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Alzheimer’s disease (AD) is a type of degenerative disease that primarily affects in the central nervous system of
elderly or pre-elderly individuals. The symptoms of Alzheimer’s disease include memory impairment, aphasia,
loss of function, dementia, and impairment of visual spatial ability, which in turn affects the physical health of
patients. Mesenchymal stem cell therapy is a branch of regenerative medicine that primarily utilizes stem cells or
their derivatives to stimulate the body’s own healing process and repair damaged, diseased, or injured tissues. Its

utilization in the treatment of autoimmune diseases and neurological disorders has been extensively docu-
mented. This review summarizes the preclinical and clinical applications of mesenchymal stem cells in AD, their
underlying mechanisms and the application limitations of their application and potential solutions. It is hoped
that researchers in this field will find it a useful foundation for further study of mesenchymal stem cell therapy.

1. Introduction

As China’s population ages, the associated challenges, including the
incidence rate, morbidity, and mortality of age-related diseases, have
increased significantly, which will have substantial ramifications for the
domestic society and economy [1-3]. Alzheimer’s disease (AD) is a type
of degenerative disease that manifests the symptoms including memory
impairment, aphasia, loss of function, dementia, and impairment of vi-
sual spatial ability [4,5]. The etiology of AD is multifactorial, involving a
complex interplay between genetic susceptibility, lifestyle choices, and
environmental influences. The onset of AD is often insidious, progress-
ing gradually and manifesting primarily as cognitive decline and a range
of non-cognitive neuropsychiatric symptoms [6]. Statistical data have
demonstrated that the number of individuals diagnosed with AD and
other forms of dementia patients worldwide has reached 57 million.
China has 17 million individuals diagnosed with AD and other forms of
dementia, accounting for 29.82 % of the global population affected by
the disease. Among them, 0.5 million deaths in China were attributable
to AD and other dementia in 2021, accounting for approximately 25.2 %
of the global population affected by the disease (0.5 million/1.9 million)
[7,8]. According to statistical data, the annual total cost of AD patients
in China accounted for approximately 1.47 % of the gross domestic
product (GDP) in 2015. It is estimated that the social and economic cost
of the disease will reach 3.2 trillion yuan by 2030. The total cost of

moderate and severe AD is 1.3 and 2.1 times that of mild Alzheimer’s
disease. Furthermore, the incidence rate of AD in women is significantly
higher than in men [9,10]. The combined pathological diagnosis of
magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) has
become the industry-recognized gold standard for clinical diagnosis of
AD. The diagnosis of AD is complex, and the process of cerebrospinal
fluid (CSF) testing is highly invasive to the human body. Typically,
lumbar puncture is required to extract cerebrospinal fluid. AD patients
must endure great pain, and the cost is high, resulting in a relatively low
early diagnosis rate of AD [11,12]. The present status of nursing and
treatment outcomes for AD is suboptimal, and the associated costs are
considerable. These factors contribute to a substantial economic burden
for patients and their families [13,14].

Stem cell therapy is the utilization of stem cells or their derivatives to
stimulate the body’s intrinsic healing mechanisms and repair damaged,
diseased, or injured tissues. Its efficacy has been demonstrated in the
treatment of various diseases and conditions [15,16]. Mesenchymal
stem cells (MSCs) are a type of adult stem cell found in many body tis-
sues. The subject has been demonstrated to possess pluripotency and
multidirectional differentiation, and it can be isolated from bone
marrow, adipose tissue, and muscle [17,18]. The evidence demonstrated
that the subject has the anti-inflammatory and immune regulatory ef-
fects and it has the capacity to differentiate into osteocytes [19], neurons
[20], and adipocytes [21]. In this review, we have summarized the
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preclinical and clinical applications of MSCs in AD. We have also dis-
cussed the underlying mechanisms of these cells, as well as their
application limitations and the potential solutions. It is our hope that
this review will serve as a foundational resource for researchers in this
field, enabling them to gain a more profound understanding of stem cell
therapy.

