

Hematopoietic (stem) cells—The elixir of life?

Emilie L. Cerezo¹, Jonah Anderson², Emilie Dinh Vedrenne¹, Noël Yeh Martín¹ and Jette Lengefeld^{1,2}

¹ Helsinki Institute of Life Science, HiLIFE, Institute of Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland

² Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden

Correspondence

E. L. Cerezo, Helsinki Institute of Life Science, HiLIFE, Institute of Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland

E-mail: emilie.cerezo@helsinki.fi

and

J. Lengefeld, Helsinki Institute of Life Science, HiLIFE, Institute of Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland

E-mail: jette.lengefeld@helsinki.fi

(Received 15 June 2025, revised 1 September 2025, accepted 7 October 2025)

doi:10.1002/1873-3468.70215

Edited by Quan Chen

The long lifespan of humans is often not matched with health span. Thus, there is a need for rejuvenation strategies. Here, we first discuss the evolutionary benefits of the long human lifespan, particularly when coupled with an extended health span. We then highlight the importance of understanding the complexity of aging before interfering with it. This raises the question of the optimal target for rejuvenation. We propose the blood system and hematopoietic stem cells (HSCs). Their decline is associated with dysfunction and disease in other organs, crystallizing them as a central player in organismal aging. We present rejuvenation strategies targeting the hematopoietic system, especially HSCs, and explore their systemic benefits. Overall, we summarize the potential of the blood system to reverse aging.

Keywords: blood system; health span; hematopoietic stem cells; organismal aging; rejuvenation

Impact statement

There is a current need to reduce the economic burden caused by aging-related diseases. In this perspective article, we discuss the evidence that supports that rejuvenating or delaying aging of the blood system has a beneficial and systemic impact on human health.

The quest for longevity is an old tale [1]. Recently, an unmatched interest in anti-aging and rejuvenation strategies has emerged. From skincare products to anti-aging food, a flood of new products claims their age-defying benefits [2]. Longevity and rejuvenation have become a global business market [3], valued at more than \$42 billion in 2024 [4]. Current global

annual investment in geroscience exceeds \$10 billion, combining public, philanthropic, and venture capital sources [5].

Given this interest in rejuvenation, we discuss the importance of understanding aging before reversing it. We then identify the blood system as a key rejuvenation target due to its crucial role in organismal aging.

Abbreviations

ahSC, autologous hematopoietic stem cell; AIDS, acquired immunodeficiency syndrome; A β , amyloid beta; *C. elegans*, *Caenorhabditis elegans*; CAR, chimeric antigen receptor; CNS, central nervous system; CR, calorie restriction; DNA, deoxyribonucleic acid; eccDNA, extrachromosomal circular DNA; HGPS, Hutchinson-Gilford progeria syndrome; HIV, human immunodeficiency viruses; HP, heterochronic parabiosis; HSC, hematopoietic stem cell; iPSC, induced pluripotent stem cell; MSC, mesenchymal stem cell; mTOR, mammalian target of rapamycin; NAD $^+$, nicotinamide adenine dinucleotide; NK, natural killer; RBC, red blood cell; ROS, reactive oxygen species; TPE, therapeutic plasma exchange.

What is aging?

From the moment we are born, several processes take place over time, including development, adaptation, and functional decline. Aging refers to the latter and is often defined as time-dependent deterioration of physiological functions [6]. Aging is driven by aging factors or hallmarks, which (i) manifest during aging, (ii) when induced accelerate aging, (iii) and when removed slow down aging [7]. The list included the following: cellular senescence, mitochondrial dysfunction, stem cell exhaustion, telomere attrition, altered intercellular communication, deregulated nutrient sensing, loss of proteostasis, genomic instability, disabled macroautophagy, chronic inflammation, dysbiosis, epigenetic alterations, and other emerging aging factors, such as cellular enlargement [7–12]. The aging hallmarks provide a starting point to test interventions with rejuvenation potential. However, the aging process remains not fully understood and the number of aging hallmarks is continuously expanding.

Why rejuvenate?

We live longer than ever before [13]. However, health span—the period without chronic diseases and disabilities—does not match the extending lifespan, which increases the incidence of age-related diseases and the associated socio-economic burden [14,15]. Reversing or slowing aging would delay the onset of age-related diseases like cardiovascular, neurodegenerative, metabolic, and hematological disorders [13,16–19]. This approach has been proposed to be economically more beneficial than treating diseases individually [20].

Before reversing aging, it is important to first ask why it exists in humans in the first place. Humans have a comparatively long lifespan of ~80 years with 122 years as the oldest recorded [13,21]. What are the reasons for this long lifespan? Theodosius Dobzhansky said ‘Nothing makes sense in biology except in the light of evolution’ [22]. Evolutionary aging theories suggest that natural selection acts mostly at younger ages when reproduction is high and mutations are passed onto the next generation. Thus, genes that cause decline at old age are less likely to be eliminated by natural selection [23–25]. For humans, evolutionary pressure may even continue after the reproductive phase. One observation supporting this is known as the grandmother effect, where the presence of grandmothers is associated with increased survival and reproductive success of their grandchildren [26–29]. This would provide an explanation of why women live long after their menopause. The grandmother effect is

only observed so far in humans, orcas, and elephants [30–32] and is most likely not the only factor connecting reproductive strategies with lifespan. Interestingly, some gene variant alleles present uniquely in humans have been proposed to protect against cognitive decline at old age. An interpretation is that elderly people carrying these variant alleles maintained their cognitive functions longer, which would similarly allow them to support their reproductive offspring [33]. Thus, improving the health and lifespan of postreproductive individuals in our society is expected to support the fitness of younger ones. Furthermore, in many organisms, the number of cortical neurons correlates with both total lifespan and length of the developmental period [34]. The long lifespan and postnatal development of humans may allow for more developed brains capable of complex social interactions and the creation of advanced tools, which both positively impact lifespan [35]. Together, these observations suggest that the long lifespan of humans evolved to allow complex brain development and the presence of elderly people to ensure the survival of their genes in the younger generations.

Considering the advantages of a long lifespan, why is lifespan limited at all? An interesting discovery was that certain gene manipulations extend lifespan [36,37], for example the *daf-2* gene in *C. elegans* [36,38,39] and potentially its human homolog [40]. Originally, this raised the question of whether genes exist that limit lifespan, which would imply the existence of selective pressure against increased lifespan. However, *daf-2* has pleiotropic functions; for example, it is important for proper development [41]. Thus, its function in early life likely provides a greater evolutionary benefit than the cost of limiting lifespan later in life (known as antagonistic pleiotropy [42]). Nevertheless, genes that limit lifespan are interesting as targets for treatments aiming to increase lifespan after the reproductive period [43].

One important point is that extending lifespan seems to only benefit an organism if health span is extended at the same time. Indeed, extending lifespan reduces the resistance to natural stresses in several model organisms [44] and increases time spent in a frail state in *C. elegans* [39] and humans [14,15,45]. Health span in humans is restricted by the limited regenerative ability of organs like the heart, spinal cord, and brain [46] and the aging-dependent decline of regeneration in organs, such as bone marrow, liver, intestine, and skeletal muscle [47–49]. These observations raise the question of why we did not evolve regenerative potential that persists at old age in all organs. One interpretation is that regeneration increases cancer risk [50,51], which may shorten lifespan even more than decay

from aging. Thus, prolonging health span via increased regeneration requires balancing to prevent tumor formation. Altogether, these observations suggest that there are evolutionary benefits of a healthy and long lifespan in humans.

Compensatory adaptations during old age

Over time, several processes take place, including adaptations to decay from aging [52]. Examples of time-dependent adaptation were provided by research in *Saccharomyces cerevisiae* (budding yeast), a powerful model system for eukaryotic aging [53]: Old yeast cells grow and adapt better than younger ones when nutritional conditions change [54,55]. This rapid adaptation may result from the time-dependent accumulation of stress protectant molecules and specific extrachromosomal circular DNA (eccDNA), which provides a reservoir of heterogeneous molecular material [56,57]. eccDNA also exists in human cells, opening the possibility that these adaptive mechanisms are conserved. They are proposed to provide adaptive advantages in the cancer context [56,58–61]. Furthermore, low-level activation of stress responses upon age-associated damage also improves resistance to external stresses (hormesis) [62,63]. Importantly, these observations suggest that not everything occurring with old age directly leads to decay but can instead be a compensatory adaptation to temporarily maintain functions.

There are more examples of processes originally thought to exclusively drive aging, which then turned out to (also) support physiological functions:

- *Amyloid beta (A β) plaques* accumulate during aging and are consistently observed in postmortem brains with Alzheimer's disease. Hence, A β plaques were first considered as a main pathogenic driver of Alzheimer's [64]. Now, models suggest that A β plaques may be neuroprotective as they sequester toxic A β forms, thereby preventing the formation of amyloid pores [64–66].
- *Somatic mutations* accumulate during aging and are the root cause of cancer. While they were initially assumed to drive aging, this is now under debate [12,67,68]. Most likely, somatic mutations are associated with gradual functional decline and increased vulnerability to disease; however, there are exceptions which restore organ function. For example, the germline variant *COL17A1* is associated with skin disease. Somatic mutations in this gene can result in a selection advantage leading to an improvement of symptoms [69]. Similar observations were made for

germline mutations of Mendelian hematopoietic diseases [70] and Hutchinson–Gilford progeria [71]. Furthermore, somatic mutations have been reported to confer cancer protection in the epithelium and promote liver regeneration [72,73]. Exploring the mutational landscape of centenarians—persons ≥ 100 years—may uncover beneficial somatic mutations for human longevity [74,75]. Somatic mutations also accumulate in the blood system and are present in around 15% of 70-year-olds harboring mutated clones. These mutations initially improve blood-building capacity; however, ultimately, all clonal expansions in the blood are associated with increased risk of hematological malignancy [76,77].

- *Senescent cells* are permanently arrested in the cell cycle, accumulate during aging and are a major component of aging dysfunction [78–80]. Indeed, transplanting senescent cells into mice drives age-related diseases [81–84]. However, it has been revealed that senescence also supports physiological functions like tissue remodeling during embryonic development, wound healing, removal of premalignant cells, and hemostasis (the process of bleeding cessation) [85–92]. Indeed, certain senolytics are associated with thrombocytopenia that impairs hemostasis [93–95]. Thus, it would be optimal to pharmacologically distinguish between pathological and physiological senescence.
- *Reactive oxygen species (ROS)* accumulate over time. However, increasing evidence indicates no direct correlation between ROS accumulation and accelerated aging. The physiological function of ROS production is proposed to contribute to intracellular signaling rather than stochastic macromolecular damage [96]. In agreement with this, ROS generation governs the metabolic benefits of physical exercise in humans via transcriptional reprogramming [97].

Overall, these examples illustrate the importance of first understanding the mechanisms occurring during old age before targeting them. Aspects of aging itself have been proposed to maintain physiological functions. For example, while aging is the most important risk factor for cancer [98,99], it also has been suggested to be cancer protective [99,100]. Many cells decline in proliferative potential during aging [101,102], while cancerous cells are characterized by increased proliferation. Telomere attrition causes cellular aging and is often counteracted by overexpression of telomerase in cancer cells [103]. Expressing oncogenes can induce senescence in cells, while drivers of senescence, such as p21, p16, and p53, are often dysfunctional in tumors [104–107]. However, the picture is

more complex as some senescent cells can exit their cell cycle arrest and drive cancer relapse [108,109].

Another cancer protective example driven by aging is provided by Hutchinson–Gilford progeria syndrome (HGPS), which is caused by progerin generation. Individuals affected by the syndrome experience premature aging and display increased levels of DNA damage [110,111]. However, this increased genetic instability does not correlate with a higher cancer risk [110,112] due to the protective effect of progerin [113]. Upon aging, progerin also accumulates in normal tissues suggesting that its protective properties may also occur in physiological conditions [114–116]. Thus, has aging evolved to suppress cancer? This will remain a hard question to disentangle since another interpretation reverses this viewpoint: mechanisms evolved to suppress cancer until they fail due to aging [117]. Regardless, aging and cancer are linked in humans and any attempt to rejuvenate must take care that the intervention does not lead to malignancy. Taken together, not everything that occurs during the later years of an organism can be taken at face value as a direct driver of aging. This highlights the need for caution when aiming to intervene in aging mechanisms to rejuvenate.

What to rejuvenate? The blood system as a star(t) ☆

To effectively rejuvenate, we should consider that aging is a complex process that manifests differently across individuals of the same chronological age. Moreover, in the same individual, aging rates vary across tissues, organs [118,119] and cell type populations [120–122], thereby influencing the development of distinct age-related diseases and associated comorbidities [118,123]. An optimal target of rejuvenation has therefore the potential to be restored in function and improve the function of other aged organs at the same time. Here, we explore the evidence suggesting that the blood system plays a central role in overall tissue and organ aging and that its rejuvenation therefore improves health span.

Role of hematopoietic cells in organismal aging and age-related diseases

Hematopoietic cells have numerous roles, including molecular transport throughout the body, immune response, and body homeostasis. With time, these functions decline [124]. Here, we point out how hematopoietic cells relate to organismal aging and age-related diseases:

Blood system—A declining blood system co-occurs with additional disease risks:

- Patients with age-related blood disorders display comorbidities that are listed in the top 10 causes of death by the World Health Organization: cardiac, renal, and pulmonary diseases, and solid tumor development [125–128].
- An aging blood system often displays clonal hematopoiesis, wherein a subset of hematopoietic stem cell (HSC) clones acquires mutations increasing their proliferation thereby making up a large portion of the hematopoietic compartment. Clonal hematopoiesis is associated with increased risk of blood cancer, coronary heart disease and stroke and is associated with a 35% higher mortality risk [128] possibility via modulation of immune system function.
- An aging blood system is accompanied by increased risk of (pre-)malignant hemopathies [129–131] and bone marrow fibrosis [132–134].
- Disease risk increases upon T-cell decline: Increased risk of autoimmune diseases correlates with aging of T cells [135]. In patients with autoimmune disorders, such as rheumatoid arthritis, pro-inflammatory T-cell expansion drives tissue destruction, and promotes age-related pathologies like cardiovascular disease [124]. T-cell destruction upon HIV infection accelerates aging in AIDS patients, which also leads to cardiovascular disease, cancer, frailty, and osteoporosis [136,137].
- The decline of red blood cells (RBC) results in anemia that affects about one-third of the world population. Even mild anemia is associated with age-associated diseases, such as cancer and renal insufficiency [138].

Overall, these observations reveal that a declining blood system correlates with dysfunction in other organs.

