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Mesenchymal stem cell-derived extracellular vesicles 
therapy in traumatic central nervous system diseases:  
a systematic review and meta-analysis 

Abstract  
Although there are challenges in treating traumatic central nervous system diseases, mesenchymal 
stem cell-derived extracellular vesicles (MSC-EVs) have recently proven to be a promising non-cellular 
therapy. We comprehensively evaluated the efficacy of mesenchymal stem cell-derived extracellular 
vesicles in traumatic central nervous system diseases in this meta-analysis based on preclinical studies. 
Our meta-analysis was registered at PROSPERO (CRD42022327904, May 24, 2022). To fully retrieve the 
most relevant articles, the following databases were thoroughly searched: PubMed, Web of Science, 
The Cochrane Library, and Ovid-Embase (up to April 1, 2022). The included studies were preclinical 
studies of mesenchymal stem cell-derived extracellular vesicles for traumatic central nervous system 
diseases. The Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)’s risk of 
bias tool was used to examine the risk of publication bias in animal studies. After screening 2347 
studies, 60 studies were included in this study. A meta‐analysis was conducted for spinal cord injury 
(n = 52) and traumatic brain injury (n = 8). The results indicated that mesenchymal stem cell-derived 
extracellular vesicles treatment prominently promoted motor function recovery in spinal cord injury 
animals, including rat Basso, Beattie and Bresnahan locomotor rating scale scores (standardized mean 
difference [SMD]: 2.36, 95% confidence interval [CI]: 1.96–2.76, P < 0.01, I2 = 71%) and mouse Basso 
Mouse Scale scores (SMD = 2.31, 95% CI: 1.57–3.04, P = 0.01, I2 = 60%) compared with controls. 
Further, mesenchymal stem cell-derived extracellular vesicles treatment significantly promoted 
neurological recovery in traumatic brain injury animals, including the modified Neurological Severity 
Score (SMD = –4.48, 95% CI: –6.12 to –2.84, P < 0.01, I2 = 79%) and Foot Fault Test (SMD = –3.26, 
95% CI: –4.09 to –2.42, P = 0.28, I2 = 21%) compared with controls. Subgroup analyses showed that 
characteristics may be related to the therapeutic effect of mesenchymal stem cell-derived extracellular 
vesicles. For Basso, Beattie and Bresnahan locomotor rating scale scores, the efficacy of allogeneic 
mesenchymal stem cell-derived extracellular vesicles was higher than that of xenogeneic mesenchymal 
stem cell-derived extracellular vesicles (allogeneic: SMD = 2.54, 95% CI: 2.05–3.02, P = 0.0116, I2 = 
65.5%; xenogeneic: SMD: 1.78, 95%CI: 1.1–2.45, P = 0.0116, I2 = 74.6%). Mesenchymal stem cell-
derived extracellular vesicles separated by ultrafiltration centrifugation combined with density gradient 
ultracentrifugation (SMD = 3.58, 95% CI: 2.62–4.53, P < 0.0001, I2 = 31%) may be more effective than 
other EV isolation methods. For mouse Basso Mouse Scale scores, placenta-derived mesenchymal 
stem cell-derived extracellular vesicles worked better than bone mesenchymal stem cell-derived 
extracellular vesicles (placenta: SMD = 5.25, 95% CI: 2.45–8.06, P = 0.0421, I2 = 0%; bone marrow: 
SMD = 1.82, 95% CI: 1.23–2.41, P = 0.0421, I2 = 0%). For modified Neurological Severity Score, bone 
marrow-derived MSC-EVs worked better than adipose-derived MSC-EVs (bone marrow: SMD = –4.86, 
95% CI: –6.66 to –3.06, P = 0.0306, I2 = 81%; adipose: SMD = –2.37, 95% CI: –3.73 to –1.01, P = 0.0306, 
I2 = 0%). Intravenous administration (SMD = –5.47, 95% CI: –6.98 to –3.97, P = 0.0002, I2 = 53.3%) and 
dose of administration equal to 100 μg (SMD = –5.47, 95% CI: –6.98 to –3.97, P < 0.0001, I2 = 53.3%) 
showed better results than other administration routes and doses. The heterogeneity of studies was 
small, and sensitivity analysis also indicated stable results. Last, the methodological quality of all trials 
was mostly satisfactory. In conclusion, in the treatment of traumatic central nervous system diseases, 
mesenchymal stem cell-derived extracellular vesicles may play a crucial role in promoting motor 
function recovery.
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Introduction 
The central nervous system includes the spinal cord and brain, and traumatic 
central nervous system diseases mainly refer to spinal cord injury (SCI) and 
traumatic brain injury (TBI), which are increasingly recognized as global health 
priorities (Maas et al., 2008; Ahuja et al., 2017a). TBI is often characterized by 
mental decline, hearing and vision loss, hemiplegia, and even coma and other 
related symptoms (Andriessen et al., 2011). SCI can cause paraplegia below 
the innervated plane (Ahuja et al., 2017b). These injuries not only lead to 
reduced quality of life for the affected individuals and their families but also 
become a burden to society due to productivity losses and high health care 
costs (Young et al., 2019). Current treatments for SCI include early surgical 
decompression (Ramakonar and Fehlings, 2021), glucocorticoid pulse therapy 
(Bracken et al., 1997), and neurotrophic drug therapy (Hurlbert et al., 2013). 

