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The long lifespan of humans is often not matched with health span. Thus,

there is a need for rejuvenation strategies. Here, we first discuss the evolu-

tionary benefits of the long human lifespan, particularly when coupled with an

extended health span. We then highlight the importance of understanding the

complexity of aging before interfering with it. This raises the question of the

optimal target for rejuvenation. We propose the blood system and hematopoi-

etic stem cells (HSCs). Their decline is associated with dysfunction and dis-

ease in other organs, crystallizing them as a central player in organismal

aging. We present rejuvenation strategies targeting the hematopoietic system,

especially HSCs, and explore their systemic benefits. Overall, we summarize

the potential of the blood system to reverse aging.
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Impact statement

There is a current need to reduce the economic burden caused by

aging-related diseases. In this perspective article, we discuss the evidence

that supports that rejuvenating or delaying aging of the blood system has a

beneficial and systemic impact on human health.

The quest for longevity is an old tale [1]. Recently, an

unmatched interest in anti-aging and rejuvenation

strategies has emerged. From skincare products to

anti-aging food, a flood of new products claims their

age-defying benefits [2]. Longevity and rejuvenation

have become a global business market [3], valued at

more than $42 billion in 2024 [4]. Current global

annual investment in geroscience exceeds $10 billion,

combining public, philanthropic, and venture capital

sources [5].

Given this interest in rejuvenation, we discuss the

importance of understanding aging before reversing it.

We then identify the blood system as a key rejuvena-

tion target due to its crucial role in organismal aging.
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What is aging?

From the moment we are born, several processes take

place over time, including development, adaptation,

and functional decline. Aging refers to the latter and is

often defined as time-dependent deterioration of physi-

ological functions [6]. Aging is driven by aging factors

or hallmarks, which (i) manifest during aging, (ii)

when induced accelerate aging, (iii) and when removed

slow down aging [7]. The list included the following:

cellular senescence, mitochondrial dysfunction, stem

cell exhaustion, telomere attrition, altered intercellular

communication, deregulated nutrient sensing, loss of

proteostasis, genomic instability, disabled macroauto-

phagy, chronic inflammation, dysbiosis, epigenetic

alterations, and other emerging aging factors, such as

cellular enlargement [7–12]. The aging hallmarks pro-

vide a starting point to test interventions with rejuve-

nation potential. However, the aging process remains

not fully understood and the number of aging hall-

marks is continuously expanding.

Why rejuvenate?

We live longer than ever before [13]. However, health

span—the period without chronic diseases and disabil-

ities—does not match the extending lifespan, which

increases the incidence of age-related diseases and the

associated socio-economic burden [14,15]. Reversing or

slowing aging would delay the onset of age-related dis-

eases like cardiovascular, neurodegenerative, meta-

bolic, and hematological disorders [13,16–19]. This

approach has been proposed to be economically more

beneficial than treating diseases individually [20].

Before reversing aging, it is important to first ask

why it exists in humans in the first place. Humans

have a comparatively long lifespan of ~80 years with

122 years as the oldest recorded [13,21]. What are the

reasons for this long lifespan? Theodosius Dobzhansky

said ‘Nothing makes sense in biology except in the

light of evolution’ [22]. Evolutionary aging theories

suggest that natural selection acts mostly at younger

ages when reproduction is high and mutations are

passed onto the next generation. Thus, genes that

cause decline at old age are less likely to be eliminated

by natural selection [23–25]. For humans, evolutionary

pressure may even continue after the reproductive

phase. One observation supporting this is known as

the grandmother effect, where the presence of grand-

mothers is associated with increased survival and

reproductive success of their grandchildren [26–29].
This would provide an explanation of why women live

long after their menopause. The grandmother effect is

only observed so far in humans, orcas, and elephants

[30–32] and is most likely not the only factor connect-

ing reproductive strategies with lifespan. Interestingly,

some gene variant alleles present uniquely in humans

have been proposed to protect against cognitive

decline at old age. An interpretation is that elderly

people carrying these variant alleles maintained their

cognitive functions longer, which would similarly allow

them to support their reproductive offspring [33].

Thus, improving the health and lifespan of postrepro-

ductive individuals in our society is expected to sup-

port the fitness of younger ones. Furthermore, in

many organisms, the number of cortical neurons corre-

lates with both total lifespan and length of the devel-

opmental period [34]. The long lifespan and postnatal

development of humans may allow for more developed

brains capable of complex social interactions and the

creation of advanced tools, which both positively

impact lifespan [35]. Together, these observations sug-

gest that the long lifespan of humans evolved to allow

complex brain development and the presence of elderly

people to ensure the survival of their genes in the

younger generations.

