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ABSTRACT

Introduction: Stromal vascular fraction (SVF), a heterogeneous cell population primarily derived from
adipose tissue, is widely utilized in regenerative therapies for its wound-healing properties and acces-
sibility. While its immediate availability is advantageous, repeated harvesting can be burdensome,
especially for elderly patients, and the regenerative capacity of SVF declines with donor age. Long-term
cryopreservation offers a potential solution by allowing the banking of SVF from younger donors for
future use; however, the impact of this process on SVF functionality remains elusive. This study in-
vestigates the stemness and wound-healing potential of SVF following prolonged cryopreservation.
Methods: SVF cells were isolated from adipose tissue harvested from twelve patients and cryopreserved
for either two months (short-term cryopreserved SVF, S-SVF) or 12—13 years (long-term cryopreserved
SVF, L-SVF), with six patients in each group. In vitro assays assessed cell viability and stemness, while
in vivo assays evaluated wound-healing ability by administering thawed SVF cells from each group to
dorsal wounds in immunodeficient mice, compared with a control group. Non-parametric statistical tests
analyzed the differences between groups.
Results: L-SVF exhibited significantly lower stemness compared to S-SVF. Importantly, the L-SVF group
showed significantly improved wound healing compared with the control group, although the wound-
healing effect of L-SVF was inferior to that of the S-SVF.
Conclusion: This study demonstrated that, despite reduced stemness, L-SVF retains partial wound-
healing potential after 12—13 years of cryopreservation. These findings highlight the need for opti-
mized cryopreservation protocols to enhance SVF viability and regenerative capacity for clinical
applications.
© 2025 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

types, such as osteocytes, chondrocytes, and adipocytes. These cells
have gained attention as a promising material for regenerative

Adipose-derived stem cells (ADSCs) are multipotent cells iso-
lated from adipose tissue that can differentiate into various cell

Abbreviations: SVF, stromal vascular fraction; ADSCs, adipose-derived stem
cells; L-SVF, long-term cryopreserved stromal vascular fraction; S-SVF, short-term
cryopreserved stromal vascular fraction.
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therapy due to their abundance and accessibility [1—3]. Moreover,
ADSCs play crucial roles in immunomodulation and angiogenesis,
thereby enhancing their therapeutic potential in tissue repair [4].
The stromal vascular fraction (SVF) is a heterogeneous cell
population primarily derived from adipose tissue, comprising not
only ADSCs but also endothelial cells, pericytes, immune cells, he-
matopoietic cells, fibroblasts, and other cell types [5—7]. In clinical
settings, SVF provides a key advantage over ADSCs due to its im-
mediate availability, as it does not require the isolation, expansion,

2352-3204/© 2025 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative Medicine. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ysowawan@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.reth.2025.02.004&domain=pdf
www.sciencedirect.com/science/journal/23523204
http://www.elsevier.com/locate/reth
https://doi.org/10.1016/j.reth.2025.02.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.reth.2025.02.004
https://doi.org/10.1016/j.reth.2025.02.004

N. Inafuku, Y. Sowa, T. Kishida et al.

and differentiation stages necessary for ADSCs [8]. Studies suggest
that this diverse cell population offers superior tissue regeneration
capabilities compared to ADSCs alone, attributed to the synergistic
effects of its multiple cell types [9]. Consequently, SVF is frequently
used in clinical applications related to wound healing and graft
survival, leveraging its cost-effectiveness, favorable regulatory
profile, and enhanced tissue regeneration potential [5—7,10—13].

Despite these advantages, several challenges arise with SVF use.
A single harvest typically yields limited amounts of SVF, often
necessitating repeated invasive procedures to obtain adequate cell
numbers for therapeutic applications [14—19]. Another concern is
that the regenerative capacity of SVF declines with donor age,
limiting its effectiveness for elderly patients [20,21]. Long-term
cryopreservation offers a potential solution by enabling patients
to bank SVF obtained at a younger age for future use, thus cir-
cumventing the need for repeated harvesting and potentially
enhancing regenerative outcomes. Furthermore, establishing cell
banks of allogeneic SVF would support broader therapeutic appli-
cations; however, both approaches require effective long-term
cryopreservation techniques.

While studies have shown that short-term cryopreserved SVF
retains its wound-healing potential, there is limited research on the
effects of long-term cryopreservation on SVF's functional charac-
teristics and in vivo efficacy [22]. Most existing studies focus on
short-term storage durations, generally from a few weeks to several
months, leaving a substantial gap in understanding how prolonged
cryopreservation impacts SVF viability, stem cell properties, and
therapeutic effectiveness in clinical applications. The mechanisms
by which extended cryopreservation might affect SVF properties,
such as ice crystal formation, osmotic stress, and oxidative damage,
remain largely unexplored.

