this
raised the question of whether genes exist that limit
lifespan, which would imply the existence of selective
pressure against increased lifespan. However, daf-2 has
pleiotropic functions; for example, it is important for
proper development [41]. Thus, its function in early life
likely provides a greater evolutionary benefit than the
cost of limiting lifespan later in life (known as antago-
nistic pleiotropy [42]). Nevertheless, genes that limit
lifespan are interesting as targets for treatments aiming
to increase lifespan after the reproductive period [43].

One important point is that extending lifespan seems
to only benefit an organism if health span is extended
at the same time. Indeed, extending lifespan reduces
the resistance to natural stresses in several model
organisms [44] and increases time spent in a frail state
in C. elegans [39] and humans [14,15,45]. Health span
in humans is restricted by the limited regenerative abil-
ity of organs like the heart, spinal cord, and brain [46]
and the aging-dependent decline of regeneration in
organs, such as bone marrow, liver, intestine, and skel-
etal muscle [47-49]. These observations raise the ques-
tion of why we did not evolve regenerative potential
that persists at old age in all organs. One interpreta-
tion is that regeneration increases cancer risk [50,51],
which may shorten lifespan even more than decay
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from aging. Thus, prolonging health span via increased
regeneration requires balancing to prevent tumor for-
mation. Altogether, these observations suggest that
there are evolutionary benefits of a healthy and long
lifespan in humans.

Compensatory adaptations during
old age

Over time, several processes take place, including
adaptations to decay from aging [52]. Examples of
time-dependent adaptation were provided by research
in Saccaromyces cerevisiae (budding yeast), a powerful
model system for eukaryotic aging [53]: Old yeast cells
grow and adapt better than younger ones when nutri-
tional conditions change [54,55]. This rapid adaptation
may result from the time-dependent accumulation of
stress protectant molecules and specific extrachromo-
somal circular DNA (eccDNA), which provides a res-
ervoir of heterogeneous molecular material [56,57].
eccDNA also exists in human cells, opening the possi-
bility that these adaptive mechanisms are conserved.
They are proposed to provide adaptive advantages in
the cancer context [56,58—61]. Furthermore, low-level
activation of stress responses upon age-associated
damage also improves resistance to external stresses
(hormesis) [62,63]. Importantly, these observations sug-
gest that not everything occurring with old age directly
leads to decay but can instead be a compensatory
adaptation to temporarily maintain functions.

There are more examples of processes originally
thought to exclusively drive aging, which then turned
out to (also) support physiological functions:

* Amyloid beta (Af) plaques accumulate during aging
and are consistently observed in postmortem brains
with Alzheimer’s disease. Hence, AP plaques were
first considered as a main pathogenic driver of Alz-
heimer’s [64]. Now, models suggest that AP plaques
may be neuroprotective as they sequester toxic A
forms, thereby preventing the formation of amyloid
pores [64-66].

Somatic mutations accumulate during aging and are
the root cause of cancer. While they were initially
assumed to drive aging, this is now under debate
[12,67,68]. Most likely, somatic mutations are associ-
ated with gradual functional decline and increased
vulnerability to disease; however, there are excep-
tions which restore organ function. For example, the
germline variant COLI7AI is associated with skin
disease. Somatic mutations in this gene can result in
a selection advantage leading to an improvement of
symptoms [69]. Similar observations were made for
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germline mutations of Mendelian hematopoietic dis-
eases [70] and Hutchinson—Gilford progeria [71].
Furthermore, somatic mutations have been reported
to confer cancer protection in the epithelium and
promote liver regeneration [72,73]. Exploring the
mutational landscape of centenarians—persons
>100 years—may uncover beneficial somatic muta-
tions for human longevity [74,75]. Somatic mutations
also accumulate in the blood system and are present
in around 15% of 70-year-olds harboring mutated
clones.  These mutations initially  improve
blood-building capacity; however, ultimately, all
clonal expansions in the blood are associated with
increased risk of hematological malignancy [76,77].
Senescent cells are permanently arrested in the cell
cycle, accumulate during aging and are a major com-
ponent of aging dysfunction [78-80]. Indeed, trans-
planting senescent cells into mice drives age-related
diseases [81-84]. However, it has been revealed that
senescence also supports physiological functions like
tissue remodeling during embryonic development,
wound healing, removal of premalignant cells, and
hemostasis (the process of bleeding cessation)
[85-92]. Indeed, certain senolytics are associated with
thrombocytopenia that impairs hemostasis [93-95].
Thus, it would be optimal to pharmacologically dis-
tinguish between pathological and physiological
senescence.