2. The pathogenesis of AD

The pathological phenomena of AD are complex. The accumulated
experimental data have demonstrated that the classic symptoms of AD
patients include the following: the presence of senile plaques, which are
formed by the deposition of large amounts of f-amyloid protein; the
presence of neurofibrillary tangles (NFTs), which are formed by
abnormal phosphorylation of tau protein; neuronal loss; neuronal
malnutrition, and synaptic loss. Ultimately, these symptoms of AD lead
to the loss of neuronal function and neuronal death. A plethora of
research has identified a multitude of factors that play a pivotal role in
the development of the aforementioned condition. These include starch-
like protein deposition, tau protein aggregation, abnormal apolipopro-
teins, vascular disease, heavy metal disorder, and oxidative stress [22].
The evidence demonstrated that the pathogenesis of AD is the result of a
combination of genetic, lifestyle, and environmental factors, partially
caused by specific genetic changes. Specifically, it has been reported that
Presenilin-1 (PSEN1), Presenilin-2 (PSEN2), and apolipoprotein E
(APOE) regulated the gain-of-function and loss-of-function to affect the
pathogenesis of AD [23]. Furthermore, the smoke released by cigarette
combustion contains various toxic substances that can cause damage to
the nervous system, increase the mortality of AD [24]. Additionally,
evidence has demonstrated that PM2.5 exposure has the potential to
induce neuronal damage and inflammatory responses within the brain.
This is achieved by increasing various inflammatory markers. Further-
more, PM2.5 has been observed to encapsulate lipopolysaccharide
(LPS), a type of agonist for TLR4, to regulate immune and inflammatory
signal pathways [25,26]. The sporadic nature of AD is well-documented,
and the etiology of typical "late-onset Alzheimer’s disease" is believed to
be multifactorial, involving complex interactions between genetic and
environmental factors. The prevailing hypothesis suggests that approx-
imately 70 % of the risk of AD is attributable to genetic factors. Age,
gender, unhealthy lifestyle choices, a positive family history of AD, and
Down syndrome have been identified as the primary risk factors for
developing AD [27-31].
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The pathogenesis of AD remains to be fully elucidated at present. The
gradual deposition of extracellular p-amyloid protein (Ap protein) and
the aggregation of intracellular tau protein in the brain are the primary
causes of neuronal death and cognitive impairment in the AD [32,33]. It
has been demonstrated that the Ap protein is metabolized by amyloid
precursor protein (APP), glycoprotein. Extracellular proteases of a-sec-
retase can cleave APP, forming sAPPa. In addition, APP can also be
cleaved into APPJ by aspartic protease of -secretase 1 (BACE1), which
can bind to the membrane to form fragment C99. The C99 protein is
cleaved by a gamma secretase complex within the membrane. releasing
the AP protein and intracellular peptides (AICD). The release of Ap
protein occurs in conjunction with heightened neuronal activity,
resulting in the secretion of the protein into the interstitial fluid of cells.
The protein subsequently aggregates, forming oligomers and fibrils that
contribute to the development of plaques [34] (Fig. 1).

Tau protein has been demonstrated to fulfill a pivotal function in the
process of microtubule assembly, the stability of neuronal axons, and the
regulation of microtubule transport. This protein has been found to be
intimately linked be closely associated with the progression of cognitive
impairment [35]. In the human body, the tau protein generally exists in
its natural monomeric form. However, the accumulation of tau in the
olfactory cortex and medial temporal lobe results in misfolding along
neuroanatomical connections in a fixed manner in patients with AD. The
misfolded tau protein has been shown to promote further misfolding of
natural tau monomers, resulting in pathological Tau protein aggregates
[36]. Phosphorylation, acetylation, glycosylation, and O-GlcNAcylation
of tau protein at different sites have been demonstrated to influence the
progression of AD. The phosphorylation of Ser199, Ser422, Ser202,
Thr205, and Thr231 has been identified as a marker for the varying
stages of AD progression [37-39] (Fig. 2).