Considering the advantages of a long lifespan, why

is lifespan limited at all? An interesting discovery was

that certain gene manipulations extend lifespan [36,37],

for example the daf-2 gene in C. elegans [36,38,39] and

potentially its human homolog [40]. Originally, this

raised the question of whether genes exist that limit

lifespan, which would imply the existence of selective

pressure against increased lifespan. However, daf-2 has

pleiotropic functions; for example, it is important for

proper development [41]. Thus, its function in early life

likely provides a greater evolutionary benefit than the

cost of limiting lifespan later in life (known as antago-

nistic pleiotropy [42]). Nevertheless, genes that limit

lifespan are interesting as targets for treatments aiming

to increase lifespan after the reproductive period [43].

One important point is that extending lifespan seems

to only benefit an organism if health span is extended

at the same time. Indeed, extending lifespan reduces

the resistance to natural stresses in several model

organisms [44] and increases time spent in a frail state

in C. elegans [39] and humans [14,15,45]. Health span

in humans is restricted by the limited regenerative abil-

ity of organs like the heart, spinal cord, and brain [46]

and the aging-dependent decline of regeneration in

organs, such as bone marrow, liver, intestine, and skel-

etal muscle [47–49]. These observations raise the ques-

tion of why we did not evolve regenerative potential

that persists at old age in all organs. One interpreta-

tion is that regeneration increases cancer risk [50,51],

which may shorten lifespan even more than decay
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from aging. Thus, prolonging health span via increased

regeneration requires balancing to prevent tumor for-

mation. Altogether, these observations suggest that

there are evolutionary benefits of a healthy and long

lifespan in humans.

Compensatory adaptations during
old age

Over time, several processes take place, including

adaptations to decay from aging [52]. Examples of

time-dependent adaptation were provided by research

in Saccaromyces cerevisiae (budding yeast), a powerful

model system for eukaryotic aging [53]: Old yeast cells

grow and adapt better than younger ones when nutri-

tional conditions change [54,55]. This rapid adaptation

may result from the time-dependent accumulation of

stress protectant molecules and specific extrachromo-

somal circular DNA (eccDNA), which provides a res-

ervoir of heterogeneous molecular material [56,57].

eccDNA also exists in human cells, opening the possi-

bility that these adaptive mechanisms are conserved.

They are proposed to provide adaptive advantages in

the cancer context [56,58–61]. Furthermore, low-level

activation of stress responses upon age-associated

damage also improves resistance to external stresses

(hormesis) [62,63]. Importantly, these observations sug-

gest that not everything occurring with old age directly

leads to decay but can instead be a compensatory

adaptation to temporarily maintain functions.

There are more examples of processes originally

thought to exclusively drive aging, which then turned

out to (also) support physiological functions:

• Amyloid beta (Ab) plaques accumulate during aging

and are consistently observed in postmortem brains

with Alzheimer’s disease. Hence, Ab plaques were

first considered as a main pathogenic driver of Alz-

heimer’s [64]. Now, models suggest that Ab plaques

may be neuroprotective as they sequester toxic Ab
forms, thereby preventing the formation of amyloid

pores [64–66].
• Somatic mutations accumulate during aging and are

the root cause of cancer. While they were initially

assumed to drive aging, this is now under debate

[12,67,68]. Most likely, somatic mutations are associ-

ated with gradual functional decline and increased

vulnerability to disease; however, there are excep-

tions which restore organ function. For example, the

germline variant COL17A1 is associated with skin

disease. Somatic mutations in this gene can result in

a selection advantage leading to an improvement of

symptoms [69]. Similar observations were made for

germline mutations of Mendelian hematopoietic dis-

eases [70] and Hutchinson–Gilford progeria [71].

Furthermore, somatic mutations have been reported

to confer cancer protection in the epithelium and

promote liver regeneration [72,73]. Exploring the

mutational landscape of centenarians—persons

≥100 years—may uncover beneficial somatic muta-

tions for human longevity [74,75]. Somatic mutations

also accumulate in the blood system and are present

in around 15% of 70-year-olds harboring mutated

clones. These mutations initially improve

blood-building capacity; however, ultimately, all

clonal expansions in the blood are associated with

increased risk of hematological malignancy [76,77].
• Senescent cells are permanently arrested in the cell

cycle, accumulate during aging and are a major com-

ponent of aging dysfunction [78–80]. Indeed, trans-

planting senescent cells into mice drives age-related

diseases [81–84]. However, it has been revealed that

senescence also supports physiological functions like

tissue remodeling during embryonic development,

wound healing, removal of premalignant cells, and

hemostasis (the process of bleeding cessation)

[85–92]. Indeed, certain senolytics are associated with

thrombocytopenia that impairs hemostasis [93–95].
Thus, it would be optimal to pharmacologically dis-

tinguish between pathological and physiological

senescence.
• Reactive oxygen species (ROS) accumulate over time.