Addressing these gaps is essential to verify the safety and effi-
cacy of using long-term cryopreserved SVF in regenerative

Table 1

Patient summary.
Group S-SVF (n = 6) L-SVF (n = 6)
Age (years) 50.5 (47.5—-57.25) 53.5 (48.75—63.25) P = 0.6291
BMI (kg/m?)  21.85(20.625-22.875)  23.05(21.7-26.625) P =0.146

Values are medians with IQRs.
BMI; body mass index.
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medicine. Successfully preserving the regenerative potential of SVF
over extended periods could transform personalized medicine ap-
proaches, enabling individuals to bank their own cells for future use
and potentially expanding the availability of allogeneic treatments.
In this study, we hypothesized that long-term cryopreservation
(12—13 years) significantly reduces the stemness and regenerative
potential of stromal vascular fraction (SVF) compared to short-term
storage (2 months). Our research uniquely examines an unprece-
dented cryopreservation duration for SVF, extending well beyond
the timeframes explored in previous studies. We aimed to assess
specific stem cell characteristics, including viability, proliferation
capacity, surface marker expression, and multi-lineage differentia-
tion potential, alongside the wound-healing capabilities of SVF after
both long-term and short-term cryopreservation. This comprehen-
sive assessment will provide crucial insights into the feasibility of
long-term SVF banking and its potential clinical applications,
particularly for regenerative therapies in aging populations.

2. Materials and methods
2.1. Isolation of SVF cells

Residual aspirated adipose tissue of the abdomen, which would
have otherwise been discarded during breast reconstruction, was
donated by twelve patients (Table 1). Each donor granted prior
informed consent, conforming to the protocol approved by the
institutional ethical committee (RBMR-C-631 and ERB-C-2193-1).
To isolate SVF cells, the lipoaspirates were digested using Celase®
at a concentration of 18 ul per 1 ml of adipose tissue in phosphate-
buffered saline at 37 °C for 30 min. The mature adipocytes and
connective tissue were separated from the SVF pellets by centri-
fugation at 200g for 4 min (Fig. 1).

2.2. Cryopreservation, preservation and thawing of cells

Approximately 1 x 10°% cells of the SVF pellets were cry-
opreserved in one cryovial with 10 % Dimethyl Sulfoxide (DMSO).
The cells were initially frozen at —80 °C reducing the temperature
gradually, then transferred to a liquid nitrogen tank 24 h later. Cells
were divided into two groups for preservation: one for two months
(short-term cryopreservation group: S-SVF group) and another for
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Fig. 1. Experimental design and process. Timeline illustrating the experimental setup. The isolated SVF cells from patients were divided into two groups: one underwent short-
term cryopreservation (2 months) and the other long-term cryopreservation (12—13 years) (n = 6 each). Both groups were subjected to in vitro and in vivo assays. In Vitro Assay,
assessments were performed for viability and stemness including proliferation, cell surface markers, gene expression, and differentiation of each SVF group. In Vivo Assay for wound
healing, SVF cells from each group were administered to mice in wound models and compared to a control group that received no injections. Photographs of the healing areas were
taken every three days. Histologic assessments of the healed skin were performed on the 15th day.
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12—13 years (long-term cryopreservation group: L-SVF group). Af-
ter storage, cells were thawed in a 37°C-water bath for 2 min.
Following thawing, cells were centrifuged for 2 min after dilution in
culture medium, and then seeded in culture dishes with medium
containing high-glucose Dulbecco's modified Eagle's medium
(DMEM), supplemented with 10 % fetal bovine serum (FBS), 100 U/
ml penicillin, 100 U/ml streptomycin, and 100 mM nonessential
amino acids. The cells were maintained at 37 °Cin a 5 % CO2 at-
mosphere in a cell culture incubator. The medium was changed
every third day, and cells were passaged once at subconfluence
(Fig. 1). The following Live and Dead staining and wound-healing
assessment experiments were performed immediately after
thawing and washing SVF cells, without cell expansion.

2.3. Live and dead staining (Cell viability assay)

Immediately after thawing, SVF cells were stained for live and
dead cells by Live-Dead Cell Staining Kit (BioVision Inc., Milpitas,
CA, USA). The thawed cells were centrifuged at 1200 rpm for 1 min
and suspended in the culture medium. Subsequently, the cells were
resuspended with Staining Solution and incubated for 15 min at
37 °C. The stained cells were observed using a microscope (BZ-
X710; Keyence, Osaka, Japan), where live cells appeared green
fluorescent and dead cells appeared reddish-orange fluorescent.
The rate of viable cells was counted in five randomly selected fields
of view at 400x magnification.