3. Current treatment strategies of AD

AD is a common neurodegenerative disease is a prevalent neurode-
generative condition, characterized by the progressive deterioration of
cognitive abilities [40]. The prevailing principle of in the contemporary
treatment of AD entails the following: diagnosis at an early stage,
prompt treatment, and lifelong management [41]. Existing AD drugs
have been shown to effectively improve and alleviate symptoms of the
condition. However, there is a lack of evidence supporting the reversal
or halting of its progression [42]. The therapeutic interventions for AD
encompass both pharmacological and non-pharmacological approaches.
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Fig. 1. The pathological process of AD mediated by p-amyloid protein.
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Drug treatments include cholinesterase inhibitors [43], excitatory
amino acid receptor antagonists [44], monoclonal antibody drugs, and
symptomatic treatment drugs. These pharmacological agents have been
shown to exhibit favorable neuroprotective properties, demonstrate
good safety profiles, and enhance cognitive function. However, their
therapeutic efficacy remains limited, and there is an absence of evidence
suggesting that they to modify the progression of AD. Furthermore,
these agents have been associated with significant adverse effects,
including diarrhea, nausea, vomiting, and dizziness [45].

Table 1

Non-pharmacological therapies encompass a range of approaches,
including cognitive training [46], exercise therapy [47], sensory stim-
ulation therapy [48], environmental therapy [49], and dietary inter-
vention [50]. These therapeutic interventions offer several benefits,
including the capacity to reduce neurological and psychiatric symptoms,
the advantage of being cost-effective, and the minimal side effects
observed. Nonetheless, it is imperative to acknowledge the inherent
limitations of these therapeutic interventions. These limitations
encompass the possibility of diminished treatment efficacy and the

The summary of the advantages and disadvantages of MSCs therapy, drug treatments, and non-pharmacological therapies in AD.

Treatment Classification

method

Therapeutic effect

Staging of AD

Advantages

Disadvantages

MSCs therapy  /

slow down brain atrophy
and improve cognitive
function

Drug cholinesterase improve cognitive mild to moderate AD
treatments inhibitor function, overall function,
and daily function
excitatory improve cognitive moderate to severe AD
amino acid function,
receptor daily living ability,
antagonists comprehensive ability
monoclonal improve cognitive moderate to severe AD
antibody drugs function, delay the
progression of AD
symptomatic improve illusion, symptoms are
treatment drugs delusions, impulsive dangerous, severe, and/
aggressive behavior or cause severe pain to
patients
Non- cognitive training  stimulate brain function /
pharmacol- and delay cognitive
ogical decline
therapies exercise therapy improve cognitive decline preclinical AD

and moderate to severe
AD

acupuncture improve cognitive decline mild to moderate AD
sensory improve autobiographical mild AD

stimulation memory function

therapy

environmental relieve anxiety /

therapy

dietary improve cognitive function = mild AD
intervention

multi-target therapy; neuroprotection;
immune regulation and anti-
inflammatory effects, and high safety
reduce mortality risk, benefit from
reducing anticholinergic load, diverse
dosage forms

good neuroprotective effect; good
safety

clear targeted pathological
mechanisms, personalized therapeutic
potential, and convenient
administration way

good therapeutic effect and high safety

non-invasive and highly safety; low
costs

reduce neurological and psychiatric
symptoms, low cost, low side effects,
multiple health benefits

multi-target regulation, high safety,
and low side effects

non-invasive and highly safety; low
costs

non-invasive and highly safety; low
costs

multi-target regulation, high safety,
low cost

cell survival and targeting issues;
standardization difficulties; high
treatment costs

limited therapeutic effect and no
change in AD progression, side effects
(diarrhea, nausea,

vomiting, dizziness)

limited therapeutic effect and no
change in AD progression, side effects
(diarrhea, nausea,

vomiting, dizziness)

safety issue; limited therapeutic effect,
and high costs

unable to delay disease progression,
limited long-term efficacy; side effects
(constipation,

cardiovascular

symptoms)

limited treatment effectiveness,
compliance challenges, and significant
individual differences

limited treatment effectiveness,
compliance challenges, and significant
individual differences

limited treatment effectiveness,
compliance challenges, significant
individual differences, lack of
standardization

limited treatment effectiveness,
significant individual differences, lack
of standardization

significant individual differences, high
costs

limited treatment effectiveness,
significant individual differences
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requirement for adherence, a component that can present a substantial
challenge for certain individuals [51]. The comparison of the MSCs
therapy, drug treatments, and non-pharmacological therapies were
summarized in Table 1.
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4. The preclinical applications of MSCs in AD

MSCs are a type of multipotent cell that can be obtained from mul-
tiple sources, including bone marrow, adipose tissue, umbilical cord,

B-catenin

Table 2
The summary of the recent research progress of MSCs applications in AD.