Reactive oxygen species (ROS) accumulate over time.
However, increasing evidence indicates no direct cor-
relation between ROS accumulation and accelerated
aging. The physiological function of ROS production
is proposed to contribute to intracellular signaling
rather than stochastic macromolecular damage [96].
In agreement with this, ROS generation governs the
metabolic benefits of physical exercise in humans via
transcriptional reprogramming [97].

Overall, these examples illustrate the importance of
first understanding the mechanisms occurring during
old age before targeting them. Aspects of aging itself
have been proposed to maintain physiological func-
tions. For example, while aging is the most important
risk factor for cancer [98,99], it also has been sug-
gested to be cancer protective [99,100]. Many cells
decline in proliferative potential during aging
[101,102], while cancerous cells are characterized by
increased proliferation. Telomere attrition causes cellu-
lar aging and is often counteracted by overexpression
of telomerase in cancer cells [103]. Expressing onco-
genes can induce senescence in cells, while drivers of
senescence, such as p21, pl6, and p53, are often dys-
functional in tumors [104-107]. However, the picture is
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more complex as some senescent cells can exit their
cell cycle arrest and drive cancer relapse [108,109].

Another cancer protective example driven by aging
is provided by Hutchinson—Gilford progeria syndrome
(HGPS), which is caused by progerin generation. Indi-
viduals affected by the syndrome experience premature
aging and display increased levels of DNA damage
[110,111]. However, this increased genetic instability
does not correlate with a higher cancer risk [110,112]
due to the protective effect of progerin [113]. Upon
aging, progerin also accumulates in normal tissues
suggesting that its protective properties may also occur
in physiological conditions [114-116]. Thus, has aging
evolved to suppress cancer? This will remain a hard
question to disentangle since another interpretation
reverses this viewpoint: mechanisms evolved to
suppress cancer until they fail due to aging [117].
Regardless, aging and cancer are linked in humans
and any attempt to rejuvenate must take care that the
intervention does not lead to malignancy. Taken
together, not everything that occurs during the later
years of an organism can be taken at face value as a
direct driver of aging. This highlights the need for cau-
tion when aiming to intervene in aging mechanisms to
rejuvenate.

What to rejuvenate? The blood system
as a star(t) x

To effectively rejuvenate, we should consider that
aging is a complex process that manifests differently
across individuals of the same chronological age.
Moreover, in the same individual, aging rates vary
across tissues, organs [118,119] and cell type popula-
tions [120-122], thereby influencing the development of
distinct age-related diseases and associated comorbid-
ities [118,123]. An optimal target of rejuvenation has
therefore the potential to be restored in function and
improve the function of other aged organs at the same
time. Here, we explore the evidence suggesting that the
blood system plays a central role in overall tissue and
organ aging and that its rejuvenation therefore
improves health span.

Role of hematopoietic cells in organismal aging
and age-related diseases

Hematopoietic cells have numerous roles, including
molecular transport throughout the body, immune
response, and body homeostasis. With time, these
functions decline [124]. Here, we point out how hema-
topoietic cells relate to organismal aging and
age-related diseases:
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Blood system—A declining blood system co-occurs
with additional disease risks:

* Patients with age-related blood disorders display
comorbidities that are listed in the top 10 causes of
death by the World Health Organization: cardiac,
renal, and pulmonary diseases, and solid tumor
development [125-128].