Immune system—During old age, a drastic drop in the efficiency of the immune cells and an accumulation of pro-inflammatory cytokines and chemokines result in organismal decline. Indeed, transplanting senescent immune cells causes, (a) senescence in nonlymphoid tissues and solid organs, (b) loss of muscle regeneration, (c) organ damage, especially in the heart, liver, kidneys, and brain, and (d) reduced lifespan in recipient mice [81]. This organismal decline is expressed in various ways:

- *Infections* become more frequent and vaccination responsiveness decreases with age [124,139].
- *Systemic inflammation* accelerates cellular and organ aging [140,141]. T-cell dysfunction increases systemic

pro-inflammatory cytokines, contributing to organ decline and reduced lifespan [81,90,124,142–144]. For example, the expansion of CD8+ T cells in the spleen, peritoneum, liver, and lung produces the pro-inflammatory Granzyme K, which has been proposed as a trigger of age-driven inflammation [143]. Macrophages are also a main source of pro-inflammatory cytokines and drive inflammation in the kidney and liver [145,146]. Increased activation of neutrophils increases tissue inflammation, such as periodontitis, and contributes to age-associated disease onset [147,148].

- *Clearance activity* of cytotoxic T cells declines during aging, slowing down the removal of premalignant and senescent cells, which facilitates cancer and organismal decline [90,149,150]
- *Organ repair* decreases with declining immune function [151,152]. For instance, lower abundance of neutrophils alters organ repair [153] and delays bone fracture healing [154].

Overall, these findings demonstrate that the hematopoietic system and especially the immune system play a fundamental role in organismal functions beyond the blood system and therefore are likely to be a key aspect of organismal aging [16].

Blood system—A target for organismal rejuvenation

Several strategies have been explored to rejuvenate the blood system, which in turn further demonstrates its influence on the function of other organs:

- *Heterochronic parabiosis* is a procedure that merges the blood systems of old and young mice. It thereby increases rejuvenation markers and processes in many organs of the old animal while the young animal displays increased aging characteristics [155–158]. The rejuvenation is likely caused by rejuvenating factors from the young circulatory system [159–163] and the dilution of pro-aging factors from the aged compartment [164–166]. Supplying old animals with young blood cells improves senescent cell removal [157,167,168], bone repair [169,170], and the regeneration of the central nervous system (CNS) [158,160,161,171]. This procedure unveils the potential of the blood compartment as a central rejuvenation tool [155].
- *Therapeutic plasma exchange* (TPE) is a procedure in which a patient's plasma is removed and replaced with a substitute fluid like saline, albumin, or donor plasma. In old mice, plasma dilution promotes

neurogenesis and rejuvenates skeletal muscles and the liver [164,166]. In humans, TPE reduces the aging-associated myeloid bias, systemic inflammation, DNA damage, and senescence in peripheral blood mononuclear cells [165]. TPE is currently used as a therapeutic strategy for numerous diseases [172,173], but its potential to treat age-related diseases remains to be explored.

- *RBC peri-transfusion* is the main treatment for anemia or hemoglobinopathies. Several treatments have been developed to rejuvenate RBCs, thereby improving their capacities following hypothermic conservation [174–177]. *In vivo*, these rejuvenated RBCs improved the oxygenation and function of the heart, lungs, and kidneys [178]. RBC rejuvenation could therefore be beneficial for aging individuals.
- *Transplantation* of bone marrow cells promotes functional recovery beyond the blood system by contributing to muscle regeneration [179], repair of heart muscle tissue [180], improving postnatal blood vessel formation [181], bone healing [169], and cognitive functions [182]. Notably, transplanting young bone marrow or progenitor-enriched bone marrow (Lin-cells) into old mice significantly increased their lifespan by about 31% or 12%, respectively [183,184]. The transplantation of cord blood cells, enriched for bone marrow cell types, attenuates the accelerated aging phenotype driven by progeria [185].

Restoring immune cell function

- Removing senescent T cells from adipose tissue improves glucose tolerance, insulin resistance, and obesity-related metabolic disorders in mice [186]. Importantly, the detrimental effects driven by dysfunctional T cells are reversible in the heart, the visceral adipose tissue and other key organs [81,142,186,187]. A promising way to counteract T-cell-driven aging is to restore thymus function [188,189].
- Exercise-induced rejuvenation of neutrophils co-occurs with reduced disease risk in aged patients with type 2 diabetes predisposition [190].
- Heterochronic parabiosis suggests that monocytes of young animals have the potential to regenerate the CNS of old animals by supporting the process of building new myelin sheath [171].

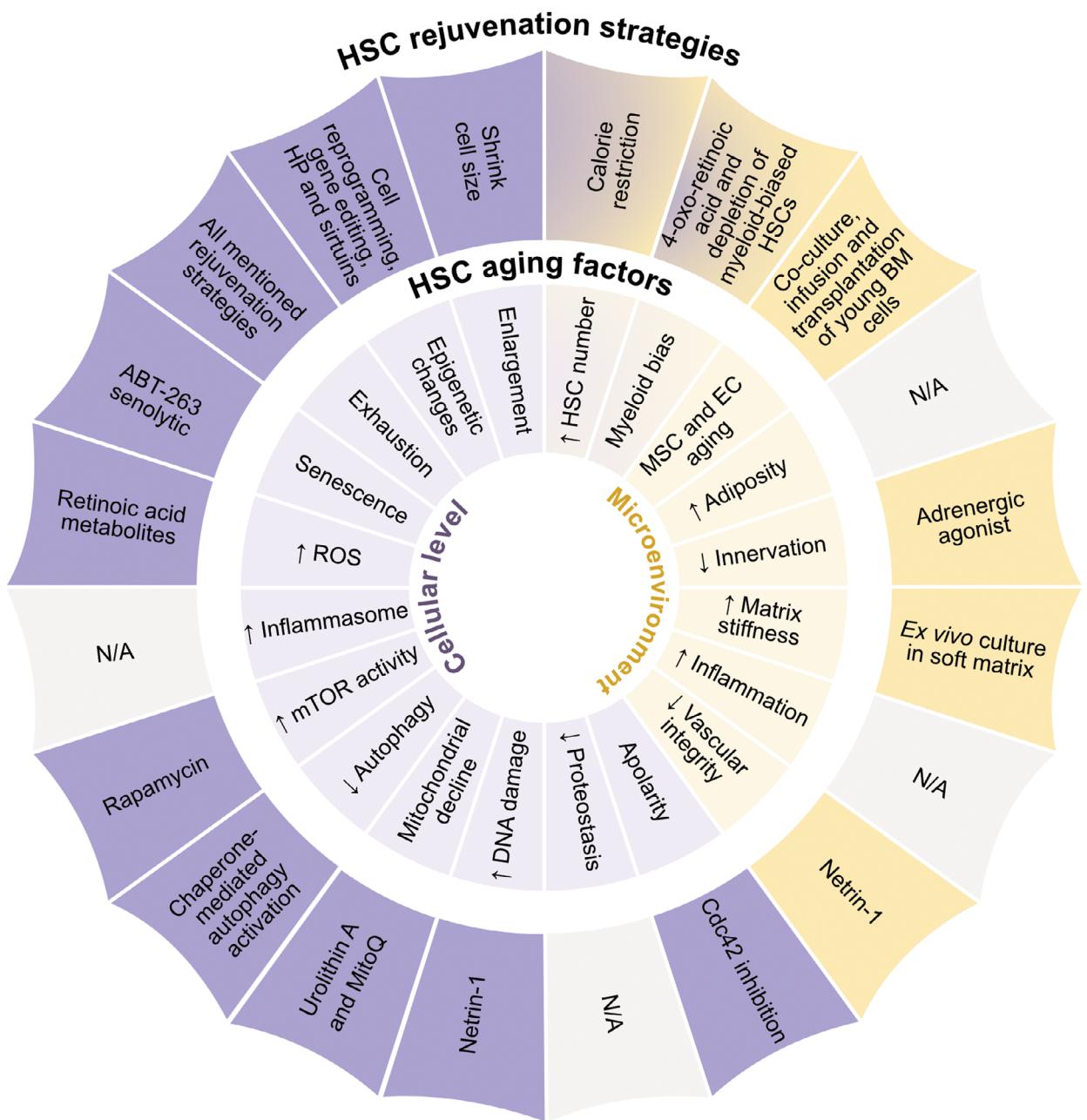
Overall, these findings demonstrate that rejuvenation of hematopoietic cells restores functions beyond the blood system, crystallizing it as an optimal therapeutic target to prevent organismal aging.

Hematopoietic stem cells—A promising rejuvenation target?

Effect of time on HSCs

HSCs are at the top of the hematopoietic hierarchy, giving rise to all hematopoietic cells. During aging their stemness declines, affecting downstream hematopoietic cells like immune cells [191,192]. To explore the potential to rejuvenate HSCs, we first need to understand the processes of aging and adaptations in HSCs (Fig. 1):

- HSCs decline in function with time [191,193]. This is driven by intrinsic factors, such as enlargement [8], apolarity [194], metabolic changes [121,195], reduced DNA damage repair [196,197], low proteostasis [198], low mitochondrial function [199], declining autophagy [200], increased mTOR activity [201], increased inflammasome [202], increased ROS levels [203,204], senescence [186], stem cell exhaustion [205], epigenetic changes [206–209], and possibly transposable element expression [209,210].
- While individual HSC function declines, the HSC pool increases in number over time in humans and mice [101,211]. This expansion may be a compensatory effort to maintain overall productivity of the HSC compartment. However, this process is often associated with clonal hematopoiesis [128,211,212], making the blood system more prone to leukemia transformation [212,213].
- Aged HSCs bias toward myeloid lineage production at the expense of lymphoid lineage [214–218]. This increases inflammation [219] and reduces the adaptive immune response [120,220,221], which is associated with decreased cancer immunosurveillance [222].
- HSCs are affected by their complex bone marrow microenvironment, which is called the niche [223,224]. During aging, the niche undergoes alterations, including increased matrix stiffness, vascular remodeling, decreased innervation, increased adiposity, and inflammation, which contribute to the decline of HSC function [225,226]. Indeed, an old recipient's microenvironment reduces the ability of young HSCs to engraft and produce T cells. Inversely, transplanting old HSCs into young recipients results in more balanced myeloid/lymphoid lineages [227,228]. However, a young niche is not sufficient to restore the function of old HSCs [229].


Interestingly, aging does not uniformly affect the HSC population, creating subsets of differently aged HSCs [120–122,211,230]. Overall, aging and the

resulting adaptations progressively impair the ability of HSCs to ensure the functionality of the blood system.

Rejuvenation strategies for HSCs and their effect on organismal functions

Transplanting young HSCs into aged mice significantly extends their health- and lifespan [122,183], which indicates that the rejuvenation of old HSCs could have similar effects. In this part, we present strategies that restore the function of old HSCs [231] and present the effect on organismal functions. These studies analyzed the rejuvenation of HSCs at different levels: (a) HSC cellular characteristics like DNA damage, (b) *in vivo* HSC function, like engraftment, blood-building capacity and lineage bias analyzed after transplantation into untreated recipient mice, overcoming pleiotropic effects, and (c) health- and lifespan of HSC recipients.

1. Rejuvenating old HSCs by restoring intrinsic pathways
 - Preventing or reversing age-related HSC enlargement improves their blood-building capacity upon transplantation [8,10].
 - Rapamycin inhibits mTOR, extends lifespan [232], and rejuvenates old HSCs as their transplantation improves blood-building capacity and lineage balance [8,201]. Rapamycin also improves HSC function when administered *in vitro*, demonstrating its direct effect [233].
 - Inhibition of RhoGTPase Cdc42 with CASIN in aged mice partially rejuvenates aged HSCs by restoring their apolarity and improves their capacity to build immunocompetent cells. Remarkably, transplanting these rejuvenated HSCs increases the lifespan of aged immunocompromised recipient mice [192,234]. Increased activity of Cdc42 is also associated with aging in humans and aged HSCs [235–238].
 - Converting aged HSCs into induced pluripotent stem cells (iPSCs) by expressing the Yamanaka factors and then differentiating these back into HSCs effectively rejuvenates them transcriptionally and improves their blood-building capacity and T-cell function [120,239].
 - Sirtuins are NAD⁺-dependent deacetylases implicated in inflammation, metabolism, and oxidative stress response [240]. Sirtuins were established as promising pro-longevity genes [241], although this is also disputed [242]. In mouse HSCs, overexpression of SIRT2/3/7 improves blood-building

Fig. 1. Hematopoietic stem cell (HSC) aging factors and rejuvenation strategies. This diagram represents the factors leading to HSC aging (inner circle), and the rejuvenation tools targeting these aging factors (outer circle). The aging drivers can originate from the HSCs themselves (purple) or the microenvironment (yellow), or a combination of both (purple and yellow). For some factors, no HSC-specific rejuvenation strategy currently exists and is marked as N/A. See the main text for more details. HP, heterochronic parabiosis.

capacity after transplantation, and SIRT2/7 improves lineage balance [202,243,244].

- Mitophagy induction by *in vitro* or *in vivo* Urolithin A treatment or the restoration of mitochondrial membrane potential with MitoQ improves the capacity of old HSCs to build blood after

transplantation [245,246]. Old mice supplemented with Urolithin A also show an improvement in their immune response after an acute viral infection.

- Activation of chaperone-mediated autophagy *in vitro* or *in vivo* improves the function of old

HSCs [247]. This is evidenced by enhanced long-term self-renewal capacity of aged HSCs *in vitro*, increased GAPDH activity and decreased protein oxidation level.

- Modulating the expression of age-associated genes, such as p38 MAPK, Satb1, Per2, Phf6, and Rantes/Ccl5, partially rejuvenates old HSCs. These approaches improve HSC commitment toward the lymphoid lineage. In addition, p38 MAPK inhibition and Phf6 deletion improve long-term blood reconstitution. Of note, Per2^{-/-} aged mice present an improved immune function and lifespan, although this may not be solely caused by rejuvenated HSCs because the gene is deleted in all cell types [227,248–253]

2. Rejuvenating old HSCs by systemic interventions

- Aged HSCs contribute to the generation of pro-inflammatory myeloid cells, which infiltrate cardiac tissue after myocardial infarction. Enforcing HSC quiescence with 4-oxo-retinoic acid, a vitamin A metabolite, mitigates inflammatory myelopoiesis, thereby improving tissue remodeling and preserving long-term cardiac function [254,255].
- In middle-aged mice, long-term calorie restriction (CR) shows positive and negative effects [256]: It limits the increase of the HSC pool observed upon aging, and overall improves their self-renewal and repopulation capacity upon transplantation. However, long-term CR specifically inhibits the proliferation of lymphoid progenitors, resulting in an impaired immune function. In old mice, life-long CR resulted in opposite results upon transplantation with either no impact on HSC function [257,258] or improving the blood-building capacity and maintaining the lymphoid/myeloid balance [259,260].
- Heterochronic parabiosis rejuvenates the expression profile of HSCs from old mice [156,157] and may restore the lineage bias after transplantation [257,261], while it fails to restore their blood reconstitution capacity [257].
- Strategies that are commonly used to drive rejuvenation in other cell types like TPE and exercise do not seem to rejuvenate old HSCs [257].

3. Removing old HSCs

- Clearing senescent cells, either from niche or HSCs themselves, rejuvenates the remaining HSCs in aged mice, and improves their ability to build a new blood system [262].
- Depleting myeloid-biased HSCs restores balanced differentiation in aged mice [220]. This depletion results in more lymphocyte progenitors and naïve T and B cells. It improves adaptive immune responses, while decreasing age-related markers of immune decline.