MSC type Animal ~ Modeling type Therapeutic effect Mechanism References
BMMSC-derived EVs mouse 5 x FAD decrease amyloid / [52]
plaque deposition
bovine UMSCs rat TMT 8 mg/kg BW increase the number of neurons regulating IL1$ and TNFo [53]

conditioned medium intraperitoneally
HSPCs mouse 5 x FAD decrease neuroinflammation, Ap aggregation / [54]
and improved memory
HDPSCs mouse 3xTg improve the damaged neurons regulating AKT-GSK3p-Nrf2 [55]
NSC-derived exosomes mouse SIRT1 conditional inhibit astrocyte activation regulating SIRT1-PGCla [56]
knockout; 5 x FAD
UCMSCs, DPSCs,ADSCs mouse 5 x FAD improve behavioral disturbances regulating gut microbiota [571
BMMSCs mouse 5 x FAD enhance cognitive function / [58]
BMMSCs mouse 5 x FAD improve cognitive function regulating AKT/IAPs [59]
dental pulp stem cells mouse 3xTg-AD improve cognitive impairment regulating Wnt/p-catenin [60]
BMMSCs rat Aluminum chloride (AlCl3)- impair the rats’ behavior / [61]
induced
BMMSCs-EVs mouse AP1-42 oligomer injection promote hippocampal neurogenesis regulating BDNF/TrkB [62]
olfactory ecto MSCs rat AP1-43 oligomer injection reduce Ap regulating BDNF and the NMDA [63]
accumulation
olfactory mucosa MSCs mouse Ap1-44 oligomer injection attenuate cognitive impairment regulating LRP1 [64]
MSC-EVs-SHP2 mouse AP1-45 oligomer injection improve synaptic regulating NF-kB/ERK/JNK [65]
loss and cognitive decline
Wharton’s jelly MSCsiron murine  AP1-46 oligomer injection improve brain / [66]
oxide nanoparticle retention efficiency
BMMSCs-Exos mouse STZ injection alleviate regulating neuroinflammation [67]
cognitive decline
Nasal Olfactory Mucosa MSCs mouse APPswe/PS1dE9 promote A clearance immunomodulation [68]
human exfoliated deciduous mouse SAMP8 improve regulating PPARy [69]
teeth MSCs neuronal protection
Hydrogen sulfide and MSCs- rat LPS-induced improve regulating TNF-a, miR-155, and pAKT [70]
MVs cognitive function
ADMSCs rat amyloid B injection improve spatial learning / [71]
and memory
BMMSCs rat AlCl; improve neurocognitive function regulating SIRT1/MiR-134/GSK3p [72]
ADMSCs rat amyloid f injection improve cognitive impairment regulating SIRT1 [73]
ADMSCs-Exos rat STZ-induced improve cognition and memory deficiency regulating BDNF and SOX2 [74]
ADMSCs rat AlCl3 improve cognitive impairment / [75]
tanshinone IIA pretreated rat Ap25-35 induced attenuate Ap regulating AMP-activated protein [76]
MSCs accumulation kinase
Fe304@PDA-labeled hUC- mouse 5 x FAD improve memory and cognitive ability / [77]1
MSCs
dimethyl fumarate pretreated rat AP1-42 induced rescue learning regulating Bcl2, BDNF, and NGF [78]
ADMSCs and spatial memory
deficits
Hypoxic pretreated ADMSCs- mouse 5 x FAD improve cognition regulating microglial M1/M2 [79]
Exos polarization
NSCs-secretome mouse Ap1-42 improve regulating Wnt/p-Catenin [80]
neurogenesis
neprilysin expressing NSCs- mouse APPswe/PS1dE9 improve neural regeneration regulating Wnt/p-catenin [81]
Evs
BMMSC-Evs rat Ap1-42 improve neural regeneration regulating Wnt/p-catenin [82]
BMMSCs mouse 3xTg reduce the B-secretase cleavage / [83]
BMMSC-Exos mouse 5 x FAD improved cognitive regulating sphingosine kinase/ [84]
function sphingosine-1-phosphate
UCMSC-EVs mouse APP/PS2 improve spatial learning and memory abilities ~ regulating synaptic vesicle cycle [85]
Neural stem cell-derived EVs mouse 5 x FAD decrease amyloid-p / [86]
plaque accumulation
ADMSC-Exos mouse 5 x FAD improve nerve function regulating NLRP3 [87]
and motor ability
MSC-CM rat Ap1-42 attenuate the retinal pathology regulating SIRT1/pAKT/pGSK3p/ [88]