For TBI, the treatments include rehabilitation training and pharmacological 
support (Nelson et al., 2019). However, none of these treatments can improve 
the patient’s neurological recovery to a great extent (Maas et al., 1999). 
Therefore, new therapeutic approaches are urgently needed to prevent or 
slow down the progression of secondary injury in traumatic central nervous 
system diseases.

Mesenchymal stem cells (MSCs) have been widely studied as a therapeutic 
option for traumatic central nervous system diseases (Tetzlaff et al., 2011; 
Harrop et al., 2012; Hachem et al., 2017; Wen et al., 2022; Zhang et al., 
2022). However, when cell transplantation is applied in clinical studies, 
tumorigenicity and immune rejection become obstacles to its clinical 
application (Liu et al., 2021b). It has been shown that the significant efficacy 
of MSCs is attributable to the extracellular vesicles (EVs) they secrete 
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(Pinho et al., 2020; Yari et al., 2022). Extracellular vesicles are intercellular 
communication tools, which are divided into several subtypes: apoptotic 
bodies, ectosomes or shedding microvesicles, and exosomes (Colombo et 
al., 2014; Kalra et al., 2016). Exosomes are small EVs originating from the 
endosomes and measuring 40–150 nm. Ectosomes or shedding microvesicles 
are large EVs with a diameter between 100 and 1000 nm, and are secreted 
by the plasma membrane. Apoptotic cells release heterogeneous EVs, called 
apoptotic bodies, with a diameter of 50–5000 nm. These vesicles partially 
overlap in size. Therefore, there are great challenges in the separation of 
pure EV subtypes (Lotvall et al., 2014). A number of comprehensive reviews 
regarding the different sources, contents, and functions of these types of 
vesicles are available (Théry et al., 2018; van Niel et al., 2018; Jeppesen et al., 
2019). EVs contain various RNAs and proteins that play an anti-inflammatory, 
anti-apoptotic, and neuroprotective roles in traumatic central nervous system 
disease therapy (Li et al., 2020b; Yang et al., 2022). They can not only replace 
the damaged cells but also compensate for the disadvantages of cell therapy, 
such as low immunogenicity and the role of crossing the blood-brain barrier 
(Théry et al., 2002).

Although EVs have received much attention, there are still a number of issues 
that need to be addressed regarding this cell-free therapy. A conference 
on EVs has presented existing relevant questions and solutions (Théry et 
al., 2018). However, there is no consensus on the method of EV isolation, 
the source of cells, EV subtypes, and the maximum benefit from the dosing 
regimen. An omnidirectional and systematic grasp of these experimental 
approaches and the efficacy of MSC-EVs for traumatic central nervous system 
diseases are needed for the preclinical studies to clinical translation. Hence, 
we performed a systematic review and meta-analysis of recent animal model 
studies that used MSC-EVs for traumatic central nervous system diseases. We 
also performed subgroup analyses based on MSC origin, EV isolation methods, 
subtypes, and dosage regimen. Last, we performed a bias risk assessment and 
a sensitivity analysis to assess the stability of the results. 
 