However, increasing evidence indicates no direct cor-

relation between ROS accumulation and accelerated

aging. The physiological function of ROS production

is proposed to contribute to intracellular signaling

rather than stochastic macromolecular damage [96].

In agreement with this, ROS generation governs the

metabolic benefits of physical exercise in humans via

transcriptional reprogramming [97].

Overall, these examples illustrate the importance of

first understanding the mechanisms occurring during

old age before targeting them. Aspects of aging itself

have been proposed to maintain physiological func-

tions. For example, while aging is the most important

risk factor for cancer [98,99], it also has been sug-

gested to be cancer protective [99,100]. Many cells

decline in proliferative potential during aging

[101,102], while cancerous cells are characterized by

increased proliferation. Telomere attrition causes cellu-

lar aging and is often counteracted by overexpression

of telomerase in cancer cells [103]. Expressing onco-

genes can induce senescence in cells, while drivers of

senescence, such as p21, p16, and p53, are often dys-

functional in tumors [104–107]. However, the picture is

3FEBS Letters (2025) ª 2025 The Author(s). FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

E. L. Cerezo et al. HSCs—The elixir of life?

 18733468, 0, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.70215, W

iley O
nline L

ibrary on [09/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



more complex as some senescent cells can exit their

cell cycle arrest and drive cancer relapse [108,109].

Another cancer protective example driven by aging

is provided by Hutchinson–Gilford progeria syndrome

(HGPS), which is caused by progerin generation. Indi-

viduals affected by the syndrome experience premature

aging and display increased levels of DNA damage

[110,111]. However, this increased genetic instability

does not correlate with a higher cancer risk [110,112]

due to the protective effect of progerin [113]. Upon

aging, progerin also accumulates in normal tissues

suggesting that its protective properties may also occur

in physiological conditions [114–116]. Thus, has aging

evolved to suppress cancer? This will remain a hard

question to disentangle since another interpretation

reverses this viewpoint: mechanisms evolved to

suppress cancer until they fail due to aging [117].

Regardless, aging and cancer are linked in humans

and any attempt to rejuvenate must take care that the

intervention does not lead to malignancy. Taken

together, not everything that occurs during the later

years of an organism can be taken at face value as a

direct driver of aging. This highlights the need for cau-

tion when aiming to intervene in aging mechanisms to

rejuvenate.

What to rejuvenate? The blood system
as a star(t) ☆

To effectively rejuvenate, we should consider that

aging is a complex process that manifests differently

across individuals of the same chronological age.

Moreover, in the same individual, aging rates vary

across tissues, organs [118,119] and cell type popula-

tions [120–122], thereby influencing the development of

distinct age-related diseases and associated comorbid-

ities [118,123]. An optimal target of rejuvenation has

therefore the potential to be restored in function and

improve the function of other aged organs at the same

time. Here, we explore the evidence suggesting that the

blood system plays a central role in overall tissue and

organ aging and that its rejuvenation therefore

improves health span.

Role of hematopoietic cells in organismal aging

and age-related diseases

Hematopoietic cells have numerous roles, including

molecular transport throughout the body, immune

response, and body homeostasis. With time, these

functions decline [124]. Here, we point out how hema-

topoietic cells relate to organismal aging and

age-related diseases:

Blood system—A declining blood system co-occurs

with additional disease risks:

• Patients with age-related blood disorders display

comorbidities that are listed in the top 10 causes of

death by the World Health Organization: cardiac,

renal, and pulmonary diseases, and solid tumor

development [125–128].
• An aging blood system often displays clonal hemato-

poiesis, wherein a subset of hematopoietic stem cell

(HSC) clones acquires mutations increasing their

proliferation thereby making up a large portion of

the hematopoietic compartment. Clonal hematopoie-

sis is associated with increased risk of blood cancer,

coronary heart disease and stroke and is associated

with a 35% higher mortality risk [128] possibility via

modulation of immune system function.
• An aging blood system is accompanied by increased

risk of (pre-)malignant hemopathies [129–131] and

bone marrow fibrosis [132–134].
• Disease risk increases upon T-cell decline: Increased

risk of autoimmune diseases correlates with aging of

T cells [135]. In patients with autoimmune disorders,

such as rheumatoid arthritis, pro-inflammatory T-cell

expansion drives tissue destruction, and promotes

age-related pathologies like cardiovascular disease

[124]. T-cell destruction upon HIV infection acceler-

ates aging in AIDS patients, which also leads to car-

diovascular disease, cancer, frailty, and osteoporosis

[136,137].
• The decline of red blood cells (RBC) results in

anemia that affects about one-third of the world

population. Even mild anemia is associated with

age-associated diseases, such as cancer and renal

insufficiency [138].

Overall, these observations reveal that a declining

blood system correlates with dysfunction in other organs.

Immune system—During old age, a drastic drop in the

efficiency of the immune cells and an accumulation of

pro-inflammatory cytokines and chemokines result in

organismal decline. Indeed, transplanting senescent

immune cells causes, (a) senescence in nonlymphoid

tissues and solid organs, (b) loss of muscle regenera-

tion, (c) organ damage, especially in the heart, liver,

kidneys, and brain, and (d) reduced lifespan in recipi-

ent mice [81]. This organismal decline is expressed in

various ways:

• Infections become more frequent and vaccination

responsiveness decreases with age [124,139].
• Systemic inflammation accelerates cellular and organ

aging [140,141]. T-cell dysfunction increases systemic
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pro-inflammatory cytokines, contributing to organ

decline and reduced lifespan [81,90,124,142–144]. For
example, the expansion of CD8+ T cells in the

spleen, peritoneum, liver, and lung produces the pro-

inflammatory Granzyme K, which has been pro-

posed as a trigger of age-driven inflammation [143].

Macrophages are also a main source of pro-

inflammatory cytokines and drive inflammation in

the kidney and liver [145,146]. Increased activation

of neutrophils increases tissue inflammation, such as

periodontitis, and contributes to age-associated dis-

ease onset [147,148].
• Clearance activity of cytotoxic T cells declines during

aging, slowing down the removal of premalignant

and senescent cells, which facilitates cancer and

organismal decline [90,149,150]
• Organ repair decreases with declining immune func-

tion [151,152]. For instance, lower abundance of neu-

trophils alters organ repair [153] and delays bone

fracture healing [154].

Overall, these findings demonstrate that the hemato-

poietic system and especially the immune system play

a fundamental role in organismal functions beyond the

blood system and therefore are likely to be a key

aspect of organismal aging [16].

Blood system—A target for organismal

rejuvenation

Several strategies have been explored to rejuvenate the

blood system, which in turn further demonstrates its

influence on the function of other organs:

• Heterochronic parabiosis is a procedure that merges

the blood systems of old and young mice. It thereby

increases rejuvenation markers and processes in

many organs of the old animal while the young ani-

mal displays increased aging characteristics

[155–158]. The rejuvenation is likely caused by reju-

venating factors from the young circulatory system

[159–163] and the dilution of pro-aging factors from

the aged compartment [164–166]. Supplying old ani-

mals with young blood cells improves senescent cell

removal [157,167,168], bone repair [169,170], and the

regeneration of the central nervous system (CNS)

[158,160,161,171]. This procedure unveils the poten-

tial of the blood compartment as a central rejuvena-

tion tool [155].
• Therapeutic plasma exchange (TPE) is a procedure in

which a patient’s plasma is removed and replaced

with a substitute fluid like saline, albumin, or donor

plasma. In old mice, plasma dilution promotes

neurogenesis and rejuvenates skeletal muscles and

the liver [164,166]. In humans, TPE reduces the

aging-associated myeloid bias, systemic inflamma-

tion, DNA damage, and senescence in peripheral

blood mononuclear cells [165]. TPE is currently used

as a therapeutic strategy for numerous diseases

[172,173], but its potential to treat age-related dis-

eases remains to be explored.
• RBC peri-transfusion is the main treatment for ane-

mia or hemoglobinopathies. Several treatments have

been developed to rejuvenate RBCs, thereby improv-

ing their capacities following hypothermic conserva-

tion [174–177]. In vivo, these rejuvenated RBCs

improved the oxygenation and function of the heart,

lungs, and kidneys [178]. RBC rejuvenation could

therefore be beneficial for aging individuals.
• Transplantation of bone marrow cells promotes func-

tional recovery beyond the blood system by contrib-

uting to muscle regeneration [179], repair of heart

muscle tissue [180], improving postnatal blood vessel

formation [181], bone healing [169], and cognitive

functions [182]. Notably, transplanting young bone

marrow or progenitor-enriched bone marrow (Lin-

cells) into old mice significantly increased their life-

span by about 31% or 12%, respectively [183,184].