* An aging blood system often displays clonal hemato-
poiesis, wherein a subset of hematopoietic stem cell
(HSC) clones acquires mutations increasing their
proliferation thereby making up a large portion of
the hematopoietic compartment. Clonal hematopoie-
sis 1s associated with increased risk of blood cancer,
coronary heart disease and stroke and is associated
with a 35% higher mortality risk [128] possibility via
modulation of immune system function.

An aging blood system is accompanied by increased

risk of (pre-)malignant hemopathies [129-131] and

bone marrow fibrosis [132—134].

Disease risk increases upon T-cell decline: Increased

risk of autoimmune diseases correlates with aging of

T cells [135]. In patients with autoimmune disorders,

such as rheumatoid arthritis, pro-inflammatory T-cell

expansion drives tissue destruction, and promotes
age-related pathologies like cardiovascular disease

[124]. T-cell destruction upon HIV infection acceler-

ates aging in AIDS patients, which also leads to car-

diovascular disease, cancer, frailty, and osteoporosis

[136,137].

* The decline of red blood cells (RBC) results in
anemia that affects about one-third of the world
population. Even mild anemia is associated with
age-associated diseases, such as cancer and renal
insufficiency [138].

Overall, these observations reveal that a declining
blood system correlates with dysfunction in other organs.

Immune system—During old age, a drastic drop in the
efficiency of the immune cells and an accumulation of
pro-inflammatory cytokines and chemokines result in
organismal decline. Indeed, transplanting senescent
immune cells causes, (a) senescence in nonlymphoid
tissues and solid organs, (b) loss of muscle regenera-
tion, (c) organ damage, especially in the heart, liver,
kidneys, and brain, and (d) reduced lifespan in recipi-
ent mice [81]. This organismal decline is expressed in
various ways:

e Infections become more frequent and vaccination
responsiveness decreases with age [124,139].

* Systemic inflammation accelerates cellular and organ
aging [140,141]. T-cell dysfunction increases systemic
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pro-inflammatory cytokines, contributing to organ
decline and reduced lifespan [81,90,124,142—-144]. For
example, the expansion of CD8+ T cells in the
spleen, peritoneum, liver, and lung produces the pro-
inflammatory Granzyme K, which has been pro-
posed as a trigger of age-driven inflammation [143].
Macrophages are also a main source of pro-
inflammatory cytokines and drive inflammation in
the kidney and liver [145,146]. Increased activation
of neutrophils increases tissue inflammation, such as
periodontitis, and contributes to age-associated dis-
ease onset [147,148].

* Clearance activity of cytotoxic T cells declines during
aging, slowing down the removal of premalignant
and senescent cells, which facilitates cancer and
organismal decline [90,149,150]

* Organ repair decreases with declining immune func-
tion [151,152]. For instance, lower abundance of neu-
trophils alters organ repair [153] and delays bone
fracture healing [154].

Overall, these findings demonstrate that the hemato-
poietic system and especially the immune system play
a fundamental role in organismal functions beyond the
blood system and therefore are likely to be a key
aspect of organismal aging [16].

Blood system—A target for organismal
rejuvenation

Several strategies have been explored to rejuvenate the
blood system, which in turn further demonstrates its
influence on the function of other organs:

* Heterochronic parabiosis is a procedure that merges
the blood systems of old and young mice. It thereby
increases rejuvenation markers and processes in
many organs of the old animal while the young ani-
mal displays increased aging characteristics
[155-158]. The rejuvenation is likely caused by reju-
venating factors from the young circulatory system
[159-163] and the dilution of pro-aging factors from
the aged compartment [164-166]. Supplying old ani-
mals with young blood cells improves senescent cell
removal [157,167,168], bone repair [169,170], and the
regeneration of the central nervous system (CNS)
[158,160,161,171]. This procedure unveils the poten-
tial of the blood compartment as a central rejuvena-
tion tool [155].