2.4. Colony forming assay

The cultured cells were detached by trypsin/EDTA (Nacalai
Tesque, Kyoto, Japan) from dishes, and cells were seeded into 24-
well culture plates at a density of 5000 cells per well. Colonies
were formed after being cultured for 21 days with the 10 % FBS,
DMEM and the same supplements as above, and the number of
colonies was counted. The colonies were fixed with 4 % para-
formaldehyde, stained with Crystal violet solution (Sigma-Aldrich,
St. Louis, USA), and counted with a microscope (BZ-X710; Keyence,
Osaka, Japan).

2.5. Flow cytometry

The following antibodies were used for flow cytometry
staining: phycoerythrin- (PE-) conjugated mouse anti-human
CD44 (dilution = 1: 25) (BioLegend, San Diego, CA, USA), PE-
conjugated mouse anti-human CD90 (1:25) (BioLegend). The
cultured cells for seven days were dissociated as described above,
and resuspended in phosphate-buffered saline (PBS) containing
0.5 % bovine serum albumin (BSA), 0.01 % NaN3, and 1 mM EDTA
(FACS Buffer), and incubated with the antibodies for 20 min on
ice. Cells were washed with FACS Buffer, and flow cytometric
analysis was performed using FACSCalibur (BD Biosciences) and
CellQuest software.

2.6. Quantitative real-time RT-PCR (qRT-PCR)

qRT-PCR analysis was conducted following a standard proced-
ure previously described in the literature [23]. Initially, cultured
cells were lysed using Buffer RLT (Qiagen, Hilden, Germany), and
total RNA was extracted via the phenol-guanidinium acid method
using the QIAcube system (Qiagen). The RNA was then converted to
cDNA with the ReverTra Ace® qPCR RT Master Mix (Toyobo, Osaka,
Japan). Quantification of mRNA levels was performed with the
StepOnePlus Real-Time PCR System (Applied Biosystems, Bedford,
MA, USA), utilizing TagMan® Fast Advanced Master Mix (Applied
Biosystems), and specific primers and dye probes listed in
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Supplementary Table S1. Reaction volumes were set to 20 pl,
comprising 2 pl of cDNA (100 ng), 1 pl of each primer and probe, and
10 pl of Master Mix. The thermal cycling conditions included an
initial denaturation at 95 °C for 10 min, followed by 40 cycles of
95 °C for 15 s and 60 °C for 1 min. The comparative threshold cycle
(CT) method was used to calculate relative mRNA levels, with
GAPDH serving as the normalization reference.

2.7. Differentiation

2.7.1. Adipogenic differentiation

Cells were cultured in adipogenic medium containing o-MEM
with 10 % FBS and 1 % penicillin-streptomycin, supplemented with
hydrocortisone, isobutyl methylxanthine, and indomethacin for 14
days. After induction of differentiation, qualitative evaluation of
cells was conducted with Qil red O staining, and quantitative
evaluation was conducted by measuring FABP gene expression with
gRT-PCR.

2.7.2. Osteogenic differentiation

Cells were cultured in osteogenic medium containing D-MEM/F-
12 with 1 % penicillin-streptomycin, supplemented with dexa-
methasone, ascorbate-phosphate, and B-glycerol phosphate for 21
days. After induction of differentiation, qualitative evaluation of
cells was conducted with Alizarin Red S staining, and quantitative
evaluation was conducted by measuring Osteopontin gene
expression with qRT-PCR.

2.7.3. Chondrogenic differentiation

Cells were cultured in chondrogenic medium containing D-
MEM/F-12 with 1 % penicillin-streptomycin, supplemented with
dexamethasone, ascorbate-phosphate, proline, pyruvate, and TGF-
B3 for 21 days. After induction of differentiation, qualitative eval-
uation of cells was conducted with Safranin O staining, and quan-
titative evaluation was conducted by measuring Aggrecan gene
expression with qRT-PCR.

2.8. Wound healing assessment

2.8.1. Wound closure rate

All experimental procedures using animals were performed in
accordance with relevant guidelines and approved by the Animal
Experimental Committee of the Kyoto Prefectural University of
Medicine, Kyoto, Japan. Eight-week-old female immunodeficient
mice were selected for the study. A circular full-thickness skin
defect, 9 mm in diameter, was created in the dorsal region of each
mouse under general anesthesia (sevoflurane inhalation). To pre-
vent wound contracture, donut-shaped silicone splints were set
and sutured with 6—0 nylon around the skin defects. Immediately
after thawing the cryopreserved SVF cells, six mice in each of the
three test groups (18 mice total) were administered each product
subcutaneously on all four sides and the central of the circular
wound as follows: control group, no administration; S-SVF group,
1 x 10 cells total of 2 month-preserved SVF cells suspended with
1 ml of the same culture medium as above; and L-SVF group,
1 x 10° cells total of 12—13 year-preserved SVF cells suspended
with 1 ml of the same culture medium as above. The wounds were
covered with nonadhesive dressings, wrapped in transparent
sterile dressings, and photographed on days 0, 3, 6, 9,12, and 15 to
calculate the affected surface areas using Image] software
(Bethesda, MD) (Fig. 1).