The transplantation of cord blood cells, enriched for

bone marrow cell types, attenuates the accelerated

aging phenotype driven by progeria [185].

Restoring immune cell function

• Removing senescent T cells from adipose tissue

improves glucose tolerance, insulin resistance, and

obesity-related metabolic disorders in mice [186].

Importantly, the detrimental effects driven by dys-

functional T cells are reversible in the heart, the vis-

ceral adipose tissue and other key organs

[81,142,186,187]. A promising way to counteract T-

cell-driven aging is to restore thymus function

[188,189].
• Exercise-induced rejuvenation of neutrophils

co-occurs with reduced disease risk in aged patients

with type 2 diabetes predisposition [190].
• Heterochronic parabiosis suggests that monocytes of

young animals have the potential to regenerate the

CNS of old animals by supporting the process of

building new myelin sheath [171].

Overall, these findings demonstrate that rejuvenation

of hematopoietic cells restores functions beyond the

blood system, crystallizing it as an optimal therapeutic

target to prevent organismal aging.
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Hematopoietic stem cells—A
promising rejuvenation target?

Effect of time on HSCs

HSCs are at the top of the hematopoietic hierarchy,

giving rise to all hematopoietic cells. During aging

their stemness declines, affecting downstream hemato-

poietic cells like immune cells [191,192]. To explore the

potential to rejuvenate HSCs, we first need to under-

stand the processes of aging and adaptations in HSCs

(Fig. 1):

• HSCs decline in function with time [191,193]. This is

driven by intrinsic factors, such as enlargement [8],

apolarity [194], metabolic changes [121,195], reduced

DNA damage repair [196,197], low proteostasis

[198], low mitochondrial function [199], declining

autophagy [200], increased mTOR activity [201],

increased inflammasome [202], increased ROS levels

[203,204], senescence [186], stem cell exhaustion

[205], epigenetic changes [206–209], and possibly

transposable element expression [209,210].
• While individual HSC function declines, the HSC

pool increases in number over time in humans and

mice [101,211]. This expansion may be a compensa-

tory effort to maintain overall productivity of the

HSC compartment. However, this process is often

associated with clonal hematopoiesis [128,211,212],

making the blood system more prone to leukemia

transformation [212,213].
• Aged HSCs bias toward myeloid lineage production

at the expense of lymphoid lineage [214–218]. This

increases inflammation [219] and reduces the adap-

tive immune response [120,220,221], which is associ-

ated with decreased cancer immunosurveillance [222].
• HSCs are affected by their complex bone marrow

microenvironment, which is called the niche

[223,224]. During aging, the niche undergoes alter-

ations, including increased matrix stiffness, vascular

remodeling, decreased innervation, increased adipos-

ity, and inflammation, which contribute to the

decline of HSC function [225,226]. Indeed, an old

recipient’s microenvironment reduces the ability of

young HSCs to engraft and produce T cells.

Inversely, transplanting old HSCs into young recipi-

ents results in more balanced myeloid/lymphoid line-

ages [227,228]. However, a young niche is not

sufficient to restore the function of old HSCs [229].

Interestingly, aging does not uniformly affect the

HSC population, creating subsets of differently aged

HSCs [120–122,211,230]. Overall, aging and the

resulting adaptations progressively impair the ability

of HSCs to ensure the functionality of the blood

system.

Rejuvenation strategies for HSCs and their effect

on organismal functions

Transplanting young HSCs into aged mice significantly

extends their health- and lifespan [122,183], which indi-

cates that the rejuvenation of old HSCs could have

similar effects. In this part, we present strategies that

restore the function of old HSCs [231] and present the

effect on organismal functions. These studies analyzed

the rejuvenation of HSCs at different levels: (a) HSC

cellular characteristics like DNA damage, (b) in vivo

HSC function, like engraftment, blood-building capac-

ity and lineage bias analyzed after transplantation into

untreated recipient mice, overcoming pleiotropic

effects, and (c) health- and lifespan of HSC recipients.