Methods   
The protocol for this study was reported according to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses statement (PRISMA) 
guidelines (Page et al., 2021). The study protocol was registered in the 
PROSPERO database (registeration No. CRD42022327904) on May 24, 2022.

Search strategy
To fully retrieve most of the articles, the following databases were retrieved: 
PubMed, Web of Science, The Cochrane Library, and Ovid-Embase (up to 
April 1, 2022). References were also reviewed for relevance and manual 
studies of included articles. Only the articles were limited to English-language 
publications were considered. Comprehensive information on the search 
strategy is provided in Additional file 1. 

Data extraction
The types of literature were screened by two investigators (the first and 
second authors ZY and ZY) following the inclusion and exclusion criteria. Any 
differences were settled through consultation; otherwise a third party (the 
corresponding author CC) was consulted. 

Inclusion and exclusion criteria 
The eligibility criteria were strictly formulated in accordance with Population 
Intervention Comparison Outcome Study design (PICOS) principles. 
Study subjects: We included all animal studies of traumatic central nervous 
system diseases and excluded other invertebrates and in vitro studies. 
Interventions: We included all studies of MSC-EVs for traumatic central 
nervous system diseases and excluded those of other cell-derived EVs. 
Comparisons: All comparison groups were considered, including those 
treated with phosphate buffer saline, untreated groups, and negative controls. 
Outcomes: The outcome measures were the Foot Fault Test and the modified 
Neurological Severity Score (mNSS), which could be used to evaluate 
neurological function in animals with TBI. Further, the Basso, Beattie and 
Bresnahan (BBB) locomotor rating scale and Basso Mouse Scale (BMS) scores 
were used to assess hindlimb motor function in rats and mice with SCI, 
respectively. 
Studies: We included controlled intervention studies (randomized or non-
randomized), whereas reviews, comments, letters, and unpublished studies 
were excluded. 

Data collection and bias risk evaluation 
The data were independently collected and cross-checked by two 
professional researchers (the authors ZY and ZL) from the screened studies. 
Any disagreement was resolved through consultation with the third party 
(the corresponding author CC). The data extracted: (a) study characteristics: 
author, year, country, the sample size of each group, animal, sex, weight, TBI 
and SCI models, MSC source, immunocompatibility, EV isolation and size/
morphology analysis, EV positive markers, EV negative markers, dosage 
regimen (time, dosage, number of doses, and route); and (b) outcomes: 
mNSS, Foot Fault Test, BBB, and BMS. The quality of the studies included by 
the two researchers was analyzed using the SYRCLE’s risk of bias tool (https://
www.biomedcentral.com/1471-2288/14/43) (Hooijmans et al., 2014) for 
animal studies, including attrition bias, performance bias, reporting bias, 
selection bias, detection bias, and other considerations from a list of 10 
entries. 

Outcome measurements 
Neurological assessment in animals with TBI included the mNSS and the 
Foot Fault Test. BBB and BMS were used as outcome measures to determine 
hindlimb motor function in rats and mice with SCI, respectively. 

Statistical analysis 
Each outcome was analyzed with a 95% confidence interval (CI) for continuous 
outcomes using the standardized mean difference (SMD). The I2 test was 
used to evaluate statistical heterogeneity. This test exhibits remarkable 
heterogeneity when I2 values exceed 50%, and in these cases, a random-
effects model was used; otherwise, a fixed effects model was used. The results 
were summarized graphically using forest plots. We assessed the stability 
of the results by performing sensitivity analysis using the exclusion method. 
Meta-analysis was performed with the R software (version 4.1.3; Boston, 
MA, USA). A P-value of 0.05 was set to determine statistical significance. The 
funnel plots and Egger’s regression test were used to evaluate publication 
bias. Planned subgroup analyses included animal-based characteristics (e.g., 
sex and model); intervention characteristics (e.g., tissue source of MSCs, 
EV subtype, EV isolation methods, and immunocompatibility); and dosing 
regimen (time, dose, and route).