2.8.2. Histologic examination
Healed skin samples on the 15th day of the affected mice were
excised and fixed in 4 % paraformaldehyde (PFA), followed by
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embedding in paraffin. Sections of 5 pum were immunohis-
tochemically stained with anti-CD31 antibody, as described
below; After blocking with Blocking One Histo (Nacalai Tesque,
Kyoto, Japan) for 1 h at room temperature, tissue sections were
incubated with rabbit anti-CD31 mouse antibodies (1:100)
(Abcam, Cambridge, United Kingdom), followed by incubation
with secondary antibodies conjugated with peroxidase and
stained with DAB to visualize antigens. Vessels composed of
endothelial cells stained with an anti-CD31 antibody were
observed under a microscope. A visual count of the stained vessels
per high-power field (hpf) was performed in five randomly
selected fields per sample, using light microscopy (BZ-X710;
Keyence, Osaka, Japan) (Fig. 1).

2.9. Statistical analysis

The results were subjected to nonparametric analysis due to the
small sample size. Statistical analyses were performed using Mann-
Whitney and Kruskal-Wallis tests with the JMP statistical program
(SAS Institute, Cary, NC). Data are presented as medians and
interquartile ranges (IQRs), unless otherwise specified. Statistical
significance was accepted at P < 0.05.

3. Results

3.1. Age and BMI of SVF donors: age and BMI showed no significant
differences among donors

Regarding age and BMI, the S-SVF group presented with median
values of 50.5 (47.5—57.25) years and 21.85 (20.625—22.875) kg/m?,
respectively, while the L-SVF group had means of 53.5
(48.75—63.25) years and 23.05 (21.7—26.625) kg/m?. Statistical
analysis revealed no significant differences between the groups for
either age or BMI (P = 0.6291 and P = 0.146, respectively) (Table 1).

3.2. Live and dead staining: Cell viability of SVF declined after long-
term cryopreservation

For viability analysis, SVF cells were dyed in green and red colors
for live and dead cells immediately after thawing. The rate of live
cells in L-SVF was 62.11 (55.74—70.71) %, which was significantly
lower than 75.33 (69.52—81.36) % in S-SVF (P < 0.0001) (Fig. 2).

3.3. Colony forming assay: proliferative potential of SVF cells was
reduced after long-term cryopreservation

To assess proliferative potential, a colony forming assay was
conducted. The number of colonies formed within a specific area
in L-SVF group was 31.5 (25—49.25), which was significantly
lower than the 58 (48—96) observed in S-SVF group (P < 0.0001)
(Fig. 3).

3.4. Flow cytometry: phenotype of SVF cells declined after long-
term cryopreservation

Cell surface markers of ADSCs expanded from SVF cells were
phenotypically analyzed using flow cytometry. The expression of
CD44 and CD90, markers indicative of mesenchymal stem cells, was
assessed. The rate of CD44-positive cells in the S-SVF group was
95.8 % + 2.8, which was significantly higher than the 90.2 % + 5.6
observed in the L-SVF group (P = 0.03). Similarly, the rate of CD90-
positive cells was 96.6 % + 2.07 in S-SVF, significantly higher than
76.07 % + 8.1 in L-SVF (P = 0.005) (Fig. 4).
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3.5. Quantitative Real-Time PCR (qRT-PCR): gene expression of stem
cell-specific markers in SVF cells was maintained after long-term
cryopreservation

To assess gene expression, we quantified the relative mRNA
levels of Nanog and Oct4 in ADSCs expanded from cryopreserved
SVF cells. These genes are characteristically expressed in stem
cells. The relative expression level of Nanog in the L-SVF group
was approximately 0.40-fold higher than in the S-SVF group,
where this difference was not statistically significant. (P = 0.09).
Similarly, the relative expression level of Oct4 in the L-SVF group
was approximately 0.40-fold higher than in the S-SVF group,
where this difference was also not statistically significant
(P = 0.06) (Fig. 5).

3.6. Differentiation: differentiation potential of SVF cells was
partially reduced but maintained after long-term cryopreservation

We evaluated the multipotency of cryopreserved SVF cells by
comparing the differentiation potential into adipogenic, osteogenic,
and chondrogenic lineages between the S-SVF and L-SVF groups.
Induced cells from these groups underwent specific staining to
indicate differentiation: Oil Red O for adipocytes, Alizarin Red S for
osteocytes, and Safranin O for chondrocytes. Subsequently, we
quantified the relative mRNA levels of markers specific to these
differentiated cells. The mRNA expression of FABP, a gene charac-
teristic of adipocytes, was approximately 0.37-fold lower in the L-
SVF group compared to the S-SVF group (P = 0.012). The mRNA
expression of Osteopontin, a gene characteristic of osteocytes, was
approximately 0.49-fold lower in the L-SVF group compared to the
S-SVF group (P = 0.036). Additionally, the mRNA expression of
Aggrecan, a gene characteristic of chondrocytes, was approximately
0.60-fold lower in the L-SVF group compared to the S-SVF group
(P = 0.17). While the mRNA levels of FABP and Osteopontin were
significantly higher in the S-SVF group, the difference in Aggrecan
expression between the groups was not statistically significant
(Fig. 6).