4. Targeting the niche

- The infusion of young bone marrow-resident endothelial cells in old mice rejuvenates HSC function and improves their engraftment and blood-building capacity [263].
- Supplementing old mice with niche-derived factors like neprin-1 [264] or with adrenergic agonists to stimulate the sympathetic system [265,266] rejuvenates their niche, demonstrated by improved bone marrow vascular integrity, mesenchymal stem cell (MSC) number, and lower DNA damage levels. These approaches also improve blood-building capacity of HSCs.
- Softening the extracellular matrix stiffness rejuvenates old HSCs *ex vivo* and restores their blood reconstitution capacity, lineage balance, mitochondrial function, cell polarity, and DNA damage level [267]. Importantly, this approach requires the support of bone marrow-resident MSCs, implying a functional connection between HSCs and MSCs (details below).
- However, a young niche is not sufficient to fully restore the function of old HSCs [229], which implies that both intrinsic and extrinsic aging factors have to be targeted to optimize HSC rejuvenation.

We note that most of these studies were conducted in mice, and for most treatments, it is unclear whether they are also promising for human HSCs. The murine and human blood systems exhibit both similarities and differences when comparing aging hallmarks [268]. For instance, clonal hematopoiesis occurs more frequently in humans than in mice [269]. Thus, there is a need to expand aging research on human HSCs.

Overall, HSC rejuvenation can be achieved by multiple approaches and has far-reaching effects like protecting immune functions and increasing lifespan. HSCs and their niche are therefore promising targets to improve health span.

Mesenchymal stem cells—Support for blood system rejuvenation

In the bone marrow, HSCs are surrounded by niche cell types, including MSCs [270]. MSCs influence the function of hematopoietic cells [271]. For example, the co-transplantation of HSCs with MSCs improves HSC engraftment, short and long-term reconstitution and accelerates lymphocyte recovery [272–275]. Co-culturing of HSCs with young MSCs or HSC niche

factors enhances the HSC's ability to build a blood system *in vivo* [276,277]. In addition, MSCs modulate immune responses by, for example, limiting T-cell pro-inflammatory activity [278–292], which can mitigate the graft-versus-host disease upon co-transplantation with HSCs [293–295]. In turn, HSCs improve the function of damaged MSCs [296]. Hence, these two cell types influence each other's rejuvenation capacity.

Upon aging, senescent MSCs alter immune cells thereby impairing bone and cardiac regeneration and driving organ inflammation [145,146,297–300]. Impaired MSCs also promote tumorigenesis, myeloproliferative diseases and bone marrow fibrosis [133,301–305]. Rejuvenating or removing senescent MSCs restores their immunoregulatory activity and improves bone regeneration, angiogenesis and cardio-protection following infarction [297,300,306]. The infusion of young MSCs restores immunomodulatory activities and reduces tissue deterioration driven by autoimmune disease [307,308]. In line with this, several clinical studies use MSCs for skin regeneration and to treat neurodegenerative and ischemic heart diseases [309–311]. Thus, targeting MSCs is a promising approach for the rejuvenation of immune cells and organs. Interestingly, the organs affected by MSC-based cell therapies are similar to the ones for HSC-based therapies (see below), which further strengthens the functional interplay between MSCs and HSCs in rejuvenation potential. Unfortunately, the advantages of MSC-based therapy in patients with autoimmune disease are inconsistent and often lost in the long term, which implies a short-term maintenance of MSCs in recipients and the need for repeated infusions [312–324]. However, these findings place MSCs as a promising partner to the hematopoietic system for immune cell and organ rejuvenation.

HSC-derived (immuno)therapies to counteract aging-related disease

HSC transplantation is the main stem cell-based therapy in humans and is used for treating diseases of the blood system, like hematological malignancies and autoimmune diseases [325,326]. In patients with autoimmune diseases, for example, autologous HSC (aHSC) transplantations reset the T-cell repertoire, which improves immune cell function and disease outcomes [327–336]. Furthermore, several clinical studies have evaluated the potential of HSC transplants to treat nonhematopoietic diseases:

- *Solid tumors*: HSC transplants can generate an immune response, called graft-vs-tumor effect,

improving the survival of patients by the elimination of cancerous cells [337–339].

- *Angiogenesis and organ arterial blood supply up-on ischemia*: HSC transplants may promote angiogenesis by generating new endothelial cells [340].
- *Neurological disorders*: HSC transplants improve brain repair potential in patients with neurological disorders [341,342]. Together with HSC gene therapy, HSC transplants are an efficient treatment for patients with cerebral adrenoleukodystrophy and metachromatic leukodystrophy [343–347].
- *Skin disorder*: HSC transplants improve wound healing and reepithelialization of the skin in epidermolysis bullosa patients and diabetic mice [348,349].
- *Systemic sclerosis*: HSC transplants decrease all-cause mortality and improve lung capacity and skin thickness [330].

An interesting question is how aHSC transplants improve nonhematopoietic diseases. One supported model is that they restore a functional immune system, which in turn improves the health of other organs by, for example, removing premalignant and senescent cells as outlined above [81,90,124,142,144]. Another model proposes that HSCs transdifferentiate into nonhematopoietic cell types [350–356]. However, HSCs rarely generate nonhematopoietic cell types during physiological conditions in mice [357]. Lastly, hematopoietic cells may also improve cardiac, neuronal and hepatic functions via cell fusion [358]. Altogether, even though the safety of the procedure has to be improved [348,359,360], aHSC transplants reveal a new perspective on how to counteract certain aging-related diseases.

HSCs are also interesting for approaches using engineered chimeric antigen receptors (CARs). CARs enable T and NK cells to recognize specific antigens and to target, for example, cancer cells [361,362]. This approach is also utilized to target fibrotic and senescent cells, thereby preserving the integrity of cardiac and liver tissue following injury [363–365]. However, the high costs of CAR T-cell engineering and their short maintenance in recipients motivate the search for alternatives [361]. HSCs display long-term self-renewal capacities and multipotency. Hence, engineering HSCs for immunotherapies allows for long-lasting and diverse replenishment of chimeric immune cells [366–368]. For instance, HSC engineering can overcome the resistance of NK cells to viral transduction and generate HSC-derived invariant NK cells for cancer immunotherapies [362,369,370]. The potential of HSCs for immunotherapies is further enhanced by the outcome of clinical studies on hematological and autoimmune disorders; up to 15 years follow-up on subjects confirmed the long-

term biological safety and efficacy of gene therapy using lentivirally transduced HSCs [368,371–379]. Excitingly, the development of nanoparticles and viral vectors might even enable *in vivo* editing of HSCs [380–386]. Altogether, autologous transplantation of rejuvenated and engineered HSCs is a promising tool to slow down age-related disease occurrence.

Conclusion

The current interest in anti-aging and rejuvenation strategies motivated us to discuss the importance of understanding lifespan and aging before interfering with them. We find compelling arguments that the long and healthy lifespan of humans provides benefits from enabling complex brain development to building efficient social structures of intergenerational care supporting survival and reproduction.

Aging is a complex process manifesting itself differently across tissues and cell type populations. Importantly, it is still not fully understood. To establish successful rejuvenation strategies, it is essential that we improve our understanding of the holistic picture of all factors driving aging and their interactions.

The blood system, with HSCs at the top of its hierarchy, appears to play a central role in organismal aging. HSC aging is driven by intrinsic mechanisms and the bone marrow microenvironment. It impacts hematopoiesis with consequences within and beyond the blood system, contributing to organismal aging. Thus, restoring a functional blood system by rejuvenating HSCs is expected to also improve the function of other organs thereby reducing the risk of developing a broad range of age-associated diseases. While HSC rejuvenation is not expected to benefit all organs and tissues, such as the endocrine system, future work will show whether HSC-derived improvements are enough to counteract overall decline at old age.

Techniques to rejuvenate the blood compartment are expanding and improving. Autologous HSC transplants in humans further illustrate what organismal rejuvenation strategies can achieve as they are already used to treat hematopoietic and nonhematopoietic diseases. The supplementation of MSCs or other niche factors might enable HSCs to reach their full rejuvenation potential. Overall, our review highlights the power of the hematopoietic compartment to reverse organismal aging.

Acknowledgements

JL was supported by the Research Council of Finland, Vetenskapsrådet, European Research Council Starting

Grant and FEBS Excellence Award; JA was supported by Karolinska Institutet KID grant. We are grateful to the members of the Lengfeld Lab, Federico Pietrocola, and Maria Eriksson for discussion and feedback, reviewers for crucial feedback, and baby Hedgi for sleeping during working hours. We apologize to the authors whose studies we missed. Thanks to *FEBS Letters* for the opportunity to write this review.

References

- 1 George AR (2003) The Babylonian Gilgamesh Epic: Introduction, Critical Edition and Cuneiform. Oxford University Press, Oxford, UK.
- 2 MacGregor C, Petersen A and Parker C (2018) Promoting a healthier, younger you: the media marketing of anti-ageing superfoods. *J Consumer Culture* **21**, 164–179.
- 3 The Longevity Opportunity.
- 4 Regenerative Medicine Market Size, Share | Global Report, 2032.
- 5 Lederman S (2023) The funding channels of geroscience. *Cold Spring Harb Perspect Med* **13**, a041210.
- 6 Moqri M, Herzog C, Poganik JR, Justice J, Belsky DW, Higgins-Chen A, Moskalev A, Fuellen G, Cohen AA, Bautmans I *et al.* (2023) Biomarkers of aging for the identification and evaluation of longevity interventions. *Cell* **186**, 3758–3775.
- 7 Tariere AG, Freije JMP and López-Otín C (2024) The hallmarks of aging as a conceptual framework for health and longevity research. *Front Aging* **5**, 1334261.
- 8 Lengfeld J, Cheng C-W, Maretich P, Blair M, Hagen H, McReynolds MR, Sullivan E, Majors K, Roberts C, Kang JH *et al.* (2021) Cell size is a determinant of stem cell potential during aging. *Sci Adv* **7**, eabk0271.
- 9 Lu YR, Tian X and Sinclair DA (2023) The information theory of aging. *Nat Aging* **3**, 1486–1499.
- 10 Davies DM, van den Handel K, Bharadwaj S and Lengfeld J (2022) Cellular enlargement – a new hallmark of aging? *Front Cell Dev Biol* **10**, 1036602.
- 11 López-Otín C, Blasco MA, Partridge L, Serrano M and Kroemer G (2023) Hallmarks of aging: an expanding universe. *Cell* **186**, 243–278.
- 12 Franco I and Eriksson M (2022) Reverting to old theories of ageing with new evidence for the role of somatic mutations. *Nat Rev Genet* **23**, 645–646.
- 13 Vaupel JW (2010) Biodemography of human ageing. *Nature* **464**, 536–542.
- 14 Bodnár K and Nerlich C (2022) The Macroeconomic and Fiscal Impact of Population Ageing. European Central Bank (ECB), Frankfurt a. M., Germany.
- 15 Garmany A and Terzic A (2024) Global Healthspan-lifespan gaps among 183 World Health Organization member states. *JAMA Netw Open* **7**, e2450241.

16 Fotopoulou F, Rodríguez-Correa E, Dussiau C and Milsom MD (2025) Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging? *Exp Hematol* **143**, 104698.

17 Jaul E and Barron J (2017) Age-related diseases and clinical and public health implications for the 85 years old and over population. *Front Public Health* **5**, 1–7.

18 Kenyon CJ (2010) The genetics of ageing. *Nature* **464**, 504–512.

19 Guo J, Huang X, Dou L, Yan M, Shen T, Tang W and Li J (2022) Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. *Signal Transduct Target Ther* **7**, 391.

20 Scott AJ, Ellison M and Sinclair DA (2021) The economic value of targeting aging. *Nat Aging* **1**, 616–623.

21 Dong X, Milholland B and Vijg J (2016) Evidence for a limit to human lifespan. *Nature* **538**, 257–259.

22 Dobzhansky T (1964) Biology, molecular and organismic. *Am Zool* **4**, 443–452.

23 Kirkwood TB (1977) Evolution of ageing. *Nature* **270**, 301–304.

24 Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. *Evolution* **11**, 398–411.

25 Medawar 1952 Unsolved Problem: Peter Medawar: Free Download, Borrow, and Streaming : Internet Archive.

26 Hawkes K (2004) The grandmother effect. *Nature* **428**, 128–129.

27 Alvarez HP (2000) Grandmother hypothesis and primate life histories. *Am J Phys Anthropol* **113**, 435–450.

28 Hawkes K, O'Connell JF, Jones NG, Alvarez H and Charnov EL (1998) Grandmothering, menopause, and the evolution of human life histories. *Proc Natl Acad Sci USA* **95**, 1336–1339.

29 Lee RD (2003) Rethinking the evolutionary theory of aging: transfers, not births, shape senescence in social species. *Proc Natl Acad Sci USA* **100**, 9637–9642.

30 Foster EA, Franks DW, Mazzi S, Darden SK, Balcomb KC, Ford JKB and Croft DP (2012) Adaptive prolonged postreproductive life span in killer whales. *Science* **337**, 1313.

31 Grimes C, Brent LJN, Ellis S, Weiss MN, Franks DW, Ellifrit DK and Croft DP (2023) Postreproductive female killer whales reduce socially inflicted injuries in their male offspring. *Curr Biol* **33**, 3250–3256.

32 Lahdenperä M, Mar KU and Lummaa V (2016) Nearby grandmother enhances calf survival and reproduction in Asian elephants. *Sci Rep* **6**, 27213.

33 Schwarz F, Springer SA, Altheide TK, Varki NM, Gagneux P and Varki A (2016) Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline. *Proc Natl Acad Sci USA* **113**, 74–79.

34 Herculano-Houzel S (2019) Longevity and sexual maturity vary across species with number of cortical neurons, and humans are no exception. *J Comp Neurol* **527**, 1689–1705.

35 Charness N, Fox MC and Mitchum AL (2011) Life-span cognition and information technology. In *Handbook of Life-Span Development*, pp. 331–361. Springer Publishing Company, New York, NY, USA.

36 Kenyon C, Chang J, Gensch E, Rudner A and Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. *Nature* **366**, 461–464.

37 Kennedy BK (2008) The genetics of ageing: insight from genome-wide approaches in invertebrate model organisms. *J Intern Med* **263**, 142–152.

38 Statzer C, Reichert P, Dual J and Ewald CY (2022) Longevity interventions temporally scale healthspan in *Caenorhabditis elegans*. *iScience* **25**, 103983.

39 Bansal A, Zhu LJ, Yen K and Tissenbaum HA (2015) Uncoupling lifespan and healthspan in *Caenorhabditis elegans* longevity mutants. *Proc Natl Acad Sci USA* **112**, E277–E286.

40 Ali A, Zhang ZD, Gao T, Aleksic S, Gavathiotis E, Barzilai N and Milman S (2025) Identification of functional rare coding variants in IGF-1 gene in humans with exceptional longevity. *Sci Rep* **15**, 10199.