Results
Literature retrieval
A total of 2347 studies were initially identified after a systematic search of 
PubMed, Web of Science, The Cochrane Library, and Ovid-Embase databases. 
Subsequently, 172 replicate studies were excluded. A total of 2098 studies 
were deleted after screening the title and abstract, and the reasons for 
exclusion are presented in Figure 1. Then, we carefully searched the full text 
of the remaining 77 studies for evaluation. Subsequently, 17 studies were 
excluded for various reasons (Figure 1). Finally, 60 studies were included in 
this study. 

Figure 1 ｜ Flowchart of article selection process.

Study characteristics 
The characteristics of the 60 included studies (Zhang et al., 2015, 2017, 
2020a, b, 2021a, b, c; Huang et al., 2017, 2020a, b, 2021a, b, 2022; Kim et 
al., 2018; Li et al., 2018, 2019, 2020a, 2021; Ruppert et al., 2018; Sun et al., 
2018; Wang et al., 2018, 2021a, b; Guo et al., 2019; Kang et al., 2019; Liu et 
al., 2019, 2020, 2021a; Lu et al., 2019; Ni et al., 2019; Yang et al., 2019; Yu et 
al., 2019; Zhao et al., 2019; Zhou et al., 2019, 2021, 2022; Chen et al., 2020, 
2021; Gu et al., 2020; Lee et al., 2020; Xu et al., 2020; Chang et al., 2021; 
Cheng et al., 2021; Fan et al., 2021; Jia et al., 2021a, b, c; Jiang and Zhang, 
2021; Luo et al., 2021; Mu et al., 2021; Nakazaki et al., 2021; Nie and Jiang, 
2021; Romanelli et al., 2021; Sheng et al., 2021; Xiao et al., 2021; Xin et al., 
2021; Zhai et al., 2021; Han et al., 2022; Kang and Guo, 2022; Liang et al., 
2022) are summarized in Additional Table 1. The majority of the studies were 
performed in China (n = 52), with five studies in the United States, two studies 
in Korea, and one study in Australia. The sample size in each group ranged 
from 5 to 24. Most studies used rat models (n = 50), with only 10 studies 
using mouse models. The majority were male animals (n = 36), with 20 studies 
using female animals. However, four studies did not describe the sex of the 
animals. Rats weighed 80–300 g, and mice weighed 17–35 g; the age range was 
between 2 and 14 weeks. All TBI (n = 8) used the CCI compression models, 
and SCI (n = 52) models include contusion, compression, hemisection, and 
transection. The majority of the studies used MSCs derived from the bone 

Studies identified through searching PubMed 
(n = 377), Ovid-Embase (n = 1474), the Cochrane 
Library (n = 2), Web of Science (n = 494)

Studies retrieved 
(n = 2347)

Studies screened 
(n = 2175)

Full-text articles 
assessed for 

eligibility
(n = 77)

Studies included 
in this network 
meta-analyses

(n = 60)

In
cl

ud
ed

E
lig

ib
ili

ty
S

cr
ee

ni
ng

Id
en

tifi
ca

tio
n

Excluded:
Duplicate studies 
(n = 172)

Studies excluded (n = 2098):
Other study types (n = 1545)
Other animal models (n = 484)
Other interventions (n = 66)
Withdrawn (n = 1)
Correction (n = 2)

Full-text articles excluded, with reasons 
(n = 17):
No relevant outcomes (n = 7)
No sample size (n = 5)
No BBB scores of day 14 after SCI (n = 3)
No PBS or vehicle control group (n = 2)