Therapeutic plasma exchange (TPE) is a procedure in
which a patient’s plasma is removed and replaced
with a substitute fluid like saline, albumin, or donor
plasma. In old mice, plasma dilution promotes
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neurogenesis and rejuvenates skeletal muscles and
the liver [164,166]. In humans, TPE reduces the
aging-associated myeloid bias, systemic inflamma-
tion, DNA damage, and senescence in peripheral
blood mononuclear cells [165]. TPE is currently used
as a therapeutic strategy for numerous diseases
[172,173], but its potential to treat age-related dis-
eases remains to be explored.

RBC peri-transfusion is the main treatment for ane-
mia or hemoglobinopathies. Several treatments have
been developed to rejuvenate RBCs, thereby improv-
ing their capacities following hypothermic conserva-
tion [174-177]. In vivo, these rejuvenated RBCs
improved the oxygenation and function of the heart,
lungs, and kidneys [178]. RBC rejuvenation could
therefore be beneficial for aging individuals.
Transplantation of bone marrow cells promotes func-
tional recovery beyond the blood system by contrib-
uting to muscle regeneration [179], repair of heart
muscle tissue [180], improving postnatal blood vessel
formation [181], bone healing [169], and cognitive
functions [182]. Notably, transplanting young bone
marrow or progenitor-enriched bone marrow (Lin-
cells) into old mice significantly increased their life-
span by about 31% or 12%, respectively [183,184].
The transplantation of cord blood cells, enriched for
bone marrow cell types, attenuates the accelerated
aging phenotype driven by progeria [185].

Restoring immune cell function

* Removing senescent T cells from adipose tissue
improves glucose tolerance, insulin resistance, and
obesity-related metabolic disorders in mice [186].
Importantly, the detrimental effects driven by dys-
functional T cells are reversible in the heart, the vis-
ceral adipose tissue and other key organs
[81,142,186,187]. A promising way to counteract T-
cell-driven aging is to restore thymus function
[188,189].

* Exercise-induced  rejuvenation  of  neutrophils
co-occurs with reduced disease risk in aged patients
with type 2 diabetes predisposition [190].

* Heterochronic parabiosis suggests that monocytes of
young animals have the potential to regenerate the
CNS of old animals by supporting the process of
building new myelin sheath [171].

Overall, these findings demonstrate that rejuvenation
of hematopoietic cells restores functions beyond the
blood system, crystallizing it as an optimal therapeutic
target to prevent organismal aging.
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Hematopoietic stem cells—A
promising rejuvenation target?

Effect of time on HSCs

HSCs are at the top of the hematopoietic hierarchy,
giving rise to all hematopoietic cells. During aging
their stemness declines, affecting downstream hemato-
poietic cells like immune cells [191,192]. To explore the
potential to rejuvenate HSCs, we first need to under-
stand the processes of aging and adaptations in HSCs

(Fig. 1):

* HSCs decline in function with time [191,193]. This is
driven by intrinsic factors, such as enlargement [§],
apolarity [194], metabolic changes [121,195], reduced
DNA damage repair [196,197], low proteostasis
[198], low mitochondrial function [199], declining
autophagy [200], increased mTOR activity [201],
increased inflammasome [202], increased ROS levels
[203,204], senescence [186], stem cell exhaustion
[205], epigenetic changes [206-209], and possibly
transposable element expression [209,210].

While individual HSC function declines, the HSC
pool increases in number over time in humans and
mice [101,211]. This expansion may be a compensa-
tory effort to maintain overall productivity of the
HSC compartment. However, this process is often
associated with clonal hematopoiesis [128,211,212],
making the blood system more prone to leukemia
transformation [212,213].