41 Kimura KD, Tissenbaum HA, Liu Y and Ruvkun G (1997) Daf-2, an insulin receptor-like gene that regulates longevity and diapause in *Caenorhabditis elegans*. *Science* **277**, 942–946.

42 Long E and Zhang J (2023) Evidence for the role of selection for reproductively advantageous alleles in human aging. *Sci Adv* **9**, eadh4990.

43 Dillin A, Crawford DK and Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in *C. elegans*. *Science* **298**, 830–834.

44 Briga M and Verhulst S (2015) What can long-lived mutants tell us about mechanisms causing aging and lifespan variation in natural environments? *Exp Gerontol* **71**, 21–26.

45 Cohen AA, Beard JR, Ferrucci L, Fülop T, Gladyshev VN, Moqri M, Olde Rikkert MGM and Picard M (2025) Balancing the promise and risks of geroscience interventions. *Nat Aging* **5**, 4–8.

46 Iismaa SE, Kaidonis X, Nicks AM, Bogush N, Kikuchi K, Naqvi N, Harvey RP, Husain A and Graham RM (2018) Comparative regenerative mechanisms across different mammalian tissues. *Npj Regen Med* **3**, 6.

47 Cai Y, Xiong M, Xin Z, Liu C, Ren J, Yang X, Lei J, Li W, Liu F, Chu Q *et al.* (2023) Decoding aging-dependent regenerative decline across tissues at single-cell resolution. *Cell Stem Cell* **30**, 1674–1691.

48 Jin J, Wang G-L, Shi X, Darlington GJ and Timchenko NA (2009) The age-associated decline of glycogen synthase kinase 3beta plays a critical role in

the inhibition of liver regeneration. *Mol Cell Biol* **29**, 3867–3880.

49 Brunet A, Goodell MA and Rando TA (2023) Ageing and rejuvenation of tissue stem cells and their niches. *Nat Rev Mol Cell Biol* **24**, 45–62.

50 Beachy PA, Karhadkar SS and Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. *Nature* **432**, 324–331.

51 Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenbergh E, Clarke AR, Sansom OJ and Clevers H (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. *Nature* **457**, 608–611.

52 Ogorodnik M and Gladyshev VN (2023) The meaning of adaptation in aging: insights from cellular senescence, epigenetic clocks and stem cell alterations. *Nat Aging* **3**, 766–775.

53 Denoth Lippuner A, Julou T and Barral Y (2014) Budding yeast as a model organism to study the effects of age. *FEMS Microbiol Rev* **38**, 300–325.

54 Frenk S, Pizza G, Walker RV and Houseley J (2017) Aging yeast gain a competitive advantage on non-optimal carbon sources. *Aging Cell* **16**, 602–604.

55 Frenk S and Houseley J (2017) Can aging be beneficial? *Aging* **9**, 2016–2017.

56 Hull RM and Houseley J (2020) The adaptive potential of circular DNA accumulation in ageing cells. *Curr Genet* **66**, 889–894.

57 Levy SF, Ziv N and Siegal ML (2012) Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. *PLoS Biol* **10**, e1001325.

58 Sal'nikov KV (1990) Extrachromosomal DNA in mammalian cells. *Tsitolgiia* **32**, 1061–1071.

59 Shmookler Reis RJ, Lumpkin CK, McGill JR, Riabowol KT and Goldstein S (1983) Extrachromosomal circular copies of an “inter-alu” unstable sequence in human DNA are amplified during *in vitro* and *in vivo* ageing. *Nature* **301**, 394–398.

60 Lumpkin CK, McGill JR, Riabowol KT, Moerman EJ, Shmookler Reis RJ and Goldstein S (1985) Extrachromosomal circular DNA and aging cells. *Adv Exp Med Biol* **190**, 479–493.

61 Shmookler Reis, R. J., Lumpkin, C. K., McGill, J. R., Riabowol, K. T. & Goldstein, S. (1983) Genome alteration during *in vitro* and *in vivo* aging: amplification of extrachromosomal circular DNA molecules containing a chromosomal sequence of variable repeat frequency. *Cold Spring Harb Symp Quant Biol* **47**(Pt 2), 1135–1139.

62 Rattan SI (1998) Repeated mild heat shock delays ageing in cultured human skin fibroblasts. *Biochem Mol Biol Int* **45**, 753–759.

63 Calabrese EJ, Osakabe N, Di Paola R, Siracusa R, Fusco R, D'Amico R, Impellizzeri D, Cuzzocrea S, Fritsch T, Abdelhameed AS *et al.* (2023) Hormesis defines the limits of lifespan. *Ageing Res Rev* **91**, 102074.

64 Zhang Y, Chen H, Li R, Sterling K and Song W (2023) Amyloid β -based therapy for Alzheimer's disease: challenges, successes and future. *Signal Transduct Target Ther* **8**, 248.

65 Lashuel HA, Hartley D, Petre BM, Walz T and Lansbury PT (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. *Nature* **418**, 291.

66 Castellani RJ, Lee H, Siedlak SL, Nunomura A, Hayashi T, Nakamura M, Zhu X, Perry G and Smith MA (2009) Reexamining Alzheimer's disease: evidence for a protective role for amyloid-beta protein precursor and amyloid-beta. *J Alzheimer's Dis* **18**, 447–452.

67 Chatsirisupachai K and de Magalhães JP (2024) Somatic mutations in human ageing: new insights from DNA sequencing and inherited mutations. *Ageing Res Rev* **96**, 102268.

68 Franco I, Revêchon G and Eriksson M (2022) Challenges of proving a causal role of somatic mutations in the aging process. *Aging Cell* **21**, e13613.

69 Pasmooij AMG, Pas HH, Deviaene FCL, Nijenhuis M and Jonkman MF (2005) Multiple correcting COL17A1 mutations in patients with revertant mosaicism of epidermolysis bullosa. *Am J Hum Genet* **77**, 727–740.

70 Revy P, Kannengiesser C and Fischer A (2019) Somatic genetic rescue in Mendelian hematopoietic diseases. *Nat Rev Genet* **20**, 582–598.

71 Bar DZ, Arlt MF, Brazier JF, Norris WE, Campbell SE, Chines P, Larrieu D, Jackson SP, Collins FS, Glover TW *et al.* (2017) A novel somatic mutation achieves partial rescue in a child with Hutchinson-Gilford progeria syndrome. *J Med Genet* **54**, 212–216.

72 Colom B, Herms A, Hall MWJ, Dentro SC, King C, Sood RK, Alcolea MP, Piedrafita G, Fernandez-Antoran D, Ong SH *et al.* (2021) Mutant clones in normal epithelium outcompete and eliminate emerging tumours. *Nature* **598**, 510–514.

73 Zhu M, Lu T, Jia Y, Luo X, Gopal P, Li L, Odewole M, Renteria V, Singal AG, Jang Y *et al.* (2019) Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. *Cell* **177**, 608–621.

74 Zhao X, Liu X, Zhang A, Chen H, Huo Q, Li W, Ye R, Chen Z, Liang L, Liu QA *et al.* (2018) The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. *Aging* **10**, 1206–1222.

75 Wang H-T, Zhao L, Yang L-Q, Ge M-X, Yang X-L, Gao Z-L, Cun Y-P, Xiao F-H and Kong Q-P (2024) Scrutiny of genome-wide somatic mutation profiles in centenarians identifies the key genomic regions for human longevity. *Aging Cell* **23**, e13916.

76 Loh P-R, Genovese G, Handsaker RE, Finucane HK, Reshef YA, Palamara PF, Birmann BM, Talkowski

ME, Bakhoum SF, McCarroll SA *et al.* (2018) Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. *Nature* **559**, 350–355.

77 Walsh K, Raghavachari N, Kerr C, Bick AG, Cummings SR, Druley T, Dunbar CE, Genovese G, Goodell MA, Jaiswal S *et al.* (2022) Clonal hematopoiesis analyses in clinical, epidemiologic, and genetic aging studies to unravel underlying mechanisms of age-related dysfunction in humans. *Front Aging* **3**, 841796.

78 van Deursen JM (2014) The role of senescent cells in ageing. *Nature* **509**, 439–446.

79 Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I and Pereira-Smith O (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. *Proc Natl Acad Sci USA* **92**, 9363–9367.

80 Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang T-W, Lasitschka F, Andrulis M *et al.* (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. *Nat Cell Biol* **15**, 978–990.

81 Yousefzadeh MJ, Flores RR, Zhu Y, Schmiechen ZC, Brooks RW, Trussoni CE, Cui Y, Angelini L, Lee K-A, McGowan SJ *et al.* (2021) An aged immune system drives senescence and ageing of solid organs. *Nature* **594**, 100–105.

82 Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO *et al.* (2017) Transplanted senescent cells induce an osteoarthritis-like condition in mice. *J Gerontol A Biol Sci Med Sci* **72**, 780–785.

83 Lewis-McDougall FC, Ruchaya PJ, Domenjo-Vila E, Shin Teoh T, Prata L, Cottle BJ, Clark JE, Punjabi PP, Awad W, Torella D *et al.* (2019) Aged-senescent cells contribute to impaired heart regeneration. *Aging Cell* **18**, e12931.

84 Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG *et al.* (2018) Senolytics improve physical function and increase lifespan in old age. *Nat Med* **24**, 1246–1256.

85 Rhinn M, Ritschka B and Keyes WM (2019) Cellular senescence in development, regeneration and disease. *Development* **146**, dev151837.

86 Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miethling C, Yee H, Zender L and Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. *Cell* **134**, 657–667.

87 Jun J-I and Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. *Nat Cell Biol* **12**, 676–685.

88 Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M *et al.* (2013) Programmed cell senescence during mammalian embryonic development. *Cell* **155**, 1104–1118.

89 Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J *et al.* (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. *Cell* **155**, 1119–1130.

90 Kang T-W, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A *et al.* (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. *Nature* **479**, 547–551.

91 Venturini W, Olate-Briones A, Valenzuela C, Méndez D, Fuentes E, Cayo A, Mancilla D, Segovia R, Brown NE and Moore-Carrasco R (2020) Platelet activation is triggered by factors secreted by senescent endothelial HMEC-1 cells in vitro. *Int J Mol Sci* **21**, 3287.

92 Wiley CD, Liu S, Limbad C, Zawadzka AM, Beck J, Demaria M, Artwood R, Alimirah F, Lopez-Dominguez J-A, Kuehnemann C *et al.* (2019) SILAC analysis reveals increased secretion of hemostasis-related factors by senescent cells. *Cell Rep* **28**, 3329–3337.

93 Kaefer A, Yang J, Noertersheuser P, Mensing S, Humerickhouse R, Awani W and Xiong H (2014) Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia. *Cancer Chemother Pharmacol* **74**, 593–602.

94 Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira M, Bonomi PD, Camidge DR, Chu Q, Giaccone G, Khaira D, Ramalingam SS *et al.* (2012) Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. *Clin Cancer Res* **18**, 3163–3169.

95 Schoenwaelder SM, Jarman KE, Gardiner EE, Hua M, Qiao J, White MJ, Josefsson EC, Alwis I, Ono A, Willcox A *et al.* (2011) Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopenia that undermines the hemostatic function of platelets. *Blood* **118**, 1663–1674.

96 Stuart JA, Maddalena LA, Merilovich M and Robb EL (2014) A midlife crisis for the mitochondrial free radical theory of aging. *Longev Healthspan* **3**, 4.

97 Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR and Blüher M (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. *Proc Natl Acad Sci U S A* **106**, 8665–8670.

98 Risk Factors: Age – NCI.

99 Pedersen JK, Engholm G, Skytthe A, Christensen K and Academy of Geriatric Cancer Research (AgeCare) (2016) Cancer and aging: epidemiology and methodological challenges. *Acta Oncol* **55**(Suppl 1), 7–12.

100 Rozhok AI and DeGregori J (2016) The evolution of lifespan and age-dependent cancer risk. *Trends Cancer* **2**, 552–560.

101 Beerman I, Maloney WJ, Weissmann IL and Rossi DJ (2010) Stem cells and the aging hematopoietic system. *Curr Opin Immunol* **22**, 500–506.

102 Cameron IL (1972) Cell proliferation and renewal in aging mice. *J Gerontol* **27**, 162–172.

103 Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y and Xu Z-X (2024) The regulations of telomerase reverse transcriptase (TERT) in cancer. *Cell Death Dis* **15**, 90.

104 Shamloo B and Usluer S (2019) p21 in cancer research. *Cancers (Basel)* **11**, 1178.

105 Whibley C, Pharoah PDP and Hollstein M (2009) p53 polymorphisms: cancer implications. *Nat Rev Cancer* **9**, 95–107.

106 Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. *Cell* **88**, 593–602.

107 Liggett WH and Sidransky D (1998) Role of the p16 tumor suppressor gene in cancer. *J Clin Oncol* **16**, 1197–1206.

108 O'Sullivan EA, Wallis R, Mossa F and Bishop CL (2024) The paradox of senescent-marker positive cancer cells: challenges and opportunities. *NPJ Aging* **10**, 41.

109 Song K-X, Wang J-X and Huang D (2023) Therapy-induced senescent tumor cells in cancer relapse. *J National Cancer Center* **3**, 273–278.

110 Gordon LB, Rothman FG, López-Otín C and Misteli T (2014) Progeria: a paradigm for translational medicine. *Cell* **156**, 400–407.

111 Olive M, Harten I, Mitchell R, Beers JK, Djabali K, Cao K, Erdos MR, Blair C, Funke B, Smoot L *et al.* (2010) Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. *Arterioscler Thromb Vasc Biol* **30**, 2301–2309.

112 Cisneros B, García-Aguirre I, De Ita M, Arrieta-Cruz I and Rosas-Vargas H (2023) Hutchinson-Gilford progeria syndrome: cellular mechanisms and therapeutic perspectives. *Arch Med Res* **54**, 102837.

113 Fernandez P, Scaffidi P, Markert E, Lee J-H, Rane S and Misteli T (2014) Transformation resistance in a premature aging disorder identifies a tumor-protective function of BRD4. *Cell Rep* **9**, 248–260.

114 McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS and Djabali K (2007) The mutant form of lamin a that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. *PLoS One* **2**, e1269.

115 Rodriguez S, Coppedè F, Sagelius H and Eriksson M (2009) Increased expression of the Hutchinson-Gilford progeria syndrome truncated lamin a transcript during cell aging. *Eur J Hum Genet* **17**, 928–937.

116 Scaffidi P and Misteli T (2006) Lamin A-dependent nuclear defects in human aging. *Science* **312**, 1059–1063.

117 Rozhok A and DeGregori J (2019) A generalized theory of age-dependent carcinogenesis. *Elife* **8**, 8.

118 Oh HS-H, Rutledge J, Nachun D, Pálavics R, Abiose O, Moran-Losada P, Channappa D, Urey DY, Kim K, Sung YJ *et al.* (2023) Organ aging signatures in the plasma proteome track health and disease. *Nature* **624**, 164–172.