2408  ｜NEURAL REGENERATION RESEARCH｜Vol 18｜No. 11｜November 2023

NEURAL REGENERATION RESEARCH
www.nrronline.org Research Article

marrow (n = 42), a portion from the placenta (n = 10), and a small portion 
from fat (n = 5) and umbilical cord (n = 3). The origin of these stromal cells was 
both allogeneic (n = 34) and xenogeneic (n = 23). However, some studies did 
not provide this information (n = 3). EVs were isolated by ultracentrifugation 
(n = 32), isolation kit (n = 13), density gradient ultracentrifugation (n = 2) 
continuous extrusion, density gradient ultracentrifugation and magnetic 
sorting (n = 1), continuous filtration (n = 1), ultrafiltration centrifugation 
combined with ultracentrifugation (n = 4), ultrafiltration centrifugation 
combined with density gradient ultracentrifugation (n = 4), tangential flow 
filtration and ultracentrifugation (n = 1), ultracentrifugation, ultrafiltration 
and molecular exclusion chromatography (n = 1), polyethylene glycol and 
ultracentrifugation (n = 1). Fortunately, most studies (n = 56) took two or 
three approaches to EV identification according to the mid-September 
2018 guidelines (Théry et al., 2018). However, there were four studies that 
took only one approach. Importantly, negative markers were not used to 
demonstrate specific isolation of EVs in many studies (n = 38), and only some 
studies (n = 22) reported negative markers. MSC-EVs were administered 
intravenously (n = 49), intrathecally (n = 10), intracerebroventricularly (n = 1), 
retroorbitally (n = 1), and intranasally (n = 1). Most studies (n = 41) delayed 
dosing after injury, and some studies (n = 18) dosed immediately after the 
injury. However, one study did not describe the time of dosing. Most studies (n 
= 23) used doses of MSC-EVs ≥ 100 μg protein, with 19 studies administering 
doses equal to 100 μg and 11 studies administering doses ≤ 100 μg. However, 
three studies did not use protein quantification, but EV particle number 
quantification, and four studies did not describe the dose. There were 41 
studies with single dosing and 16 studies with multiple dosing. Three studies 
did not describe the number of doses. 

Methodological quality and risk of bias 
The methodological quality assessment charts and summaries of all studies 
included in this meta-analysis are shown in Figure 2. For the overall risk of 
bias assessment, of all studies included, 21 (35%) were high risk, 10 (17%) 
were low risk, and 29 (48%) showed unclear risk. In addition, half of the 
randomly selected outcome assessments for detection bias of the included 
studies were low risk and half were ambiguous. Sequence generation risk of 
selection bias and detection bias blinding were low for most included studies. 
However, most of the included studies showed unclear risks in many items 
such as baseline characteristics of selection bias, selection bias allocation 
concealment, performance bias, incomplete outcome data for attrition bias, 
and selective outcomes for reporting bias. In conclusion, the methodological 
quality of all trials was mostly satisfactory. 

Effect of MSC-EVs on motor function recovery after SCI 
The BBB score of the rats: a total of 43 included articles (Huang et al., 2017, 
2020a, b, 2021a, b, , 2022; Li et al., 2018, 2019, 2020a; Ruppert et al., 2018; 
Wang et al., 2018, 2021a, b; Guo et al., 2019; Kang et al., 2019; Liu et al., 
2019; Lu et al., 2019; Yu et al., 2019; Zhao et al., 2019; Zhou et al., 2019, 
2021, 2022; Gu et al., 2020; Chang et al., 2021; Chen et al., 2021; Cheng et al., 
2021; Fan et al., 2021; Jia et al., 2021a, b, c; Jiang and Zhang, 2021; Luo et al., 
2021; Mu et al., 2021; Nakazaki et al., 2021; Nie and Jiang, 2021; Romanelli 
et al., 2021; Xiao et al., 2021; Xin et al., 2021; Zhang et al., 2021a, b; Han et 
al., 2022; Kang and Guo, 2022; Liang et al., 2022) were analyzed. The results 
indicated that MSC-EVs treatment significantly promoted motor function 
recovery in rats (SMD = 2.36, 95% CI: 1.96–2.76, P < 0.01, I2 = 71%; Figure 3). 
The results of subgroup analyses demonstrated that allogeneic MSC-EVs were 
more beneficial to motor function recovery than xenogeneic administration 
(allogeneic: SMD = 2.54, 95% CI: 2.05–3.02, I2 = 65.5%; xenogeneic: SMD 
= 1.78, 95% CI: 1.1–2.45, I2 = 74.6%, P = 0.0116). The EV isolation method 
(SMD = 3.58, 95% CI: 2.62–4.53, P < 0.0001, I2 = 31%) may be related to 
higher EV efficacy, as ultrafiltration centrifugation combined with density 
gradient ultrafiltration showed better results than other EV isolation methods 
(Figure 4). However, there were no differences in efficacy between the tissue 
source of MSC, EV subtype, route of administration, time administered, dose 
administered, animal’s sex, and SCI model (Figure 4). Although the study 
showed heterogeneity, sensitivity analysis indicated that the results were 
stable (Figure 1 and Additional Figure 1). 