Aged HSCs bias toward myeloid lineage production
at the expense of lymphoid lineage [214-218]. This
increases inflammation [219] and reduces the adap-
tive immune response [120,220,221], which is associ-
ated with decreased cancer immunosurveillance [222].
HSCs are affected by their complex bone marrow
microenvironment, which is called the niche
[223,224]. During aging, the niche undergoes alter-
ations, including increased matrix stiffness, vascular
remodeling, decreased innervation, increased adipos-
ity, and inflammation, which contribute to the
decline of HSC function [225,226]. Indeed, an old
recipient’s microenvironment reduces the ability of
young HSCs to engraft and produce T cells.
Inversely, transplanting old HSCs into young recipi-
ents results in more balanced myeloid/lymphoid line-
ages [227,228]. However, a young niche is not
sufficient to restore the function of old HSCs [229].

Interestingly, aging does not uniformly affect the
HSC population, creating subsets of differently aged
HSCs [120-122,211,230]. Overall, aging and the
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resulting adaptations progressively impair the ability
of HSCs to ensure the functionality of the blood
system.

Rejuvenation strategies for HSCs and their effect
on organismal functions

Transplanting young HSCs into aged mice significantly
extends their health- and lifespan [122,183], which indi-
cates that the rejuvenation of old HSCs could have
similar effects. In this part, we present strategies that
restore the function of old HSCs [231] and present the
effect on organismal functions. These studies analyzed
the rejuvenation of HSCs at different levels: (a) HSC
cellular characteristics like DNA damage, (b) in vivo
HSC function, like engraftment, blood-building capac-
ity and lineage bias analyzed after transplantation into
untreated recipient mice, overcoming pleiotropic
effects, and (c) health- and lifespan of HSC recipients.

1. Rejuvenating old HSCs by restoring intrinsic
pathways

* Preventing or reversing age-related HSC enlarge-
ment improves their blood-building capacity
upon transplantation [8,10].

* Rapamycin inhibits mTOR, extends lifespan
[232], and rejuvenates old HSCs as their trans-
plantation improves blood-building capacity and
lineage balance [8,201]. Rapamycin also improves
HSC function when administered in vitro, demon-
strating its direct effect [233].

* Inhibition of RhoGTPase Cdc42 with CASIN in
aged mice partially rejuvenates aged HSCs by
restoring their apolarity and improves their
capacity to build immunocompetent cells.
Remarkably, transplanting these rejuvenated
HSCs increases the lifespan of aged immunocom-
promised recipient mice [192,234]. Increased
activity of Cdc42 is also associated with aging in
humans and aged HSCs [235-238].

* Converting aged HSCs into induced pluripotent
stem cells (iPSCs) by expressing the Yamanaka
factors and then differentiating these back into
HSCs effectively rejuvenates them transcription-
ally and improves their blood-building capacity
and T-cell function [120,239].

* Sirtuins are NAD+-dependent deacetylases impli-
cated in inflammation, metabolism, and oxidative
stress response [240]. Sirtuins were established as
promising pro-longevity genes [241], although this
is also disputed [242]. In mouse HSCs, overex-
pression of SIRT2/3/7 improves blood-building
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c rejuvenation Strategie
S

Fig. 1. Hematopoietic stem cell (HSC) aging factors and rejuvenation strategies. This diagram represents the factors leading to HSC aging
(inner circle), and the rejuvenation tools targeting these aging factors (outer circle). The aging drivers can originate from the HSCs
themselves (purple) or the microenvironment (yellow), or a combination of both (purple and yellow). For some factors, no HSC-specific
rejuvenation strategy currently exists and is marked as N/A. See the main text for more details. HP, heterochronic parabiosis.

capacity after transplantation, and SIRT2/7 transplantation [245,246]. Old mice supplemented

improves lineage balance [202,243,244].