119 Ding Y, Zuo Y, Zhang B, Fan Y, Xu G, Cheng Z, Ma S, Fang S, Tian A, Gao D *et al.* (2025) Comprehensive human proteome profiles across a 50-year lifespan reveal aging trajectories and signatures. *Cell* **188**, 5763–5784.

120 Wahlestedt M, Erlandsson E, Kristiansen T, Lu R, Brakebusch C, Weissman IL, Yuan J, Martin-Gonzalez J and Bryder D (2017) Clonal reversal of ageing-associated stem cell lineage bias via a pluripotent intermediate. *Nat Commun* **8**, 14533.

121 Su T-Y, Hauenstein J, Somuncular E, Dumral Ö, Leonard E, Gustafsson C, Tzortzis E, Forlani A, Johansson A-S, Qian H *et al.* (2024) Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets. *Nat Commun* **15**, 7966.

122 Wang Y, Zhang W, Zhang C, Van HQT, Seino T and Zhang Y (2025) Reducing functionally defective old HSCs alleviates aging-related phenotypes in old recipient mice. *Cell Res* **35**, 45–58.

123 Tian YE, Cropley V, Maier AB, Lautenschlager NT, Breakspear M and Zalesky A (2023) Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. *Nat Med* **29**, 1221–1231.

124 Weyand CM and Gorony JJ (2016) Aging of the immune system. Mechanisms and therapeutic targets. *Ann Am Thorac Soc* **13 Suppl 5**, S422–S428.

125 Della Porta MG, Malcovati L, Strupp C, Ambaglio I, Kuendgen A, Zipperer E, Travaglino E, Invernizzi R, Pascutto C, Lazzarino M *et al.* (2011) Risk stratification based on both disease status and extra-hematologic comorbidities in patients with myelodysplastic syndrome. *Haematologica* **96**, 441–449.

126 Cook EK, Luo M and Rauh MJ (2020) Clonal hematopoiesis and inflammation: partners in leukemogenesis and comorbidity. *Exp Hematol* **83**, 85–94.

127 Gandhi SJ, Hagans I, Nathan K, Hunter K and Roy S (2017) Prevalence, comorbidity and investigation of anemia in the primary care office. *J Clin Med Res* **9**, 970–980.

128 Jaiswal S and Ebert BL (2019) Clonal hematopoiesis in human aging and disease. *Science* **366**, eaan4673.

129 Dang Chi VL, Sibille C, Willard-Gallo K and Bron D (2019) Aging and Malignant Hemopathies: A Complex Multistep Process. Springer, Cham.

130 Hao T, Li-Talley M, Buck A and Chen W (2019) An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States. *Sci Rep* **9**, 12070.

131 Han HJ, Choi K and Suh HS (2024) Impact of aging on acute myeloid leukemia epidemiology and survival outcomes: a real-world, population-based longitudinal cohort study. *PLoS One* **19**, e0300637.

132 Gleitz HFE, Benabid A and Schneider RK (2021) Still a burning question: the interplay between inflammation and fibrosis in myeloproliferative neoplasms. *Curr Opin Hematol* **28**, 364–371.

133 Ghosh K, Shome DK, Kulkarni B, Ghosh MK and Ghosh K (2023) Fibrosis and bone marrow: understanding causation and pathobiology. *J Transl Med* **21**, 703.

134 Kuter DJ, Bain B, Mufti G, Bagg A and Hasserjian RP (2007) Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres. *Br J Haematol* **139**, 351–362.

135 Zhao TV, Sato Y, Goronzy JJ and Weyand CM (2022) T-cell aging-associated phenotypes in autoimmune disease. *Front Aging* **3**, 867950.

136 Deeks SG (2011) HIV infection, inflammation, immunosenescence, and aging. *Annu Rev Med* **62**, 141–155.

137 Breen EC, Sehl ME, Shih R, Langfelder P, Wang R, Horvath S, Bream JH, Duggal P, Martinson J, Wolinsky SM *et al.* (2022) Accelerated aging with HIV begins at the time of initial HIV infection. *iScience* **25**, 104488.

138 Schippel N and Sharma S (2023) Dynamics of human hematopoietic stem and progenitor cell differentiation to the erythroid lineage. *Exp Hematol* **123**, 1–17.

139 Jo N, Hidaka Y, Kikuchi O, Fukahori M, Sawada T, Aoki M, Yamamoto M, Nagao M, Morita S, Nakajima TE *et al.* (2023) Impaired CD4+ T cell response in older adults is associated with reduced immunogenicity and reactogenicity of mRNA COVID-19 vaccination. *Nat Aging* **3**, 82–92.

140 Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R *et al.* (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. *Nat Commun* **2**, 4172.

141 Josephson AM, Bradaschia-Correa V, Lee S, Leclerc K, Patel KS, Muinos Lopez E, Litwa HP, Neibart SS, Kadiyala M, Wong MZ *et al.* (2019) Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. *Proc Natl Acad Sci U S A* **116**, 6995–7004.

142 Desdín-Micó G, Soto-Heredero G, Aranda JF, Oller J, Carrasco E, Gabandé-Rodríguez E, Blanco EM, Alfranca A, Cussó L, Descó M *et al.* (2020) T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. *Science* **368**, 1371–1376.

143 Mogilenco DA, Shpynov O, Andhey PS, Arthur L, Swain A, Esaulova E, Brioschi S, Shchukina I, Kerndl M, Bambouskova M *et al.* (2021) Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. *Immunity* **54**, 99–115.

144 Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran A, Yosef R, Sagiv A, Agrawal A, Shapira A *et al.* (2018) Impaired immune surveillance accelerates accumulation of senescent cells and aging. *Nat Commun* **9**, 5435.

145 Lefèvre L, Iacovoni JS, Martini H, Bellière J, Maggiorani D, Dutaur M, Marsal DJ, Decaunes P, Pizzinat N, Miallet-Perez J *et al.* (2021) Kidney inflammaging is promoted by CCR2+ macrophages and tissue-derived micro-environmental factors. *Cell Mol Life Sci* **78**, 3485–3501.

146 Martini H, Iacovoni JS, Maggiorani D, Dutaur M, Marsal DJ, Roncalli J, Itier R, Dambrin C, Pizzinat N, Miallet-Perez J *et al.* (2019) Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90+ subset. *Aging Cell* **18**, e13015.

147 Wang Z, Saxena A, Yan W, Uriarte SM, Siqueira R and Li X (2025) The impact of aging on neutrophil functions and the contribution to periodontitis. *Int J Oral Sci* **17**, 10.

148 Van Avondt K, Strecker J-K, Tulotta C, Minnerup J, Schulz C and Sohnlein O (2023) Neutrophils in aging and aging-related pathologies. *Immunol Rev* **314**, 357–375.

149 Matveeva K, Vasilieva M, Minskaia E, Rybtsov S and Shevrev D (2024) T-cell immunity against senescence: potential role and perspectives. *Front Immunol* **15**, 1360109.

150 Rukavina D, Laskarin G, Rubesa G, Strbo N, Bedenick I, Manestar D, Glavas M, Christmas SE and Podack ER (1998) Age-related decline of perforin expression in human cytotoxic T lymphocytes and natural killer cells. *Blood* **92**, 2410–2420.

151 Tobin SW, Alibhai FJ, Weisel RD and Li R-K (2020) Considering cause and effect of immune cell aging on

cardiac repair after myocardial infarction. *Cells* **9**, 1894.

152 Tobin SW, Alibhai FJ, Wlodarek L, Yeganeh A, Millar S, Wu J, Li S-H, Weisel RD and Li R-K (2021) Delineating the relationship between immune system aging and myogenesis in muscle repair. *Aging Cell* **20**, e13312.

153 Hazeldine J and Lord JM (2015) Innate immunosenescence: underlying mechanisms and clinical relevance. *Biogerontology* **16**, 187–201.

154 Zhang X, Baht GS, Huang R, Chen Y-H, Molitoris KH, Miller SE and Kraus VB (2022) Rejuvenation of neutrophils and their extracellular vesicles is associated with enhanced aged fracture healing. *Aging Cell* **21**, e13651.

155 Lagunas-Rangel FA (2024) Aging insights from heterochronic parabiosis models. *NPJ Aging* **10**, 38.

156 Pálovics R, Keller A, Schaum N, Tan W, Fehlmann T, Borja M, Kern F, Bonanno L, Calcuttawala K, Webber J *et al.* (2022) Molecular hallmarks of heterochronic parabiosis at single-cell resolution. *Nature* **603**, 309–314.

157 Ma S, Wang S, Ye Y, Ren J, Chen R, Li W, Li J, Zhao L, Zhao Q, Sun G *et al.* (2022) Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. *Cell Stem Cell* **29**, 990–1005.

158 Ximerakis M, Holton KM, Giadone RM, Ozek C, Saxena M, Santiago S, Adiconis X, Dionne D, Nguyen L, Shah KM *et al.* (2023) Heterochronic parabiosis reprograms the mouse brain transcriptome by shifting aging signatures in multiple cell types. *Nat Aging* **3**, 327–345.

159 Chen X, Luo Y, Zhu Q, Zhang J, Huang H, Kan Y, Li D, Xu M, Liu S, Li J *et al.* (2024) Small extracellular vesicles from young plasma reverse age-related functional declines by improving mitochondrial energy metabolism. *Nat Aging* **4**, 814–838.

160 Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ and Rubin LL (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. *Science* **344**, 630–634.

161 Castellano JM, Mosher KI, Abbey RJ, McBride AA, James ML, Berdnik D, Shen JC, Zou B, Xie XS, Tingle M *et al.* (2017) Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. *Nature* **544**, 488–492.

162 Ozek C, Krolewski RC, Buchanan SM and Rubin LL (2018) Growth differentiation factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice. *Sci Rep* **8**, 17293.

163 Liu M-N, Lan Q, Wu H and Qiu C-W (2024) Rejuvenation of young blood on aging organs: effects, circulating factors, and mechanisms. *Heliyon* **10**, e32652.

164 Mehdipour M, Skinner C, Wong N, Lieb M, Liu C, Etienne J, Kato C, Kiprov D, Conboy MJ and Conboy IM (2020) Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. *Aging (Albany NY)* **12**, 8790–8819.

165 Kim D, Kiprov DD, Luellen C, Lieb M, Liu C, Watanabe E, Mei X, Cassaletto K, Kramer J, Conboy MJ *et al.* (2022) Old plasma dilution reduces human biological age: a clinical study. *Geroscience* **44**, 2701–2720.

166 Mehdipour M, Mehdipour T, Skinner CM, Wong N, Liu C, Chen C-C, Jeon OH, Zuo Y, Conboy MJ and Conboy IM (2021) Plasma dilution improves cognition and attenuates neuroinflammation in old mice. *Geroscience* **43**, 1–18.

167 Yousefzadeh MJ, Wilkinson JE, Hughes B, Gadela N, Ladiges WC, Vo N, Niedernhofer LJ, Huffman DM and Robbins PD (2020) Heterochronic parabiosis regulates the extent of cellular senescence in multiple tissues. *Geroscience* **42**, 951–961.

168 Karin O and Alon U (2021) Senescent cell accumulation mechanisms inferred from parabiosis. *Geroscience* **43**, 329–341.

169 Baht GS, Silkstone D, Vi L, Nadesan P, Amani Y, Whetstone H, Wei Q and Alman BA (2015) Exposure to a youthful circulation rejuvenates bone repair through modulation of β -catenin. *Nat Commun* **6**, 7131.

170 Li H, Lu A, Gao X, Tang Y, Ravuri S, Wang B and Huard J (2021) Improved bone quality and bone healing of dystrophic mice by parabiosis. *Metabolites* **11**, 247.

171 Ruckh JM, Zhao J-W, Shadrach JL, van Wijngaarden P, Rao TN, Wagers AJ and Franklin RJM (2012) Rejuvenation of regeneration in the aging central nervous system. *Cell Stem Cell* **10**, 96–103.

172 Sergent, SR & Ashurst, JV (2025) Plasmapheresis. In StatPearls. StatPearls Publishing, Treasure Island (FL).

173 David S, Russell L, Castro P, van de Louw A, Zafrani L, Pirani T, Nielsen ND, Mariotte E, Ferreyro BL, Kielstein JT *et al.* (2023) Research priorities for therapeutic plasma exchange in critically ill patients. *ICMx* **11**, 26.

174 Inglut C, Kausch K, Gray A and Landrigan M (2016) Rejuvenation of stored red blood cells increases oxygen release capacity. *Blood* **128**, 4808.

175 Rabcuca J, Smethurst PA, Dammert K, Saker J, Aran G, Walsh GM, Tan JCG, Codinach M, McTaggart K, Marks DC *et al.* (2025) Assessing the kinetics of oxygen-unloading from red cells using FlowScore, a flow-cytometric proxy of the functional quality of blood. *EBioMedicine* **111**, 105498.

176 Evans BA, Ansari AK, Srinivasan AJ, Kamyszek RW, Stoner KC, Fuller M, Poisson JL and Welsby IJ (2020) Rejuvenation solution as an adjunct cold storage solution maintains physiological haemoglobin oxygen affinity during early-storage period of red blood cells. *Vox Sang* **115**, 388–394.

177 Marin M, Roussel C, Dussiot M, Ndour PA, Hermine O, Colin Y, Gray A, Landrigan M, Le Kim C, Buffet PA *et al.* (2021) Metabolic rejuvenation upgrades circulatory functions of red blood cells stored under blood bank conditions. *Transfusion* **61**, 903–918.

178 Aujla H, Woźniak M, Kumar T, Murphy GJ and REDJUVENATE Investigators (2018) Rejuvenation of Allogenic Red Cells: Benefits and Risks. *Vox Sang* **113**, 509–529.

179 Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G and Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. *Science* **279**, 1528–1530.

180 Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A and Anversa P (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. *Ann N Y Acad Sci* **938**, 221–229.

181 Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M and Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. *Circ Res* **85**, 221–228.

182 Das MM, Godoy M, Chen S, Moser VA, Avalos P, Roxas KM, Dang I, Yáñez A, Zhang W, Bresee C *et al.* (2019) Young bone marrow transplantation preserves learning and memory in old mice. *Commun Biol* **2**, 73.

183 Guderyon MJ, Chen C, Bhattacharjee A, Ge G, Fernandez RA, Gelfond JAL, Gorena KM, Cheng CJ, Li Y, Nelson JF *et al.* (2020) Mobilization-based transplantation of young-donor hematopoietic stem cells extends lifespan in mice. *Aging Cell* **19**, e13110.

184 Kovina MV, Karnaughov AV, Krasheninnikov ME, Kovin AL, Gazheev ST, Sergievich LA, Karnaughova EV, Bogdanenko EV, Balyasin MV, Khodarovich YM *et al.* (2019) Extension of maximal lifespan and high bone marrow chimerism after nonmyeloablative syngeneic transplantation of bone marrow from young to old mice. *Front Genet* **10**, 310.

185 Suh MR, Lim I, Kim J, Yang P-S, Choung JS, Sim HR, Ha SC and Kim M (2021) Efficacy of cord blood cell therapy for Hutchinson-Gilford progeria syndrome – a case report. *Int J Mol Sci* **22**, 12316.