3.7. Wound-healing assessment: cryopreserved SVF cells promoted
wound healing, but the rate of acceleration decreased with longer
storage periods

We evaluated whether long-term preserved SVF cells main-
tained their ability to promote wound healing by comparing them
with a short-term preservation group and a control group. We
observed accelerated wound closure and enhanced angiogenesis
attributed to the effects of cryopreserved SVF cells. Initially, we
measured and compared the healed surface areas of wounds in
mice between different groups. As depicted in Fig. 8, the healed
areas in both the S-SVF and L-SVF groups were significantly larger
than those in the control group from day three onwards
(P < 0.005). However, in a direct comparison of S-SVF and L-SVF,
there was no significant difference between the two groups until
day 9, but after day 12, the wound healing effect of the L-SVF
group significantly decreased (Fig. 7). Subsequently, we assessed
and compared the number of blood vessels, which were immu-
nostained using anti-CD31 antibodies, within the healed wounds.
The counts per a high-power field were 22.5 (18.75—23.25) in the
S-SVF group, 15 (13—17) in the L-SVF group, and 9 (7.75—10.25) in
the control group. The number of vessels in both the S-SVF and L-
SVF groups was significantly higher than that in the control group
(P < 0.001 for both comparisons), and the vessel count in the S-
SVF group was significantly greater than in the L-SVF group
(P < 0.001) (Fig. 8).
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Fig. 2. Viability of SVF cells declined after long-term cryopreservation. (Left) Representative stained cells observed in a microscope, where green cells are live and reddish orange

cells are dead. Scale bar = 100 um. (Right) Quantitative data of live cells (n = 6 each). The proportion of live cells was significantly higher in S-SVF than in L-SVF. The data are
expressed as medians with IQRs.
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Fig. 3. Proliferative potential of SVF cells was reduced after long-term cryopreservation. (Left) Representative colonies observed in a macroscopic view. Scale bar=1000 pm.

(Right) Comparison of the number of colonies between S- and L-SVF (n = 6 each). Formed colonies were significantly more in S-SVF than in L-SVFE. The data are expressed as medians
with IQRs.

4. Discussion wound-healing ability of SVF cells, and many clinical trials are

currently underway to utilize this function for the treatment of
SVF is utilized as a readily available resource of ADSCs and is intractable diseases [8,25—28]. SVF cells promote tissue formation

promising for regenerative therapies due to its wound-healing through paracrine signaling and interactions between various cell
capacity [10,24]. Numerous reports have been published on the populations within the SVF and their host environment [29,30]. The
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Fig. 4. Phenotype of SVF cells declined after long-term cryopreservation. (Left) Representative histograms of each marker in S-SVF and L-SVF groups. (Right) Comparison of the
rate of CD44-and 90- positive cells between S- and L-SVF (n = 6 each). For both surface markers, the rate of positive cells was significantly higher in S-SVF than in L-SVF. The data are

expressed as mean + SD (Standard Deviation).
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Fig. 5. Gene expression of stem cell-specific markers in SVF cells was maintained
after long-term cryopreservation. (Left) Comparison of relative gene expression of
Nanog between S- and L-SVF (n = 6 each). (Right) Comparison of relative gene
expression of Oct4 between S- and L-SVF (n = 6 each). Both gene expressions did not
differ significantly between S-SVF and L-SVF groups. The data are expressed as
mean + SD.

mechanism of wound healing facilitated by SVF cells relies on its
heterogeneous composition, enabling functions such as anti-
inflammation, angiogenesis, antioxidant effects, antifibrosis, and
lymphatic vessel regeneration [28,29,31—38]. These capabilities are
further supported by the secretion of extracellular matrix and the
differentiation and proliferation of ADSCs into functionally
specialized cells [10,39—41].

Despite its relatively safe clinical profile, liposuction remains an
invasive procedure, and its repeated use may increase morbidity

Adipocytes

Osteocytes Chondrocytes
(Qil red O) (Alizarin Red S) (Safranin O)

S-SVF

L-SVF

Relative Expression

and potentially limit the clinical application of SVF cells. Addi-
tionally, it is known that the tissue regeneration capacity of SVF
cells decreases with donor age [20,21]. Therefore, one solution to
enable repeated administration of SVF cells without the need for
repeated liposuction and to maintain the quality of the therapeutic
product is cryopreservation. Cryopreserved cells are cost-effective
and convenient to use. In particular, the potential to cryopreserve
SVF from younger donors for later use in aging patients offers
practical advantages for regenerative applications.