Mitophagy induction by in vitro or in vivo Uro-
lithin A treatment or the restoration of mitochon-
drial membrane potential with MitoQ improves
the capacity of old HSCs to build blood after

with Urolithin A also show an improvement in
their immune response after an acute viral
infection.

Activation of chaperone-mediated autophagy in
vitro or in vivo improves the function of old
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HSCs [247]. This is evidenced by enhanced
long-term self-renewal capacity of aged HSCs in
vitro, increased GAPDH activity and decreased
protein oxidation level.

* Modulating the expression of age-associated
genes, such as p38 MAPK, Satbl, Per2, Phf6,
and Rantes/Ccl5, partially rejuvenates old HSCs.
These approaches improve HSC commitment
toward the lymphoid lineage. In addition, p38
MAPK inhibition and Phf6 deletion improve
long-term blood reconstitution. Of note, Per2—/—
aged mice present an improved immune function
and lifespan, although this may not be solely
caused by rejuvenated HSCs because the gene is
deleted in all cell types [227,248-253]

2. Rejuvenating old HSCs by systemic interventions

* Aged HSCs contribute to the generation of pro-
inflammatory myeloid cells, which infiltrate car-
diac tissue after myocardial infarction. Enforcing
HSC quiescence with 4-oxo-retinoic acid, a vita-
min A metabolite, mitigates inflammatory myelo-
poiesis, thereby improving tissue remodeling and
preserving long-term cardiac function [254,255].

* In middle-aged mice, long-term calorie restriction
(CR) shows positive and negative effects [256]: It
limits the increase of the HSC pool observed
upon aging, and overall improves their self-
renewal and repopulation capacity upon trans-
plantation. However, long-term CR specifically
inhibits the proliferation of lymphoid progenitors,
resulting in an impaired immune function. In old
mice, life-long CR resulted in opposite results
upon transplantation with either no impact on
HSC function [257,258] or improving the blood-
building capacity and  maintaining  the
lymphoid/myeloid balance [259,260].

* Heterochronic parabiosis rejuvenates the expres-
sion profile of HSCs from old mice [156,157] and
may restore the lineage bias after transplantation
[257,261], while it fails to restore their blood
reconstitution capacity [257].

* Strategies that are commonly used to drive reju-
venation in other cell types like TPE and exercise
do not seem to rejuvenate old HSCs [257].

3. Removing old HSCs

* Clearing senescent cells, either from niche or
HSCs themselves, rejuvenates the remaining
HSCs in aged mice, and improves their ability to
build a new blood system [262].

* Depleting myeloid-biased HSCs restores balanced
differentiation in aged mice [220]. This depletion
results in more lymphocyte progenitors and naive
T and B cells. It improves adaptive immune

E. L. Cerezo et al.

responses, while decreasing age-related markers
of immune decline.
4. Targeting the niche

* The infusion of young bone marrow-resident
endothelial cells in old mice rejuvenates HSC
function and improves their engraftment and
blood-building capacity [263].

* Supplementing old mice with niche-derived fac-
tors like netrin-1 [264] or with adrenergic agonists
to stimulate the sympathetic system [265,260]
rejuvenates  their niche, demonstrated by
improved bone marrow vascular integrity, mesen-
chymal stem cell (MSC) number, and lower
DNA damage levels. These approaches also
improve blood-building capacity of HSCs.

* Softening the extracellular matrix stiffness rejuve-
nates old HSCs ex vivo and restores their blood
reconstitution capacity, lineage balance, mito-
chondrial function, cell polarity, and DNA dam-
age level [267]. Importantly, this approach
requires the support of bone marrow-resident
MSCs, implying a functional connection between
HSCs and MSCs (details below).

* However, a young niche is not sufficient to fully
restore the function of old HSCs [229], which
implies that both intrinsic and extrinsic aging fac-
tors have to be targeted to optimize HSC
rejuvenation.