186 Yoshida S, Nakagami H, Hayashi H, Ikeda Y, Sun J, Tenma A, Tomioka H, Kawano T, Shimamura M, Morishita R *et al.* (2020) The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice. *Nat Commun* **11**, 2482.

187 Sugiyama Y, Harada T, Kamei Y, Yasuda T, Mashimo T, Nishikimi A and Maruyama M (2023) A senolytic immunotoxin eliminates p16INK4a-positive T cells and ameliorates age-associated phenotypes of CD4+ T cells in a surface marker knock-in mouse. *Exp Gerontol* **174**, 112130.

188 Bredenkamp N, Nowell CS and Blackburn CC (2014) Regeneration of the aged thymus by a single transcription factor. *Development* **141**, 1627–1637.

189 Santamaria JC, Chevallier J, Dutour L, Picart A, Kergaravat C, Cieslak A, Amrane M, Vincentelli R, Puthier D, Clave E *et al.* (2024) RANKL treatment restores thymic function and improves T cell-mediated immune responses in aged mice. *Sci Transl Med* **16**, eadp3171.

190 Bartlett DB, Slentz CA, Willis LH, Hoselton A, Huebner JL, Kraus VB, Moss J, Muehlbauer MJ, Spielmann G, Muoio DM *et al.* (2020) Rejuvenation of neutrophil functions in association with reduced diabetes risk following ten weeks of low-volume high intensity interval walking in older adults with prediabetes – a pilot study. *Front Immunol* **11**, 729.

191 Kamminga LM, van Os R, Ausema A, Noach EJK, Weersing E, Dontje B, Vellenga E and de Haan G (2005) Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. *Stem Cells* **23**, 82–92.

192 Leins H, Mulaw M, Eiwen K, Sakk V, Liang Y, Denkinger M, Geiger H and Schirmbeck R (2018) Aged murine hematopoietic stem cells drive aging-associated immune remodeling. *Blood* **132**, 565–576.

193 Morrison SJ, Wandycz AM, Akashi K, Globerson A and Weissman IL (1996) The aging of hematopoietic stem cells. *Nat Med* **2**, 1011–1016.

194 Florian MC, Klose M, Sacma M, Jablanovic J, Knudson L, Nattamai KJ, Marka G, Vollmer A, Soller K, Sakk V *et al.* (2018) Aging alters the epigenetic asymmetry of HSC division. *PLoS Biol* **16**, e2003389.

195 Flohr Svendsen A, Yang D, Kim K, Lazare S, Skinder N, Zwart E, Mura-Meszaros A, Ausema A, von Eyss B, de Haan G *et al.* (2021) A comprehensive transcriptome signature of murine hematopoietic stem cell aging. *Blood* **138**, 439–451.

196 Biechonski S, Olender L, Zipin-Roitman A, Yassin M, Aqaqe N, Marcu-Malina V, Rall-Scharpf M, Trottier M, Meyn MS, Wiesmüller L *et al.* (2018) Attenuated DNA damage responses and increased apoptosis characterize human hematopoietic stem cells exposed to irradiation. *Sci Rep* **8**, 6071.

197 Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, Rodrigues NP, Crockford TL, Cabuy E, Vindigni A *et al.* (2007) DNA repair is

limiting for hematopoietic stem cells during ageing. *Nature* **447**, 686–690.

198 Chua BA, Lennan CJ, Sunshine MJ, Dreifke D, Chawla A, Bennett EJ and Signer RAJ (2023) Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggresphagy to maintain protein homeostasis. *Cell Stem Cell* **30**, 460–472.

199 Morganti C and Ito K (2021) Mitochondrial contributions to hematopoietic stem cell aging. *Int J Mol Sci* **22**, 11117.

200 Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, Verovskaya EV, Figueroa ME and Passegué E (2017) Autophagy maintains the metabolism and function of young and old stem cells. *Nature* **543**, 205–210.

201 Chen C, Liu Y, Liu Y and Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. *Sci Signal* **2**, ra75.

202 Luo H, Mu W-C, Karki R, Chiang H-H, Mohrin M, Shin JJ, Ohkubo R, Ito K, Kanneganti T-D and Chen D (2019) Mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. *Cell Rep* **26**, 945–954.

203 Naka K, Muraguchi T, Hoshii T and Hirao A (2008) Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. *Antioxid Redox Signal* **10**, 1883–1894.

204 Jang Y-Y and Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. *Blood* **110**, 3056–3063.

205 Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J and Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. *Nature* **447**, 725–729.

206 Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A and Rossi DJ (2013) Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. *Cell Stem Cell* **12**, 413–425.

207 Keenan CR, Iannarella N, Naselli G, Bediaga NG, Johanson TM, Harrison LC and Allan RS (2020) Extreme disruption of heterochromatin is required for accelerated hematopoietic aging. *Blood* **135**, 2049–2058.

208 Djeghloul D, Kuranda K, Kuzniak I, Barbieri D, Naguibneva I, Choisy C, Bories J-C, Dosquet C, Pla M, Vanneaux V *et al.* (2016) Age-associated decrease of the histone methyltransferase SUV39H1 in HSC perturbs heterochromatin and B lymphoid differentiation. *Stem Cell Reports* **6**, 970–984.

209 Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, Wang H, Le T, Faull KF, Chen R *et al.* (2014) Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. *Cell Stem Cell* **14**, 673–688.

210 Lemerle E and Trompouki E (2023) Transposable elements in normal and malignant hematopoiesis. *Dis Model Mech* **16**, dmm050170.

211 Scherer M, Singh I, Braun MM, Szu-Tu C, Sanchez Sanchez P, Lindenhofer D, Jakobsen NA, Körber V, Kardorff M, Nitsch L *et al.* (2025) Clonal tracing with somatic epimutations reveals dynamics of blood ageing. *Nature* **643**, 478–487.

212 Bowman RL, Busque L and Levine RL (2018) Clonal hematopoiesis and evolution to hematopoietic malignancies. *Cell Stem Cell* **22**, 157–170.

213 Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR and Majeti R (2012) Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. *Sci Transl Med* **4**, 149ra118.

214 Muller-Sieburg CE, Cho RH, Karlsson L, Huang J-F and Sieburg HB (2004) Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. *Blood* **103**, 4111–4118.

215 Kim M, Moon H-B and Spangrude GJ (2003) Major age-related changes of mouse hematopoietic stem/progenitor cells. *Ann N Y Acad Sci* **996**, 195–208.

216 Sudo K, Ema H, Morita Y and Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. *J Exp Med* **192**, 1273–1280.

217 Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL and Weissman IL (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. *Proc Natl Acad Sci U S A* **108**, 20012–20017.

218 Singh A, Chia JJ, Rao DS and Hoffmann A (2025) Population dynamics modeling reveals that myeloid bias involves both HSC differentiation and progenitor proliferation biases. *Blood* **145**, 1293–1308.

219 Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D and Rossi DJ (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. *Proc Natl Acad Sci U S A* **107**, 5465–5470.

220 Ross JB, Myers LM, Noh JJ, Collins MM, Carmody AB, Messer RJ, Dhuey E, Hasenkrug KJ and Weissman IL (2024) Depleting myeloid-biased hematopoietic stem cells rejuvenates aged immunity. *Nature* **628**, 162–170.

221 Gekas C and Graf T (2013) CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. *Blood* **121**, 4463–4472.

222 Foster AD, Sivarapatna A and Gress RE (2011) The aging immune system and its relationship with cancer. *Aging Health* **7**, 707–718.

223 Zhang P, Zhang C, Li J, Han J, Liu X and Yang H (2019) The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. *Stem Cell Res Ther* **10**, 327.

224 Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P and Huang H (2021) Biomechanical cues as master regulators of hematopoietic stem cell fate. *Cell Mol Life Sci* **78**, 5881–5902.

225 Geiger H, de Haan G and Florian MC (2013) The ageing haematopoietic stem cell compartment. *Nat Rev Immunol* **13**, 376–389.

226 Matteini F, Mulaw MA and Florian MC (2021) Aging of the hematopoietic stem cell niche: new tools to answer an old question. *Front Immunol* **12**, 738204.

227 Ergen AV, Boles NC and Goodell MA (2012) Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. *Blood* **119**, 2500–2509.

228 Young K, Eudy E, Bell R, Loberg MA, Stearns T, Sharma D, Velten L, Haas S, Filippi M-D and Trowbridge JJ (2021) Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. *Cell Stem Cell* **28**, 1473–1482.

229 Kuribayashi W, Oshima M, Itokawa N, Koide S, Nakajima-Takagi Y, Yamashita M, Yamazaki S, Rahmutulla B, Miura F, Ito T *et al.* (2021) Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche. *J Exp Med* **218**, e20192283.

230 Saçma M, Pospiech J, Bogeska R, de Back W, Mallm J-P, Sakk V, Soller K, Marka G, Vollmer A, Karns R *et al.* (2019) Haematopoietic stem cells in perisinusoidal niches are protected from ageing. *Nat Cell Biol* **21**, 1309–1320.

231 Kasbekar M, Mitchell CA, Proven MA and Passegué E (2023) Hematopoietic stem cells through the ages: a lifetime of adaptation to organismal demands. *Cell Stem Cell* **30**, 1403–1420.

232 Ehninger D, Neff F and Xie K (2014) Longevity, aging and rapamycin. *Cell Mol Life Sci* **71**, 4325–4346.

233 Rohrbaugh SL, Campbell TB, Hangoc G and Broxmeyer HE (2011) Ex vivo rapamycin treatment of human cord blood CD34+ cells enhances their engraftment of NSG mice. *Blood Cells Mol Dis* **46**, 318–320.

234 Montserrat-Vazquez S, Ali NJ, Matteini F, Lozano J, Zhaowei T, Mejia-Ramirez E, Marka G, Vollmer A, Soller K, Sacma M *et al.* (2022) Transplanting rejuvenated blood stem cells extends lifespan of aged immunocompromised mice. *Npj Regen Med* **7**, 78.

235 Amoah A, Keller A, Emini R, Hoenicka M, Liebold A, Vollmer A, Eiwen K, Soller K, Sakk V, Zheng Y *et al.* (2022) Aging of human hematopoietic stem cells is linked to changes in Cdc42 activity. *Haematologica* **107**, 393–402.

236 Kerber RA, O'Brien E and Cawthon RM (2009) Gene expression profiles associated with aging and mortality in humans. *Aging Cell* **8**, 239–250.

237 Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi M-D, Hasenberg A, Gunzer M, Scharffetter-Kochanek K *et al.* (2012) Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. *Cell Stem Cell* **10**, 520–530.

238 Florian MC, Nattamai KJ, Dörr K, Marka G, Überle B, Vas V, Eckl C, André I, Schiemann M, Oostendorp RAJ *et al.* (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. *Nature* **503**, 392–396.

239 Wahlestedt M, Nordahl GL, Sten G, Ugale A, Frisk M-AM, Mattsson R, Deierborg T, Sigvardsson M and Bryder D (2013) An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. *Blood* **121**, 4257–4264.

240 Wu Q-J, Zhang T-N, Chen H-H, Yu X-F, Lv J-L, Liu Y-Y, Liu Y-S, Zheng G, Zhao J-Q, Wei Y-F *et al.* (2022) The sirtuin family in health and disease. *Signal Transduct Target Ther* **7**, 402.

241 Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lauv S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang L-L *et al.* (2003) Small molecule activators of sirtuins extend *Saccharomyces cerevisiae* lifespan. *Nature* **425**, 191–196.

242 Brenner C (2022) Sirtuins are not conserved longevity genes. *Life Metab* **1**, 122–133.

243 Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden DT and Chen D (2013) SIRT3 reverses aging-associated degeneration. *Cell Rep* **3**, 319–327.

244 Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, Haynes CM and Chen D (2015) Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. *Science* **347**, 1374–1377.

245 Girotra M, Chiang Y-H, Charmoy M, Ginefra P, Hope HC, Bataclan C, Yu Y-R, Schyrr F, Franco F, Geiger H *et al.* (2023) Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems. *Nat Aging* **3**, 1057–1066.

246 Mansell E, Sigurdsson V, Deltcheva E, Brown J, James C, Mihara K, Soneji S, Larsson J and Enver T (2021) Mitochondrial potentiation ameliorates age-related heterogeneity in hematopoietic stem cell function. *Cell Stem Cell* **28**, 241–256.

247 Dong S, Wang Q, Kao Y-R, Diaz A, Tasset I, Kaushik S, Thiruthuvanathan V, Zintiridou A, Nieves E, Dzieciatkowska M *et al.* (2021) Chaperone-mediated autophagy sustains hematopoietic stem-cell function. *Nature* **591**, 117–123.

248 Wang Y, Kellner J, Liu L and Zhou D (2011) Inhibition of p38 mitogen-activated protein kinase

promotes ex vivo hematopoietic stem cell expansion. *Stem Cells Dev* **20**, 1143–1152.

249 Jung H, Kim DO, Byun J-E, Kim WS, Kim MJ, Song HY, Kim YK, Kang D-K, Park Y-J, Kim T-D *et al.* (2016) Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p38 kinase activity. *Nat Commun* **7**, 13674.

250 Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y *et al.* (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. *Nat Med* **12**, 446–451.

251 Satoh Y, Yokota T, Sudo T, Kondo M, Lai A, Kincade PW, Kouro T, Iida R, Kokame K, Miyata T *et al.* (2013) The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. *Immunity* **38**, 1105–1115.

252 Wang J, Morita Y, Han B, Niemann S, Löffler B and Rudolph KL (2016) Per2 induction limits lymphoid-biased haematopoietic stem cells and lymphopoiesis in the context of DNA damage and ageing. *Nat Cell Biol* **18**, 480–490.

253 Wendorff AA, Aidan Quinn S, Alvarez S, Brown JA, Biswas M, Gunning T, Palomero T and Ferrando AA (2022) Epigenetic reversal of hematopoietic stem cell aging in Phf6-knockout mice. *Nat Aging* **2**, 1008–1023.

254 Rettkowski J, Romero-Mulero MC, Singh I, Wadle C, Wrobel J, Chiang D, Hoppe N, Mess J, Schönberger K, Lalioti M-E *et al.* (2025) Modulation of bone marrow haematopoietic stem cell activity as a therapeutic strategy after myocardial infarction: a preclinical study. *Nat Cell Biol* **27**, 591–604.

255 Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P *et al.* (2017) Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. *Cell* **169**, 807–823.

256 Tang D, Tao S, Chen Z, Koliesnik IO, Calmes PG, Hoerr V, Han B, Gebert N, Zörnig M, Löffler B *et al.* (2016) Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. *J Exp Med* **213**, 535–553.

257 Ho TT, Dellorusso PV, Verovskaya EV, Bakker ST, Flach J, Smith LK, Ventura PB, Lansinger OM, Héault A, Zhang SY *et al.* (2021) Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. *J Exp Med* **218**, 35.

258 Lazare S, Ausema A, Reijne AC, van Dijk G, van Os R and de Haan G (2017) Lifelong dietary intervention does not affect hematopoietic stem cell function. *Exp Hematol* **53**, 26–30.