Cryopreserving SVF cells has been widely studied, with short-
term storage (two weeks to six months) shown to generally
maintain cell surface markers, proliferation, and differentiation
potential after thawing, although viability varies among reports
[42—47]. Feng et al. have reported that one-month cryopreserved
SVF cells maintained tissue integrity and cell viability, resulting in a
better long-term retention rate than that of cryopreserved fat, as
well as showed angiogenic capacity in the accelerated healing rate
of ischemic wounds in vivo assays [48]. Furthermore, Kamenaga
et al. [49] have reported that short-term cryopreserved SVF cells
possessed an equivalent fracture healing capacity to fresh SVF by
promoting angiogenesis and osteogenesis in vivo assay.

In contrast, research on long-term cryopreservation is more
limited. Kokai et al. [50] reported on the cellular analysis of human
SVF cells cryopreserved for 7—12 years. They demonstrated that cell
surface markers, proliferation capacity, and differentiation poten-
tial of ASDCs isolated and cultured from cryopreserved SVF cells did
not significantly change. However, the preservation method for this
SVF cells was confidential, and crucial assessments of cell function
were not conducted. Subsequently, Kumar et al. [51] reported that
ADSCs cryopreserved for 12 years in a storage solution containing
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Fig. 6. Differentiation potential of SVF cells was partially reduced but maintained after long-term cryopreservation. (Left) Representative images of three cell types induced
from S- and L-SVF cells (adipocytes, osteocytes, and chondrocytes), each specifically stained. Scale bar = 100 pm. (Magnification = x400). (Right) Comparison of mRNA levels of the
three types of induced cells between S- and L-SVF (n = 6 each). The mRNA levels of FABP and Osteopontin were higher in S-SVF, whereas Aggrecan was not significantly different

between both groups. The data are expressed as mean + SD.

133



N. Inafuku, Y. Sowa, T. Kishida et al.

day0 day6

~day3

day9

dayl2 dayl5

Regenerative Therapy 29 (2025) 128—139

day6 day9 dayl2 dayl5

P=0.03
——

P=0.005 P=0.57
—r—

.
P=0008 P=0007
P 0.02

P 0.005 P =0.007

L

4

P=0.008
90_ P=0.008 P=047
P=001
\Q 801 - P=0005 P=0004
o ——
— 70
©
q) 60 1
| .
(4] 50 {
©
40 {
c
= 30 4
o
; 20 1
10 4
0
Day3 Day6
e Ctrl

s S-SVF

Day9 Day12 Day15

. | -SVF

Fig. 7. Cryopreserved SVF cells promoted wound healing, but the rate of acceleration decreased with longer storage periods. (Above) Representative images of wound healing
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group. The data are expressed as medians with IQRs.
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Fig. 8. Cryopreserved SVF cells enhanced angiogenesis, but its efficacy declined with extended freezing durations. (Left) Representative microdissections immunostained with
anti-CD31 antibodies, indicating neovascularization. Vessels are stained with DAB for anti-CD31 antibody, as a brown color. Scale bar = 100 pm. (Right) Comparison of the number of
stained vessels in a high-power field of the healed tissues (n = 6 each). The number of vessels was greater in the S- and L-SVF groups than in the control group, while in the S-SVF
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20 % FBS and 10 % DMSO retained nearly all cell characteristics, and
suggested potential wound healing effects in vitro using assays
such as the trabecular meshwork cell wound healing assay and
scratch assay. However, the study focused on ADSCs and did not
examine in vivo wound healing capabilities. On the other hand,
Shaik et al. [52] reported that the use of cryoprotectants similar to
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those in our study resulted in a decline in osteogenic differentiation
potential after a 10-year period of cryopreservation, which was
consistent with our findings. Research findings on cell character-
istics and functions, including stem cell markers, after cryopreser-
vation of human SVF cells or ADSCs are summarized in Table 2
[42-55].
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Table 2

The summary of research findings on cell characteristics and functions, including stem cell markers, after cryopreservation of human SVF cells or ADSCs.