We note that most of these studies were conducted
in mice, and for most treatments, it is unclear whether
they are also promising for human HSCs. The murine
and human blood systems exhibit both similarities and
differences when comparing aging hallmarks [268]. For
instance, clonal hematopoiesis occurs more frequently
in humans than in mice [269]. Thus, there is a need to
expand aging research on human HSCs.

Overall, HSC rejuvenation can be achieved by multi-
ple approaches and has far-reaching effects like pro-
tecting immune functions and increasing lifespan.
HSCs and their niche are therefore promising targets
to improve health span.

Mesenchymal stem cells—Support for
blood system rejuvenation

In the bone marrow, HSCs are surrounded by niche
cell types, including MSCs [270]. MSCs influence the
function of hematopoietic cells [271]. For example, the
co-transplantation of HSCs with MSCs improves HSC
engraftment, short and long-term reconstitution
and accelerates lymphocyte recovery [272-275].
Co-culturing of HSCs with young MSCs or HSC niche
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factors enhances the HSC’s ability to build a blood
system in vivo [276,277]. In addition, MSCs modulate
immune responses by, for example, limiting T-cell pro-
inflammatory activity [278-292], which can mitigate
the graft-versus-host disease upon co-transplantation
with HSCs [293-295]. In turn, HSCs improve the func-
tion of damaged MSCs [296]. Hence, these two cell
types influence each other’s rejuvenation capacity.

Upon aging, senescent MSCs alter immune cells
thereby impairing bone and cardiac regeneration and
driving  organ  inflammation  [145,146,297-300].
Impaired MSCs also promote tumorigenesis, myelo-
proliferative diseases and bone marrow fibrosis
[133,301-305]. Rejuvenating or removing senescent
MSCs restores their immunoregulatory activity and
improves bone regeneration, angiogenesis and cardio-
protection following infarction [297,300,306]. The infu-
sion of young MSCs restores immunomodulatory
activities and reduces tissue deterioration driven by
autoimmune disease [307,308]. In line with this, several
clinical studies use MSCs for skin regeneration and to
treat neurodegenerative and ischemic heart diseases
[309-311]. Thus, targeting MSCs is a promising
approach for the rejuvenation of immune cells and
organs. Interestingly, the organs affected by MSC-
based cell therapies are similar to the ones for HSC-
based therapies (see below), which further strengthens
the functional interplay between MSCs and HSCs in
rejuvenation potential. Unfortunately, the advantages
of MSC-based therapy in patients with autoimmune
disease are inconsistent and often lost in the long term,
which implies a short-term maintenance of MSCs in
recipients and the need for repeated infusions
[312-324]. However, these findings place MSCs as a
promising partner to the hematopoietic system for
immune cell and organ rejuvenation.

HSC-derived (immuno)therapies to
counteract aging-related disease

HSC transplantation is the main stem cell-based ther-
apy in humans and is used for treating diseases of the
blood system, like hematological malignancies and
autoimmune diseases [325,326]. In patients with auto-
immune diseases, for example, autologous HSC
(aHSC) transplantations reset the T-cell repertoire,
which improves immune cell function and disease out-
comes [327-336]. Furthermore, several clinical studies
have evaluated the potential of HSC transplants to
treat nonhematopoietic diseases:

* Solid tumors: HSC transplants can generate an
immune response, called graft-vs-tumor effect,

HSCs—The elixir of life?

improving the survival of patients by the elimination
of cancerous cells [337-339].

Angiogenesis and organ arterial blood supply upo-
nischemia: HSC transplants may promote angiogene-
sis by generating new endothelial cells [340].
Neurological disorders: HSC transplants improve
brain repair potential in patients with neurological
disorders [341,342]. Together with HSC gene ther-
apy, HSC transplants are an efficient treatment for
patients with cerebral adrenoleukodystrophy and
metachromatic leukodystrophy [343-347].