259 Ertl RP, Chen J, Astle CM, Duffy TM and Harrison DE (2008) Effects of dietary restriction on hematopoietic stem-cell aging are genetically regulated. *Blood* **111**, 1709–1716.

260 Chen J, Astle CM and Harrison DE (2003) Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. *Exp Hematol* **31**, 1097–1103.

261 Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, Wang Y, Steininger HM, Hoover MY, Koepke LS *et al.* (2021) Aged skeletal stem cells generate an inflammatory degenerative niche. *Nature* **597**, 256–262.

262 Chang J, Wang Y, Shao L, Laberge R-M, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W *et al.* (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. *Nat Med* **22**, 78–83.

263 Poulos MG, Ramalingam P, Gutkin MC, Llanos P, Gilleran K, Rabbany SY and Butler JM (2017) Endothelial transplantation rejuvenates aged hematopoietic stem cell function. *J Clin Invest* **127**, 4163–4178.

264 Ramalingam P, Gutkin MC, Poulos MG, Tillary T, Doughty C, Winiarski A, Freire AG, Rafii S, Redmond D and Butler JM (2023) Restoring bone marrow niche function rejuvenates aged hematopoietic stem cells by reactivating the DNA damage response. *Nat Commun* **14**, 2018.

265 Maryanovich M, Zahalka AH, Pierce H, Pinho S, Nakahara F, Asada N, Wei Q, Wang X, Ciero P, Xu J *et al.* (2018) Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. *Nat Med* **24**, 782–791.

266 Ho Y-H, Del Toro R, Rivera-Torres J, Rak J, Korn C, García-García A, Macías D, González-Gómez C, Del Monte A, Wittner M *et al.* (2019) Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. *Cell Stem Cell* **25**, 407–418.

267 Zhang X, Cao D, Xu L, Xu Y, Gao Z, Pan Y, Jiang M, Wei Y, Wang L, Liao Y *et al.* (2023) Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. *Cell Stem Cell* **30**, 378–395.

268 Tharmapalan V and Wagner W (2024) Biomarkers for aging of blood - how transferable are they between mice and humans? *Exp Hematol* **140**, 104600.

269 Kapadia CD, Williams N, Dawson KJ, Watson C, Yousefzadeh MJ, Le D, Nyamondo K, Kodavali S, Cagan A, Waldvogel S *et al.* (2025) Clonal dynamics and somatic evolution of haematopoiesis in mouse. *Nature* **641**, 681–689.

270 Pinho S and Frenette PS (2019) Haematopoietic stem cell activity and interactions with the niche. *Nat Rev Mol Cell Biol* **20**, 303–320.

271 Guidi N, Marka G, Sakk V, Zheng Y, Florian MC and Geiger H (2021) An aged bone marrow niche restrains rejuvenated hematopoietic stem cells. *Stem Cells* **39**, 1101–1106.

272 Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM, Locatelli F and Fibbe WE (2007) Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. *Blood* **110**, 2764–2767.

273 Fernández-García M, Yañez RM, Sánchez-Domínguez R, Hernando-Rodríguez M, Peces-Barba M, Herrera G, O'Connor JE, Segovia JC, Bueren JA and Lamana ML (2015) Mesenchymal stromal cells enhance the engraftment of hematopoietic stem cells in an autologous mouse transplantation model. *Stem Cell Res Ther* **6**, 165.

274 Noort WA, Kruisselbrink AB, in't Anker PS, Kruger M, van Bezoijen RL, de Paus RA, Heemskerk MHM, Löwik CWGM, Falkenburg JH, Willemze R *et al.* (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. *Exp Hematol* **30**, 870–878.

275 Almeida-Porada G, Porada CD, Tran N and Zanjani ED (2000) Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. *Blood* **95**, 3620–3627.

276 Nakahara F, Borger DK, Wei Q, Pinho S, Maryanovich M, Zahalka AH, Suzuki M, Cruz CD, Wang Z, Xu C *et al.* (2019) Engineering a hematopoietic stem cell niche by revitalizing mesenchymal stromal cells. *Nat Cell Biol* **21**, 560–567.

277 Kulkarni R, Bajaj M, Ghode S, Jalnapurkar S, Limaye L and Kale VP (2018) Intercellular transfer of microvesicles from Young mesenchymal stromal cells rejuvenates aged murine hematopoietic stem cells. *Stem Cells* **36**, 420–433.

278 Davies LC, Heldring N, Kadri N and Le Blanc K (2017) Mesenchymal stromal cell secretion of programmed Death-1 ligands regulates T cell mediated immunosuppression. *Stem Cells* **35**, 766–776.

279 Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC and Favrot MC (2005) Mesenchymal stem cells induce apoptosis of activated T cells. *Leukemia* **19**, 1597–1604.

280 Glennie S, Soeiro I, Dyson PJ, Lam EW-F and Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. *Blood* **105**, 2821–2827.

281 Kim J and Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. *Exp Hematol* **37**, 1445–1453.

282 Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Rizzo M, Gualandi F, Mancardi GL, Pistoia V *et al.* (2006) Human mesenchymal stem cells modulate B-cell functions. *Blood* **107**, 367–372.

283 Ren G, Zhao X, Zhang L, Zhang J, L'Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C *et al.* (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. *J Immunol* **184**, 2321–2328.

284 Franquesa M, Mensah FK, Huizinga R, Strini T, Boon L, Lombardo E, DelaRosa O, Laman JD, Grinyó JM, Weimar W *et al.* (2015) Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. *Stem Cells* **33**, 880–891.

285 Yang ZX, Han Z-B, Ji YR, Wang YW, Liang L, Chi Y, Yang SG, Li LN, Luo WF, Li JP *et al.* (2013) CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. *PLoS One* **8**, e59354.

286 Krampera M, Glennie S, Dyson J, Scott D, Taylor R, Simpson E and Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. *Blood* **101**, 3722–3729.

287 Rasmusson I, Ringdén O, Sundberg B and Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. *Transplantation* **76**, 1208–1213.

288 Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S and Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. *Blood* **99**, 3838–3843.

289 Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, Deans RJ and McIntosh KR (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. *J Biomed Sci* **12**, 47–57.

290 Aggarwal S and Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. *Blood* **105**, 1815–1822.

291 Le Blanc K and Mougakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. *Nat Rev Immunol* **12**, 383–396.

292 Pers Y-M, Bony C, Duroux-Richard I, Bernard L, Maumus M, Assou S, Barry F, Jorgensen C and Noël D (2021) miR-155 contributes to the immunoregulatory function of human mesenchymal stem cells. *Front Immunol* **12**, 624024.

293 Kurtzberg J, Abdel-Azim H, Carpenter P, Chaudhury S, Horn B, Mahadeo K, Nemecek E, Neudorf S, Prasad V, Prockop S *et al.* (2020) A phase 3, single-arm, prospective study of Remestemcel-L, ex vivo culture-expanded adult human mesenchymal stromal cells for the treatment of pediatric patients who failed to respond to steroid treatment for acute graft-versus-host disease. *Biol Blood Marrow Transplant* **26**, 845–854.

294 Burnham AJ, Daley-Bauer LP and Horwitz EM (2020) Mesenchymal stromal cells in hematopoietic cell transplantation. *Blood Adv* **4**, 5877–5887.

295 Li T, Luo C, Zhang J, Wei L, Sun W, Xie Q, Liu Y, Zhao Y, Xu S and Wang L (2021) Efficacy and safety of mesenchymal stem cells co-infusion in allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. *Stem Cell Res Ther* **12**, 246.

296 Golan K, Singh AK, Kollet O, Bertagna M, Althoff MJ, Khatib-Massalha E, Petrovich-Kopitman E, Wellendorf AM, Massalha H, Levin-Zaidman S *et al.* (2020) Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. *Blood* **136**, 2607–2619.

297 Kizilay Mancini Ö, Lora M, Shum-Tim D, Nadeau S, Rodier F and Colmegna I (2017) A proinflammatory Secretome mediates the impaired Immunopotency of human mesenchymal stromal cells in elderly patients with atherosclerosis. *Stem Cells Transl Med* **6**, 1132–1140.

298 Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z and Goodman SB (2019) Mesenchymal stem cell-macrophage crosstalk and bone healing. *Biomaterials* **196**, 80–89.

299 Sepúlveda JC, Tomé M, Fernández ME, Delgado M, Campisi J, Bernad A and González MA (2014) Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. *Stem Cells* **32**, 1865–1877.

300 Hong Y, He H, Jiang G, Zhang H, Tao W, Ding Y, Yuan D, Liu J, Fan H, Lin F *et al.* (2020) miR-155-5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. *Aging Cell* **19**, e13128.

301 Santamaría C, Muntión S, Rosón B, Blanco B, López-Villar O, Carrancio S, Sánchez-Guijo FM, Díez-Campelo M, Alvarez-Fernández S, Sarasquete ME *et al.* (2012) Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal stromal cells from myelodysplastic syndrome patients. *Haematologica* **97**, 1218–1224.

302 Vallabhaneni KC, Penfornis P, Dhule S, Guillonneau F, Adams KV, Mo YY, Xu R, Liu Y, Watabe K, Vemuri MC *et al.* (2015) Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. *Oncotarget* **6**, 4953–4967.

303 Fei C, Zhao Y, Guo J, Gu S, Li X and Chang C (2014) Senescence of bone marrow mesenchymal stromal cells is accompanied by activation of p53/p21 pathway in myelodysplastic syndromes. *Eur J Haematol* **93**, 476–486.

304 Muntión S, Ramos TL, Diez-Campelo M, Rosón B, Sánchez-Abarca LI, Misiewicz-Krzeminska I, Preciado S, Sarasquete M-E, de Las Rivas J, González M *et al.* (2016) Microvesicles from mesenchymal stromal cells are involved in HPC-microenvironment crosstalk in myelodysplastic patients. *PLoS One* **11**, e0146722.

305 Forte D, García-Fernández M, Sánchez-Aguilera A, Stavropoulou V, Fielding C, Martín-Pérez D, López JA, Costa ASH, Tronci L, Nikitopoulou E *et al.* (2020) Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy. *Cell Metab* **32**, 829–843.

306 Lei F, Huang Z, Ou Q, Li J, Liu M, Ma L, Tan L, Lin Z and Kou X (2022) Apoptotic vesicles rejuvenate mesenchymal stem cells via Rab7-mediated autolysosome formation and alleviate bone loss in aging mice. *Nano Res* **16**, 822–833.

307 Shin T-H, Kim H-S, Kang T-W, Lee B-C, Lee H-Y, Kim Y-J, Shin J-H, Seo Y, Won Choi S, Lee S *et al.* (2016) Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis. *Cell Death Dis* **7**, e2524.

308 Gu Z, Tan W, Ji J, Feng G, Meng Y, Da Z, Guo G, Xia Y, Zhu X, Shi G *et al.* (2016) Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. *Aging* **8**, 1102–1114.

309 Staff NP, Jones DT and Singer W (2019) Mesenchymal stromal cell therapies for neurodegenerative diseases. *Mayo Clin Proc* **94**, 892–905.

310 Ha DH, Kim H-K, Lee J, Kwon HH, Park G-H, Yang SH, Jung JY, Choi H, Lee JH, Sung S *et al.* (2020) Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. *Cells* **9**, 9.

311 Litwinowicz R, Kapelak B, Sadowski J, Kędziora A and Bartus K (2018) The use of stem cells in ischemic heart disease treatment. *Kardiochir Torakochirurgia pol* **15**, 196–199.

312 Riordan NH, Morales I, Fernández G, Allen N, Fearnott NE, Leckrone ME, Markovich DJ, Mansfield D, Avila D, Patel AN *et al.* (2018) Clinical feasibility of umbilical cord tissue-derived mesenchymal stem

cells in the treatment of multiple sclerosis. *J Transl Med* **16**, 57.

313 Kurihara K, Sasaki M, Nagahama H, Obara H, Fukushi R, Hirota R, Yoshimoto M, Teramoto A, Kocsis JD, Yamashita T *et al.* (2023) Repeated intravenous infusion of mesenchymal stem cells enhances recovery of motor function in a rat model with chronic spinal cord injury. *Brain Res* **1817**, 148484.

314 Yokoyama T, Sasaki M, Nagahama H, Kataoka-Sasaki Y, Ukai R, Oka S, Kocsis JD and Honmou O (2025) Multiple intravenous infusions versus a single infusion of mesenchymal stem cells in a rat model of cerebral ischemia. *J Neurosurg* **142**, 684–692.

315 Fernández O, Izquierdo G, Fernández V, Leyva L, Reyes V, Guerrero M, León A, Arnaiz C, Navarro G, Páramo MD *et al.* (2018) Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: a triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. *PLoS One* **13**, e0195891.

316 Lublin FD, Bowen JD, Huddlestone J, Kremenchutzky M, Carpenter A, Corboy JR, Freedman MS, Krupp L, Paulo C, Hariri RJ *et al.* (2014) Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study. *Mult Scler Relat Disord* **3**, 696–704.

317 Uccelli A, Laroni A, Brundin L, Clanet M, Fernandez O, Nabavi SM, Muraro PA, Oliveri RS, Radue EW, Sellner J *et al.* (2019) MEsenchymal StEm cells for multiple sclerosis (MESEMS): a randomized, double blind, cross-over phase I/II clinical trial with autologous mesenchymal stem cells for the therapy of multiple sclerosis. *Trials* **20**, 263.

318 de Oliveira GLV, de Lima KWA, Colombini AM, Pinheiro DG, Panepucci RA, Palma PVB, Brum DG, Covas DT, Simões BP, de Oliveira MC *et al.* (2015) Bone marrow mesenchymal stromal cells isolated from multiple sclerosis patients have distinct gene expression profile and decreased suppressive function compared with healthy counterparts. *Cell Transplant* **24**, 151–165.

319 Petrou P, Kassis I, Levin N, Paul F, Backner Y, Benoliel T, Oertel FC, Scheel M, Hallimi M, Yaghmour N *et al.* (2020) Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. *Brain* **143**, 3574–3588.

320 Álvaro-Gracia JM, Jover JA, García-Vicuña R, Carreño L, Alonso A, Marsal S, Blanco F, Martínez-Taboada VM, Taylor P, Martín-Martín C *et al.* (2017) Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial. *Ann Rheum Dis* **76**, 196–202.

321 Llufriu S, Sepúlveda M, Blanco Y, Marín P, Moreno B, Berenguer J, Gabilondo I, Martínez-Heras E, Sola-Valls N, Arnaiz J-A *et al.* (2014) Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. *PLoS One* **9**, e113936.

322 Duijvestein M, Vos ACW, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, Kooy-Winkelhaar EMC, Koning F, Zwaginga JJ, Fidder HH *et al.* (2010) Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study. *Gut* **59**, 1662–1669.

323 Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, Minelli A, Alvisi C, Vanoli A, Calliada F *et al.* (2011) Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn's disease. *Gut* **60**, 788–798.

324 Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Du M-Q, Luan S-L, Altmann DR, Thompson AJ *et al.* (2012) Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. *Lancet Neurol* **11**, 150–156.