NO. Authors Publish Title of manuscript Nations Journal SVF or Animal Cryoprotective agents  Freeze Stemness analysis Functional analysis
year ADSCs period
Parameters Methods Results Parameters Methods Results
1 Gonda K, 2008 Preserved proliferative Japan Plast Reconstr ADSCs Human Cell Banker 1 (Wako 6 months Proliferative capacity, Doubling time, No significant - - -
Shigeura T, Sato T capacity and Surg Chemicals co., Ltd., multipotency and cell differentiation difference with
multipotency of Osaka, Japan) (The surface markers in vitro  assays and flow fresh SVF
human adipose- manufacturer does not cytometry
derived stem cells disclose its ingredients
after long-term but states that it
cryopreservation [42] contains fetal bovine
serum.)
2 Thirumala S, 2010  Cryopreservation of ~ USA ] tissue Eng SVF Human DMEM with 10 % PVP 2 weeks  Differentiation assay Immunostaining Maintained - - -
Gimble JM, stromal vascular Regen med (polyvinylpyrrolidone) in vitro
Devireddy RV fraction of adipose or DMEM with serum
tissue in a serum-free and DMSO
freezing medium [45]
3 Minozio G, 2014  Frozen adipose- Switzerland Cryobiology SVF Human 5 % human albumin 14-193  Differentiation assay Immunostaining Maintained - - -
Corazza M, derived mesenchymal solution with 5 % DMSO days in vitro
Mariotta L stem cells maintain
high capability to
grow and differentiate
[43]
4 JangS,Yoon W, 2016 Long term Korea Cytotherapy SVF Human Undescribed 8 weeks  Cell viability in vitro Cell count Reduction to 40 %  — - -
Kook K cryopreservation of
stromal vascular
Fraction (SVF) and
isolation of SVF from
cryopreservation fat: A
preclinical application
[53]
5  Kokai LE, 2017  Adipose stem Cell USA Aesthet Surg ] SVF Human Confidential 7-12 Cell surface markers, Flow cytometry, cell Significant - - -
Traktuev DO, function maintained years proliferation and population differences in SVF
Zhang L with age: An Intra- differentiation assay doubling time and  subpopulations and
Subject study of long- in vitro immunostaining/ ADSCs function are
term cryopreserved RT-PCR patient specific and
cells [50] do not appear to
change much after
aging
6  Agostini F, Rossi 2018 Improved GMP Italy Stem Cell res ther SVF Human Low (5 %) DMSO 2 months Cell surface markers, Flow cytometry, Minimally affected — - -
FM, Aldinucci D compliant approach to concentration in pure proliferation and colony forming
manipulate serum differentiation assay assay and
lipoaspirates, to in vitro differentiation
cryopreserve stromal assay
vascular fraction, and
to expand adipose
stem cells in xeno-free
media [44]
7  Shaik S, Wu X, 2018  Effects of Decade long USA Sci Rep ADSCs Human 10 % DMSO (V/V)in FBS 10 years Cell surface marker and Flow cytometry and Above 95 % of - - -
Gimble J freezing storage on solution differentiation in vitro immunostaining/ stromal marker,
adipose derived stem RT-PCR a decrease of
cells functionality [52] Osteopontin/
unchanged of
adipogenic
8  Zanata F,Bowles 2018  Effect of Brazil Plast Reconstr SVF Human 80 % bovine calf serum, 4—6 Cell proliferation and Colony-forming Retained adhesive  — - -
A, Frazier T cryopreservation on Surg 10 % DMSO, and 10 %  weeks surface markers in vitro assay and and proliferative
human adipose tissue stromal medium immunophenotype properties and
and isolated stromal increased
vascular fraction cells: expression of
In Vitro and In vivo stromal and
analyses [47] adipogenic markers
9 Solodeev I, Orgil 2019  Cryopreservation of Israel Plast Reconstr SVF Human 90 % FBS and 10 % 6-8 Proliferation, surface Colony-forming No significant - - -
M, Bordeynik- stromal vascular Surg Glob Open DMSO weeks markers and assay, flow difference with
Cohen M fraction cells reduces differentiation assay cytometry and fresh SVF

their counts but not
their stem Cell
potency [46]

in vitro

immunostaining/
optical density

(continued on next page)
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Our study on the long-term storage of SVF involved analyzing
the cell characteristics of SVF samples cryopreserved for over 12
years, including the longest duration of 13 years, from six patients.
We compared these with SVF samples from six patients that had
been cryopreserved for a short term, for which stem cell and wound
healing capabilities had already been proven to be maintained. Our
results showed a significant decrease in cell survival from 75 % to
62 % with extended storage beyond 10 years, indicating that a
substantial proportion of cells, exceeding half, remained viable.
However, proliferative capacity decreased to about half after a 10-
year storage period, and expression of ADSCs markers and differ-
entiation potential also significantly declined. For instance, we
observed non-significant differences in Nanog and Oct4 expression,
which may be clinically relevant despite the lack of statistical sig-
nificance. High inter-individual variability observed in the short-
term SVF storage group, consistent with previous observations by
Kumar et al. [51], could contribute to these findings.