Abbreviations: BMMSCs, bone marrow mesenchymal stem cells; 5 x FAD, transgenic mice with five familial Alzheimer’s disease; IL-1p, Interleukin-1f; TNF, tumor
necrosis factor; HSPC, Hematopoietic stem and progenitor cells; HDPSCs, Human dental pulp stem cells; NSCs, Neural stem cells; ADSCs, adipose-derived stem cells;
STZ, Streptozotocin; GSK3p, Glycogen synthase kinase 3 beta; NF-kB, nuclear factor kappa-B; Bcl-2, B-cell lymphoma-2; NRF2, Nuclear factor-erythroid 2 related factor
2; LPS, lipopolysaccharide; PPARy, peroxisome proliferators-activated receptor y coactivator I alpha; NLRP3, NOD-like receptor family pyrin domain containing 3;
Ccl2, C-C motif ligand 2; Wnt, the wingless-related integration site; AMP, adenosine monophosphate; TNF, tumor necrosis factor; TGFp1, transforming growth factor-f;
SMAD3, SMAD family member 3; PPARy, Peroxisome proliferators-activated receptors; BDNF, brain-derived neurotrophic factor; NGF, nerve growth factor; SOX2,
SRY-box transcription factor 2; SAMPS8, the senescence accelerated mouse-prone 8; pAKT, phosphorylated protein kinase; AlCl3, aluminium chloride; CM, conditional

medium; Exo, exosomes; EVs, extracellular vesicles.
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and placenta. The various application advantages of the subject include
the following: low immunogenicity, multi-directional differentiation,
immune regulatory ability, anti-apoptotic and anti-inflammatory abil-
ity, exhibiting the strong application advantages in several types of
diseases, including AD. For example, Hevi Wihadmadyatami et al.
investigated the effect of bovine umbilical mesenchymal stem cells
derived conditional medium (BUMSC-CM) on the AD rats. The data
demonstrated that BUMSC-CM exhibited a potential neuroprotective
effect by increasing the levels of brain-derived neurotrophic factor
(BDNF) and neurotrophin-3 (NGF), and decreasing the levels of inter-
leukin-1p (IL-1f) and tumor necrosis factor-a (TNF-a) in rats [53]. Rita
Milazzo et al. demonstrated that hematopoietic stem cells (HSCs)
exhibited the expansion, distribution and myeloid differentiation po-
tential in within the central nervous system (CNS). Furthermore,
transplantation of HSCs was observed to decrease the Af degradation
and phagocytosis in AD animals [54]. And Yalan Lu et al. demonstrated
that the administration of BMMSCs-derived cytokines to rats with AD
resulted in enhanced cognitive function, reduced B-amyloid deposition,
and decreased neuronal apoptosis. This effect was attributed to the
regulation of the AKT/IAP signaling pathway [59]. We summarized the
recent research progress of MSCs applications including the therapeutic
effect and the mechanisms in AD in Table 2.