325 Niederwieser D, Baldomero H, Bazuaye N, Bupp C, Chaudhri N, Corbacioglu S, Elhaddad A, Frutos C, Galeano S, Hamad N *et al.* (2022) One and a half million hematopoietic stem cell transplants: continuous and differential improvement in worldwide access with the use of non-identical family donors. *Haematologica* **107**, 1045–1053.

326 Passweg JR, Baldomero H, Atlija M, Kleovoulou I, Witaszek A, Alexander T, Angelucci E, Averbuch D, Bazarbachi A, Ciceri F *et al.* (2025) The 2023 EBMT report on hematopoietic cell transplantation and cellular therapies. Increased use of allogeneic HCT for myeloid malignancies and of CAR-T at the expense of autologous HCT. *Bone Marrow Transplant* **60**, 519–528.

327 Cantú-Rodríguez OG, Lavalle-González F, Herrera-Rojas MÁ, Jaime-Pérez JC, Hawing-Zárate JA, Gutiérrez-Aguirre CH, Mancias-Guerra C, González-Llano O, Zapata-Garrido A, Villarreal-Pérez JZ *et al.* (2016) Long-term insulin independence in type 1 diabetes mellitus using a simplified autologous stem cell transplant. *J Clin Endocrinol Metab* **101**, 2141–2148.

328 Couri CEB, Oliveira MCB, Stracieri ABPL, Moraes DA, Pieroni F, Barros GMN, Madeira MIA, Malmegrim KCR, Foss-Freitas MC, Simões BP *et al.* (2009) C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. *JAMA* **301**, 1573–1579.

329 Voltarelli JC, Couri CEB, Stracieri ABPL, Oliveira MC, Moraes DA, Pieroni F, Coutinho M, Malmegrim KCR, Foss-Freitas MC, Simões BP *et al.* (2007) Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. *JAMA* **297**, 1568–1576.

330 Shouval R, Furie N, Raanani P, Nagler A and Gafter-Gvili A (2018) Autologous hematopoietic stem cell transplantation for systemic sclerosis: a systematic review and meta-analysis. *Biol Blood Marrow Transplant* **24**, 937–944.

331 Burt RK, Balabanov R, Han X, Burns C, Gastala J, Jovanovic B, Helenowski I, Jitprapaikulsan J, Fryer JP and Pittock SJ (2019) Autologous nonmyeloablative hematopoietic stem cell transplantation for neuromyelitis optica. *Neurology* **93**, e1732–e1741.

332 Burt RK, Balabanov R, Tavee J, Han X, Sufit R, Ajroud-Driss S, Jovanovic B, Quigley K, Arnautovic I, Helenowski I *et al.* (2020) Hematopoietic stem cell transplantation for chronic inflammatory demyelinating polyradiculoneuropathy. *J Neurol* **267**, 3378–3391.

333 Muraro, P A, Mariottini, A, Greco, R, Burman, J, Iacobaeus, E, Inglese, M, Snowden, JA, Alexander, T, Amato, MP, Bø, L *et al.* (2025) Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis and neuromyelitis optica spectrum disorder - recommendations from ECTRIMS and the EBMT. *Nat Rev Neurol* **21**, 140–158.

334 Burman J, Fransson M, Tötterman TH, Fagius J, Mangsbo SM and Loskog ASI (2013) T-cell responses after haematopoietic stem cell transplantation for aggressive relapsing-remitting multiple sclerosis. *Immunology* **140**, 211–219.

335 Burt RK, Balabanov R, Han X, Quigley K, Arnautovic I, Helenowski I, Rose J and Siddique T (2021) Autologous hematopoietic stem cell transplantation for stiff-person Spectrum disorder: a clinical trial. *Neurology* **96**, e817–e830.

336 Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, de Paula Alves Sousa A, Griffith LM, Lim N, Nash RA *et al.* (2014) T cell repertoire following autologous stem cell transplantation for multiple sclerosis. *J Clin Invest* **124**, 1168–1172.

337 Lucas KG, Schwartz C and Kaplan J (2008) Allogeneic stem cell transplantation in a patient with relapsed Ewing sarcoma. *Pediatr Blood Cancer* **51**, 142–144.

338 Ohta H, Hashii Y, Yoshida H, Kusuki S, Tokimasa S, Yoneda A, Fukuzawa M, Inoue N, Hara J, Kusafuka T *et al.* (2011) Allogeneic hematopoietic stem cell transplantation against recurrent rhabdomyosarcoma. *J Pediatr Hematol Oncol* **33**, e35–e38.

339 Childs R and Srinivasan R (2002) Advances in allogeneic stem cell transplantation: directing graft-versus-leukemia at solid tumors. *Cancer J* **8**, 2–11.

340 Marvasti TB, Alibhai FJ, Weisel RD and Li R-K (2019) CD34+ stem cells: promising roles in cardiac repair and regeneration. *Can J Cardiol* **35**, 1311–1321.

341 Mehta T, Feroz A, Thakkar U, Vanikar A, Shah V and Trivedi H (2008) Subarachnoid placement of stem cells in neurological disorders. *Transplant Proc* **40**, 1145–1147.

342 Mancías-Guerra C, Marroquín-Escamilla AR, González-Llano O, Villarreal-Martínez L, Jaime-Pérez JC, García-Rodríguez F, Valdés-Burnes SL, Rodríguez-Romo LN, Barrera-Morales DC, Sánchez-Hernández JJ *et al.* (2014) Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. *Cyotherapy* **16**, 810–820.

343 Krägeloh-Mann I, Groeschel S, Kehrer C, Opherk K, Nägele T, Handgretinger R and Müller I (2013) Juvenile metachromatic leukodystrophy 10 years post transplant compared with a non-transplanted cohort. *Bone Marrow Transplant* **48**, 369–375.

344 Eichler F, Duncan C, Musolino PL, Orchard PJ, De Oliveira S, Thrasher AJ, Armant M, Dansereau C, Lund TC, Miller WP *et al.* (2017) Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. *N Engl J Med* **377**, 1630–1638.

345 Sessa M, Lorioli L, Fumagalli F, Acquati S, Redaelli D, Baldoli C, Canale S, Lopez ID, Morena F, Calabria A *et al.* (2016) Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. *Lancet* **388**, 476–487.

346 Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L *et al.* (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. *Science* **326**, 818–823.

347 van Egmond ME, Pouwels PJW, Boelens J-J, Lindemans CA, Barkhof F, Steenwijk MD, van Hasselt PM, van der Knaap MS and Wolf NI (2013) Improvement of white matter changes on neuroimaging modalities after stem cell transplant in metachromatic leukodystrophy. *JAMA Neurol* **70**, 779–782.

348 Wagner JE, Ishida-Yamamoto A, McGrath JA, Hordincky M, Keene DR, Woodley DT, Chen M, Riddle MJ, Osborn MJ, Lund T *et al.* (2010) Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. *N Engl J Med* **363**, 629–639.

349 Sivan-Loukianova E, Awad OA, Stepanovic V, Bickenbach J and Schattman GC (2003) CD34+

blood cells accelerate vascularization and healing of diabetic mouse skin wounds. *J Vasc Res* **40**, 368–377.

350 Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD and Crain B (2003) Transplanted bone marrow generates new neurons in human brains. *Proc Natl Acad Sci U S A* **100**, 1364–1369.

351 Egilitis MA and Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. *Proc Natl Acad Sci U S A* **94**, 4080–4085.

352 Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA *et al.* (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. *Blood* **95**, 952–958.

353 Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK and Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. *J Clin Invest* **107**, 1395–1402.

354 Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL and Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes *in vivo*. *Nat Med* **6**, 1229–1234.

355 Körbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar M, Champlin RE and Estrov Z (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. *N Engl J Med* **346**, 738–746.

356 Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S and Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. *Cell* **105**, 369–377.

357 Wagers AJ, Sherwood RI, Christensen JL and Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. *Science* **297**, 2256–2259.

358 Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ and Alvarez-Buylla A (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. *Nature* **425**, 968–973.

359 Shih C-S, Hale GA, Gronewold L, Tong X, Laningham FH, Gilger EA, Srivastava DK, Kun LE, Gajjar A and Fouladi M (2008) High-dose chemotherapy with autologous stem cell rescue for children with recurrent malignant brain tumors. *Cancer* **112**, 1345–1353.

360 Swart JF, Delemarre EM, van Wijk F, Boelens J-J, Kuball J, van Laar JM and Wulffraat NM (2017) Haematopoietic stem cell transplantation for autoimmune diseases. *Nat Rev Rheumatol* **13**, 244–256.

361 Gabandé-Rodríguez E, Pfeiffer M and Mittelbrunn M (2023) Immuno(T)herapy for age-related diseases. *EMBO Mol Med* **15**, e16301.

362 Peng L, Sferruzzi G, Yang L, Zhou L and Chen S (2024) CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. *Cell Mol Immunol* **21**, 1089–1108.

363 Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L, Kimura T, Soliman OY, Papp TE, Tam YK *et al.* (2022) CAR T cells produced *in vivo* to treat cardiac injury. *Science* **375**, 91–96.

364 Amor C, Feucht J, Leibold J, Ho Y-J, Zhu C, Alonso-Curbelo D, Mansilla-Soto J, Boyer JA, Li X, Giavridis T *et al.* (2020) Senolytic CAR T cells reverse senescence-associated pathologies. *Nature* **583**, 127–132.

365 Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, Scholler J, Monslow J, Lo A, Han W *et al.* (2019) Targeting cardiac fibrosis with engineered T cells. *Nature* **573**, 430–433.

366 Gschweng E, De Oliveira S and Kohn DB (2014) Hematopoietic stem cells for cancer immunotherapy. *Immunol Rev* **257**, 237–249.

367 Li Y-R, Dunn ZS, Yu Y, Li M, Wang P and Yang L (2023) Advancing cell-based cancer immunotherapy through stem cell engineering. *Cell Stem Cell* **30**, 592–610.

368 Calabria A, Spinozzi G, Cesana D, Buscaroli E, Benedicenti F, Pais G, Gazzo F, Scala S, Lidonni MR, Scaramuzza S *et al.* (2024) Long-term lineage commitment in hematopoietic stem cell gene therapy. *Nature* **636**, 162–171.

369 Li Y-R, Zeng S, Dunn ZS, Zhou Y, Li Z, Yu J, Wang Y-C, Ku J, Cook N, Kramer A *et al.* (2022) Off-the-shelf third-party HSC-engineered iNKT cells for ameliorating GvHD while preserving GvL effect in the treatment of blood cancers. *iScience* **25**, 104859.

370 Li Y-R, Zhou Y, Kim YJ, Zhu Y, Ma F, Yu J, Wang Y-C, Chen X, Li Z, Zeng S *et al.* (2021) Development of allogeneic HSC-engineered iNKT cells for off-the-shelf cancer immunotherapy. *Cell Rep Med* **2**, 100449.

371 Magnani A, Semeraro M, Adam F, Booth C, Dupré L, Morris EC, Gabrion A, Roudaut C, Borgel D, Toubert A *et al.* (2022) Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott-Aldrich syndrome. *Nat Med* **28**, 71–80.

372 Srivastava A, Abraham A, Aboobacker F, Singh G, Geevar T, Kulkarni U, Selvarajan S, Korula A, Dave RG, Shankar M *et al.* (2025) Lentiviral gene therapy with CD34+ hematopoietic cells for hemophilia a. *N Engl J Med* **392**, 450–457.

373 Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, Ciuculescu MF, Daley H, MacKinnon B, Morris E, Federico A *et al.* (2021) Post-transcriptional genetic

silencing of BCL11A to treat sickle cell disease. *N Engl J Med* **384**, 205–215.

374 Río P, Navarro S, Wang W, Sánchez-Domínguez R, Pujol RM, Segovia JC, Bogliolo M, Merino E, Wu N, Salgado R *et al.* (2019) Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia. *Nat Med* **25**, 1396–1401.

375 Locatelli F, Thompson AA, Kwiatkowski JL, Porter JB, Thrasher AJ, Hongeng S, Sauer MG, Thuret I, Lal A, Algeri M *et al.* (2022) Betibeglogene Autotemcel gene therapy for non- β / β 0 genotype β -thalassemia. *N Engl J Med* **386**, 415–427.

376 Marktel S, Scaramuzza S, Cicalese MP, Giglio F, Galimberti S, Lidonni MR, Calbi V, Assanelli A, Bernardo ME, Rossi C *et al.* (2019) Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent β -thalassemia. *Nat Med* **25**, 234–241.

377 Kohn DB, Booth C, Kang EM, Pai S-Y, Shaw KL, Santilli G, Armant M, Buckland KF, Choi U, De Ravin SS *et al.* (2020) Lentiviral gene therapy for X-linked chronic granulomatous disease. *Nat Med* **26**, 200–206.

378 Ferrua F, Cicalese MP, Galimberti S, Giannelli S, Dionisio F, Barzaghi F, Migliavacca M, Bernardo ME, Calbi V, Assanelli AA *et al.* (2019) Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. *Lancet Haematol* **6**, e239–e253.

379 De Ravin SS, Wu X, Moir S, Anaya-O'Brien S, Kwatemaa N, Littel P, Theobald N, Choi U, Su L, Marquesen M *et al.* (2016) Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. *Sci Transl Med* **8**, 335ra57.

380 Cruz LJ, Rezaei S, Grosveld F, Philipsen S and Eich C (2022) Nanoparticles targeting hematopoietic stem and progenitor cells: multimodal carriers for the treatment of hematological diseases. *Front Genome* **ed 4**, 1030285.

381 Li C, Wang H, Gil S, Germond A, Fountain C, Baldessari A, Kim J, Liu Z, Georgakopoulou A, Radtke S *et al.* (2022) Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. *Mol Ther Methods Clin Dev* **24**, 127–141.

382 Breda L, Papp TE, Triebwasser MP, Yadegari A, Fedorky MT, Tanaka N, Abdulmalik O, Pavani G, Wang Y, Grupp SA *et al.* (2023) In vivo hematopoietic stem cell modification by mRNA delivery. *Science* **381**, 436–443.

383 Li C, Georgakopoulou A, Mishra A, Gil S, Hawkins RD, Yannaki E and Lieber A (2021) In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ -globin in β -YAC mice. *Blood Adv* **5**, 1122–1135.

384 Li C, Wang H, Georgakopoulou A, Gil S, Yannaki E and Lieber A (2021) In vivo HSC gene therapy using a Bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model. *Mol Ther* **29**, 822–837.

385 Wang H, Georgakopoulou A, Zhang W, Kim J, Gil S, Ehrhardt A and Lieber A (2023) HDAd6/35++ – a new helper-dependent adenovirus vector platform for in vivo transduction of hematopoietic stem cells. *Mol Ther Methods Clin Dev* **29**, 213–226.

386 Milani M, Fabiano A, Perez-Rodriguez M, Hernandez RJ, Zecchillo A, Zonari E, Ottonello S, Basso-Ricci L, Canepari C, Volpin M *et al.* (2025) In vivo haemopoietic stem cell gene therapy enabled by postnatal trafficking. *Nature* **643**, 1097–1106.