1. Rejuvenating old HSCs by restoring intrinsic

pathways
• Preventing or reversing age-related HSC enlarge-

ment improves their blood-building capacity

upon transplantation [8,10].
• Rapamycin inhibits mTOR, extends lifespan

[232], and rejuvenates old HSCs as their trans-

plantation improves blood-building capacity and

lineage balance [8,201]. Rapamycin also improves

HSC function when administered in vitro, demon-

strating its direct effect [233].
• Inhibition of RhoGTPase Cdc42 with CASIN in

aged mice partially rejuvenates aged HSCs by

restoring their apolarity and improves their

capacity to build immunocompetent cells.

Remarkably, transplanting these rejuvenated

HSCs increases the lifespan of aged immunocom-

promised recipient mice [192,234]. Increased

activity of Cdc42 is also associated with aging in

humans and aged HSCs [235–238].
• Converting aged HSCs into induced pluripotent

stem cells (iPSCs) by expressing the Yamanaka

factors and then differentiating these back into

HSCs effectively rejuvenates them transcription-

ally and improves their blood-building capacity

and T-cell function [120,239].
• Sirtuins are NAD+-dependent deacetylases impli-

cated in inflammation, metabolism, and oxidative

stress response [240]. Sirtuins were established as

promising pro-longevity genes [241], although this

is also disputed [242]. In mouse HSCs, overex-

pression of SIRT2/3/7 improves blood-building
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capacity after transplantation, and SIRT2/7

improves lineage balance [202,243,244].
• Mitophagy induction by in vitro or in vivo Uro-

lithin A treatment or the restoration of mitochon-

drial membrane potential with MitoQ improves

the capacity of old HSCs to build blood after

transplantation [245,246]. Old mice supplemented

with Urolithin A also show an improvement in

their immune response after an acute viral

infection.
• Activation of chaperone-mediated autophagy in

vitro or in vivo improves the function of old

Fig. 1. Hematopoietic stem cell (HSC) aging factors and rejuvenation strategies. This diagram represents the factors leading to HSC aging

(inner circle), and the rejuvenation tools targeting these aging factors (outer circle). The aging drivers can originate from the HSCs

themselves (purple) or the microenvironment (yellow), or a combination of both (purple and yellow). For some factors, no HSC-specific

rejuvenation strategy currently exists and is marked as N/A. See the main text for more details. HP, heterochronic parabiosis.
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HSCs [247]. This is evidenced by enhanced

long-term self-renewal capacity of aged HSCs in

vitro, increased GAPDH activity and decreased

protein oxidation level.
• Modulating the expression of age-associated

genes, such as p38 MAPK, Satb1, Per2, Phf6,

and Rantes/Ccl5, partially rejuvenates old HSCs.

These approaches improve HSC commitment

toward the lymphoid lineage. In addition, p38

MAPK inhibition and Phf6 deletion improve

long-term blood reconstitution. Of note, Per2�/�
aged mice present an improved immune function

and lifespan, although this may not be solely

caused by rejuvenated HSCs because the gene is

deleted in all cell types [227,248–253]
2. Rejuvenating old HSCs by systemic interventions

• Aged HSCs contribute to the generation of pro-

inflammatory myeloid cells, which infiltrate car-

diac tissue after myocardial infarction. Enforcing

HSC quiescence with 4-oxo-retinoic acid, a vita-

min A metabolite, mitigates inflammatory myelo-

poiesis, thereby improving tissue remodeling and

preserving long-term cardiac function [254,255].
• In middle-aged mice, long-term calorie restriction

(CR) shows positive and negative effects [256]: It

limits the increase of the HSC pool observed

upon aging, and overall improves their self-

renewal and repopulation capacity upon trans-

plantation. However, long-term CR specifically

inhibits the proliferation of lymphoid progenitors,

resulting in an impaired immune function. In old

mice, life-long CR resulted in opposite results

upon transplantation with either no impact on

HSC function [257,258] or improving the blood-

building capacity and maintaining the

lymphoid/myeloid balance [259,260].
• Heterochronic parabiosis rejuvenates the expres-

sion profile of HSCs from old mice [156,157] and

may restore the lineage bias after transplantation

[257,261], while it fails to restore their blood

reconstitution capacity [257].
• Strategies that are commonly used to drive reju-

venation in other cell types like TPE and exercise

do not seem to rejuvenate old HSCs [257].

3. Removing old HSCs
• Clearing senescent cells, either from niche or

HSCs themselves, rejuvenates the remaining

HSCs in aged mice, and improves their ability to

build a new blood system [262].
• Depleting myeloid-biased HSCs restores balanced

differentiation in aged mice [220]. This depletion

results in more lymphocyte progenitors and naive

T and B cells. It improves adaptive immune

responses, while decreasing age-related markers

of immune decline.