To our knowledge, no studies have confirmed the therapeutic
effects of long-term (up to 13 years) storage of SVF cells on wound
healing. We created a wound healing model in nude mice to eval-
uate the healing potential of SVF cells after long-term cryopreser-
vation, where more than half of the cells remained viable. Our
findings indicated that while L-SVF exhibited somewhat reduced
wound healing effects compared to S-SVF, though it remained more
effective than the control group at all measured time points. This
was further supported by similar trends observed in the assess-
ment of wound neovascularization. Nevertheless, it can also be
interpreted that both stem cell potential and wound healing
capability were clearly diminished due to prolonged cryopreser-
vation. These reductions in viability and stemness could be attrib-
uted to factors such as ice crystal formation, osmotic stress,
oxidative damage, or even epigenetic changes occurring during
long-term storage [56,57]. Such mechanisms possibly lead to the
reduction in gene and protein expression levels in SVF cells.
Particularly, we hypothesize that the decreased expression of cy-
tokines involved in angiogenesis, such as VEGF, HGF and Adipo-
nectin, serves as critical indicators of the impacts of long-term
cryopreservation [58—62]. Long-term cryopreservation may also
lead to instability in the expression of genes involved in main-
taining stemness, such as LNGFR and VCAM-1 [63]. The alterations
in genetic stability and secretory factor profiles could explain the
outcomes observed in our study, which demonstrated a decline in
stemness and angiogenic response in wound healing. To further
validate these findings, future studies should quantify these cyto-
kines and gene expression, as well as employ neutralizing antibody
assays and siRNA-mediated knockdown experiments. Measuring
the potency of these effects would be invaluable for assessing the
functionality and quality of cryopreserved cells before their clinical
application.

Cryopreservation is an indispensable technique widely used for
the preservation of cells intended for cell biology research and cell
therapy. Its applications are diverse, including the cryopreservation
of various cell lines for cell banks, and sperm, oocytes, and embryos
for livestock production, and reproductive cells for reproductive
medicine [64]. There is also widespread discussion regarding the
banking of human iPS cells for clinical applications in regenerative
medicine [65,66]. As new cryopreservation technologies emerge,
innovations like rapid cooling, DMSO-free cryoprotectants, and
controlled-rate freezing may help preserve cell viability and func-
tionality over extended periods. Exploring these options in future
studies could further optimize SVF storage.

Maintaining cell viability during freezing and thawing presents
various challenges, with the most notable being the formation of
ice crystals both intracellularly and extracellularly. SVF cells
comprise mesenchymal stem cells, adipose progenitor cells,
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endothelial progenitor cells, pericytes, immune cells, hematopoi-
etic cells, and other stromal components [9]. Given the heteroge-
neous nature of SVF, each cell type is affected differently by freezing
[45,46,54]. Hematopoietic cells, in particular, are more susceptible
to the freezing process, possibly resulting in affected biological
activity of SVF cells [47].

Our study has demonstrated that even with basic, classical
freezing methods, SVF cells preserved for over 12 years retains
sufficient performance to be used as a clinical cell therapy material.
Nonetheless, it is essential to consider the variability introduced by
using different donors for the short-term and long-term groups, as
this may impact the study's findings. Future studies could address
this by using same-donor comparisons over varying cryopreser-
vation durations to better control for cross-donor variability. Ad-
vances such as the use of controlled-rate freezers, rapid long-term
cryopreservation using —80 °C deep freezers, and the development
of new DMSO-free cell freezing media are ongoing. These in-
novations aim to ensure that the stem cell potential and tissue
regenerative support functions of cells remain intact even after
extended periods of cryopreservation.

There are some limitations to our current study, including the
small number of animals used in the experiments and the vari-
ability in cryoprotective agents reported in the literature. Future
research could explore more advanced techniques and alternative
cryoprotectants, with a focus on optimizing long-term cell viability
and minimizing functional losses.

5. Conclusion and future directions

SVF cells that have been cryopreserved for more than 10 years
using classic liquid nitrogen show reductions in viability, stem cell
potential, and wound healing ability over the long preservation
period. However, these abilities do not decrease by half, and certain
functional aspects remain comparable to those in the short-term
cryopreservation group. This suggests that SVF retains a degree of
regenerative potential even after extended storage, highlighting the
feasibility of long-term cell banking for clinical applications.
However, it remains unclear whether these cryopreserved cells are
economically viable and useful in actual clinical practice when
considering aspects such as cell preservation.

Future research should focus on developing optimized cryo-
preservation protocols to further enhance the functionality of SVF
during long-term storage. Additionally, exploring alternative
cryoprotectants and advanced techniques, such as controlled-rate
freezing, may help maintain cell viability and stemness. Specific
studies should also assess the regenerative capabilities of mid-aged
long-term cryopreserved SVF compared to freshly prepared SVF
from older donors. Examining these factors will be essential for
advancing SVF applications in regenerative medicine, particularly
for aging patients and those requiring personalized cell banking
solutions.
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