5. The clinical applications of MSCs in AD

To conduct systematic drug development, confirm the clinical,
pharmacological, the pharmacological effects, and determine the safety
and efficacy of the MSCs application in AD, several clinical trials of MSCs
in AD have been conducted. For example, Hee Jin Kim et al. designed
and conducted a phase I clinical trial with nine subjects diagnosed with
AD dementia. The participants were divided into two groups: the first
group received an injection of hUCB-MSCs at a dose of 1.0 x 107 cells/
2 mL, while the second group received an injection of hUCB-MSCs at a
dose of 3.0 x 107 cells/2 mL, administered thrice with 4-week intervals
between each injection. The data demonstrated that hUCB-MSCs could
decrease the levels of total tau, phosphorylated tau, and Ap42 in all
participants at the first day after the injection. The adverse events
including fever, headache, nausea, and vomiting were observed within
36h after injection [89]. And Ngoc-Huynh Ton Nguyen et al. conducted
a phase I study to evaluate the safety and efficacy of adipose-derived
stromal vascular fraction (ADSVF, including 8 % HSCs and 7.5 %
ADSCs) in 31 patients by intraventricular injections. The data demon-
strated that this particular ADSVF could enhance cognitive function and
reduce the levels of P-tau and f-amyloid in AD patients. Specifically,
there was an increase in hippocampal volume from the 5th percentile to
the 48th percentile after a 2-year follow-up period, and eight SVF in-
jections were administered to one patient with AD. The side effects
associated with ADSVF injection included transient meningismus,
headache, fever, and the need for hospitalization [90].

6. Conclusion and prospects

AD is a type of degenerative neurological disease characterized by
progressive cognitive impairment and behavioral damage to the central
nervous system. It can result in a range of symptoms, including aphasia,
loss of function, and misidentification, which can have a significant
impact on patients’ physical health, quality of life, and financial well-
being, as well as on their families. MSCs, as a type of multipotent cell,
possess characteristics that make them a convenient source, regulate the
immune system, and differentiate into multiple cell types. These char-
acteristics suggest that MSCs have significant application advantages
and prospects. But there are several application limitations should be
considered: (1) Heterogeneity of MSCs. The evidence has demonstrated
that the heterogeneity of MSCs includes phenotypic heterogeneity,
functional heterogeneity, and source heterogeneity. Phenotypic het-
erogeneity is mainly manifested in the limitations of existing isolation
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and purification methods. In fact, the isolation and purification of MSCs
primarily relies on surface markers, with different combinations of these
markers yielding the various subtypes of MSCs. Furthermore, MSCs may
exhibit variations in functionality. The discrepancy under discussion
may encompass a number of hierarchical levels, including metabolic
pathways, cell signaling and cell secretion. The heterogeneity of MSCs
has a significant impact on the applications of these cells. The estab-
lishment and continuous improvement of legislation pertaining to the
treatment of MSCs, the regulation of multiple aspects of MSC research,
preparation, transportation, storage, and clinical application, the
enhancement of MSC preparation methods, the improvement of the
purity and quality of MSCs, the exploration of new transplantation
methods, the development of personalized treatment plans and con-
ducting personalized treatments based on the patients’ conditions and
individual differences of patients, is conducive to improving the safety of
MSC treatment and reducing the application limitations caused by
MSCs. (2) The clinical applications of MSCs. Numerous animal experi-
ments have demonstrated that the efficacy of MSCs in alleviating the
symptoms of AD and achieving positive therapeutic outcomes in animal
models. However, the clinical application of MSCs in the treatment of
AD remains limited. The clinical trials that are currently underway have
reported significant adverse effects, including headaches, fever, and the
need for hospitalization. Therefore, It is imperative that larger-scale and
more standardized clinical trials are carried out, and that the clinical
trial process is supervised in a standardized manner. Furthermore, there
is a necessity to enhance the management of clinical data, with a view to
facilitating the detection of adverse events. In addition, exploration of
stem cell therapy strategies, such as combination therapy and person-
alized therapy is essential. Finally, there is a necessity for the
enhancement of international cooperation in stem cell research, with the
objective of promoting the integration of stem cell technology, experi-
ence, and resources, and accelerating the application of MSCs in AD.
Consequently, with the rapid development of life technology and the
resolution of the aforementioned issues, MSCs applications in AD will
make rapid progress.
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