4. Targeting the niche
• The infusion of young bone marrow-resident

endothelial cells in old mice rejuvenates HSC

function and improves their engraftment and

blood-building capacity [263].
• Supplementing old mice with niche-derived fac-

tors like netrin-1 [264] or with adrenergic agonists

to stimulate the sympathetic system [265,266]

rejuvenates their niche, demonstrated by

improved bone marrow vascular integrity, mesen-

chymal stem cell (MSC) number, and lower

DNA damage levels. These approaches also

improve blood-building capacity of HSCs.
• Softening the extracellular matrix stiffness rejuve-

nates old HSCs ex vivo and restores their blood

reconstitution capacity, lineage balance, mito-

chondrial function, cell polarity, and DNA dam-

age level [267]. Importantly, this approach

requires the support of bone marrow-resident

MSCs, implying a functional connection between

HSCs and MSCs (details below).
• However, a young niche is not sufficient to fully

restore the function of old HSCs [229], which

implies that both intrinsic and extrinsic aging fac-

tors have to be targeted to optimize HSC

rejuvenation.

We note that most of these studies were conducted

in mice, and for most treatments, it is unclear whether

they are also promising for human HSCs. The murine

and human blood systems exhibit both similarities and

differences when comparing aging hallmarks [268]. For

instance, clonal hematopoiesis occurs more frequently

in humans than in mice [269]. Thus, there is a need to

expand aging research on human HSCs.

Overall, HSC rejuvenation can be achieved by multi-

ple approaches and has far-reaching effects like pro-

tecting immune functions and increasing lifespan.

HSCs and their niche are therefore promising targets

to improve health span.

Mesenchymal stem cells—Support for
blood system rejuvenation

In the bone marrow, HSCs are surrounded by niche

cell types, including MSCs [270]. MSCs influence the

function of hematopoietic cells [271]. For example, the

co-transplantation of HSCs with MSCs improves HSC

engraftment, short and long-term reconstitution

and accelerates lymphocyte recovery [272–275].
Co-culturing of HSCs with young MSCs or HSC niche
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factors enhances the HSC’s ability to build a blood

system in vivo [276,277]. In addition, MSCs modulate

immune responses by, for example, limiting T-cell pro-

inflammatory activity [278–292], which can mitigate

the graft-versus-host disease upon co-transplantation

with HSCs [293–295]. In turn, HSCs improve the func-

tion of damaged MSCs [296]. Hence, these two cell

types influence each other’s rejuvenation capacity.

Upon aging, senescent MSCs alter immune cells

thereby impairing bone and cardiac regeneration and

driving organ inflammation [145,146,297–300].
Impaired MSCs also promote tumorigenesis, myelo-

proliferative diseases and bone marrow fibrosis

[133,301–305]. Rejuvenating or removing senescent

MSCs restores their immunoregulatory activity and

improves bone regeneration, angiogenesis and cardio-

protection following infarction [297,300,306]. The infu-

sion of young MSCs restores immunomodulatory

activities and reduces tissue deterioration driven by

autoimmune disease [307,308]. In line with this, several

clinical studies use MSCs for skin regeneration and to

treat neurodegenerative and ischemic heart diseases

[309–311]. Thus, targeting MSCs is a promising

approach for the rejuvenation of immune cells and

organs. Interestingly, the organs affected by MSC-

based cell therapies are similar to the ones for HSC-

based therapies (see below), which further strengthens

the functional interplay between MSCs and HSCs in

rejuvenation potential. Unfortunately, the advantages

of MSC-based therapy in patients with autoimmune

disease are inconsistent and often lost in the long term,

which implies a short-term maintenance of MSCs in

recipients and the need for repeated infusions

[312–324]. However, these findings place MSCs as a

promising partner to the hematopoietic system for

immune cell and organ rejuvenation.