Skin disorder: HSC transplants improve wound heal-
ing and reepithelialization of the skin in epidermoly-
sis bullosa patients and diabetic mice [348,349].
Systemic sclerosis: HSC transplants decrease all-cause
mortality and improve lung capacity and skin thick-
ness [330].

An interesting question is how aHSC transplants
improve nonhematopoietic diseases. One supported
model is that they restore a functional immune system,
which in turn improves the health of other organs by,
for example, removing premalignant and senescent cells
as outlined above [81,90,124,142,144]. Another model
proposes that HSCs transdifferentiate into nonhemato-
poietic cell types [350-356]. However, HSCs rarely gen-
erate nonhematopoietic cell types during physiological
conditions in mice [357]. Lastly, hematopoietic cells
may also improve cardiac, neuronal and hepatic func-
tions via cell fusion [358]. Altogether, even though the
safety of the procedure has to be improved
[348,359,360], aHSC transplants reveal a new perspec-
tive on how to counteract certain aging-related diseases.

HSCs are also interesting for approaches using engi-
neered chimeric antigen receptors (CARs). CARs enable
T and NK cells to recognize specific antigens and to
target, for example, cancer cells [361,362]. This
approach is also utilized to target fibrotic and senescent
cells, thereby preserving the integrity of cardiac and
liver tissue following injury [363-365]. However, the
high costs of CAR T-cell engineering and their short
maintenance in recipients motivate the search for alter-
natives [361]. HSCs display long-term self-renewal
capacities and multipotency. Hence, engineering HSCs
for immunotherapies allows for long-lasting and diverse
replenishment of chimeric immune cells [366-368]. For
instance, HSC engineering can overcome the resistance
of NK cells to viral transduction and generate HSC-
derived invariant NK cells for cancer immunotherapies
[362,369,370]. The potential of HSCs for immunother-
apies is further enhanced by the outcome of clinical
studies on hematological and autoimmune disorders; up
to 15 years follow-up on subjects confirmed the long-
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term biological safety and efficacy of gene therapy using
lentivirally transduced HSCs [368,371-379]. Excitingly,
the development of nanoparticles and viral vectors
might even enable in vivo editing of HSCs [380-386].
Altogether, autologous transplantation of rejuvenated
and engineered HSCs is a promising tool to slow down
age-related disease occurrence.

Conclusion

The current interest in anti-aging and rejuvenation
strategies motivated us to discuss the importance of
understanding lifespan and aging before interfering
with them. We find compelling arguments that the
long and healthy lifespan of humans provides benefits
from enabling complex brain development to building
efficient social structures of intergenerational care sup-
porting survival and reproduction.

Aging is a complex process manifesting itself differ-
ently across tissues and cell type populations. Impor-
tantly, it is still not fully understood. To establish
successful rejuvenation strategies, it is essential that we
improve our understanding of the holistic picture of
all factors driving aging and their interactions.

The blood system, with HSCs at the top of its hier-
archy, appears to play a central role in organismal
aging. HSC aging is driven by intrinsic mechanisms
and the bone marrow microenvironment. It impacts
hematopoiesis with consequences within and beyond
the blood system, contributing to organismal aging.
Thus, restoring a functional blood system by rejuve-
nating HSCs is expected to also improve the function
of other organs thereby reducing the risk of developing
a broad range of age-associated diseases. While HSC
rejuvenation is not expected to benefit all organs and
tissues, such as the endocrine system, future work will
show whether HSC-derived improvements are enough
to counteract overall decline at old age.

Techniques to rejuvenate the blood compartment
are expanding and improving. Autologous HSC trans-
plantations in humans further illustrate what organis-
mal rejuvenation strategies can achieve as they are
already used to treat hematopoietic and nonhemato-
poietic diseases. The supplementation of MSCs or
other niche factors might enable HSCs to reach their
full rejuvenation potential. Overall, our review high-
lights the power of the hematopoietic compartment to
reverse organismal aging.
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