HSC-derived (immuno)therapies to
counteract aging-related disease

HSC transplantation is the main stem cell-based ther-

apy in humans and is used for treating diseases of the

blood system, like hematological malignancies and

autoimmune diseases [325,326]. In patients with auto-

immune diseases, for example, autologous HSC

(aHSC) transplantations reset the T-cell repertoire,

which improves immune cell function and disease out-

comes [327–336]. Furthermore, several clinical studies

have evaluated the potential of HSC transplants to

treat nonhematopoietic diseases:

• Solid tumors: HSC transplants can generate an

immune response, called graft-vs-tumor effect,

improving the survival of patients by the elimination

of cancerous cells [337–339].
• Angiogenesis and organ arterial blood supply upo-

nischemia: HSC transplants may promote angiogene-

sis by generating new endothelial cells [340].
• Neurological disorders: HSC transplants improve

brain repair potential in patients with neurological

disorders [341,342]. Together with HSC gene ther-

apy, HSC transplants are an efficient treatment for

patients with cerebral adrenoleukodystrophy and

metachromatic leukodystrophy [343–347].
• Skin disorder: HSC transplants improve wound heal-

ing and reepithelialization of the skin in epidermoly-

sis bullosa patients and diabetic mice [348,349].
• Systemic sclerosis: HSC transplants decrease all-cause

mortality and improve lung capacity and skin thick-

ness [330].

An interesting question is how aHSC transplants

improve nonhematopoietic diseases. One supported

model is that they restore a functional immune system,

which in turn improves the health of other organs by,

for example, removing premalignant and senescent cells

as outlined above [81,90,124,142,144]. Another model

proposes that HSCs transdifferentiate into nonhemato-

poietic cell types [350–356]. However, HSCs rarely gen-

erate nonhematopoietic cell types during physiological

conditions in mice [357]. Lastly, hematopoietic cells

may also improve cardiac, neuronal and hepatic func-

tions via cell fusion [358]. Altogether, even though the

safety of the procedure has to be improved

[348,359,360], aHSC transplants reveal a new perspec-

tive on how to counteract certain aging-related diseases.

HSCs are also interesting for approaches using engi-

neered chimeric antigen receptors (CARs). CARs enable

T and NK cells to recognize specific antigens and to

target, for example, cancer cells [361,362]. This

approach is also utilized to target fibrotic and senescent

cells, thereby preserving the integrity of cardiac and

liver tissue following injury [363–365]. However, the

high costs of CAR T-cell engineering and their short

maintenance in recipients motivate the search for alter-

natives [361]. HSCs display long-term self-renewal

capacities and multipotency. Hence, engineering HSCs

for immunotherapies allows for long-lasting and diverse

replenishment of chimeric immune cells [366–368]. For
instance, HSC engineering can overcome the resistance

of NK cells to viral transduction and generate HSC-

derived invariant NK cells for cancer immunotherapies

[362,369,370]. The potential of HSCs for immunother-

apies is further enhanced by the outcome of clinical

studies on hematological and autoimmune disorders; up

to 15 years follow-up on subjects confirmed the long-
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term biological safety and efficacy of gene therapy using

lentivirally transduced HSCs [368,371–379]. Excitingly,

the development of nanoparticles and viral vectors

might even enable in vivo editing of HSCs [380–386].
Altogether, autologous transplantation of rejuvenated

and engineered HSCs is a promising tool to slow down

age-related disease occurrence.

Conclusion

The current interest in anti-aging and rejuvenation

strategies motivated us to discuss the importance of

understanding lifespan and aging before interfering

with them. We find compelling arguments that the

long and healthy lifespan of humans provides benefits

from enabling complex brain development to building

efficient social structures of intergenerational care sup-

porting survival and reproduction.

Aging is a complex process manifesting itself differ-

ently across tissues and cell type populations. Impor-

tantly, it is still not fully understood. To establish

successful rejuvenation strategies, it is essential that we

improve our understanding of the holistic picture of

all factors driving aging and their interactions.

The blood system, with HSCs at the top of its hier-

archy, appears to play a central role in organismal

aging. HSC aging is driven by intrinsic mechanisms

and the bone marrow microenvironment. It impacts

hematopoiesis with consequences within and beyond

the blood system, contributing to organismal aging.

Thus, restoring a functional blood system by rejuve-

nating HSCs is expected to also improve the function

of other organs thereby reducing the risk of developing

a broad range of age-associated diseases. While HSC

rejuvenation is not expected to benefit all organs and

tissues, such as the endocrine system, future work will

show whether HSC-derived improvements are enough

to counteract overall decline at old age.

Techniques to rejuvenate the blood compartment

are expanding and improving. Autologous HSC trans-

plantations in humans further illustrate what organis-

mal rejuvenation strategies can achieve as they are

already used to treat hematopoietic and nonhemato-

poietic diseases. The supplementation of MSCs or

other niche factors might enable HSCs to reach their

full rejuvenation potential. Overall, our review high-

lights the power of the hematopoietic compartment to

reverse organismal aging.
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