BMS score of the mice: nine included articles (Kim et al., 2018; Sun et al., 
2018; Lee et al., 2020; Liu et al., 2020, 2021a; Zhang et al., 2020a; Li et 
al., 2021; Sheng et al., 2021; Zhai et al., 2021) were analyzed. The results 
indicated that MSC-EVs treatment significantly promoted motor function 
recovery in mice (SMD = 2.31, 95%CI: 1.57–3.04, I2 = 60%, P = 0.01) (Figure 
5). Subgroup analysis demonstrated that placenta-derived MSCs had stronger 
motor function recovery than bone marrow-derived MSC (placenta: SMD = 
5.25, 95% CI: 2.45–8.06, I2 = 0%; bone marrow: SMD = 1.82, 95% CI: 1.23–2.41, 
I2 = 0%; P = 0.0421), but only one study involved placenta-derived MSCs. The 
EV isolation method (SMD = 6.79, 95% CI: 3.97–9.67, I2 = 0%, P = 0.0099) may 
be related to higher EV efficacy, as ultrafiltration centrifugation combined 
with ultrafiltration showed better results than other EV isolation methods 
(Figure 6). Finally, the efficacy of MSC-EVs in the spinal cord contusion model 
was better than the compression model (compression: SMD = 1.41, 95% CI: 
0.66–2.17, I2 = 0%; contusion: SMD = 2.72, 95% CI: 1.76–3.69, I2 = 63.2%; 
P=0.0365). However, there were no differences in efficacy between the 
immunocompatibility of MSCs, EV subtype, route of administration, treatment 
time, dose administered, and animal’s sex (Figure 6). Despite heterogeneity 
between studies, sensitivity analysis indicated that the results were stable 
(Figure 2 and Additional Figure 2). 

Figure 2 ｜ Risk of bias 
with the Systematic Review 
Centre for Laboratory Animal 
Experimentation (SYRCLE) tool. 
(A) Risk of bias graph. (B) Risk of 
bias summary. 

A

B
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Figure 3 ｜ Meta-analysis of Basso, Beattie and Bresnahan locomotor rating scale 
scores.
References Wang 2021 and Wang (1) 2021 correspond to Wang et al., 2021a and Wang 
et al., 2021b in the reference list, respectively. References Zhang (1) 2021 and Zhang (2) 
2021 correspond to Zhang et al., 2021a and Zhang et al., 2021b in the reference list.

Figure 4 ｜ Subgroup analysis of Basso, Beattie and Bresnahan locomotor rating scale 
scores.
EV: Extracellular vesicle.

Figure 5 ｜ Meta-analysis of the Basso Mouse Scale scores.
The reference Liu (1) 2021 correspond to Liu et al., 2021a in the reference list.

Figure 6 ｜ Subgroup analysis of Basso Mouse Scale scores.
EV: Extracellular vesicle; MSCs: mesenchymal stem cells.

Figure 7 ｜ Meta-analysis of modified Neurological Severity Scores.
The references Zhang-2020 and Zhang-2021 correspond to Zhang et al., 2020a and 
Zhang et al., 2021c in the reference list, respectively.

Effect of MSC-EVs on neurological recovery after TBI 
mNSS: eight included articles (Zhang et al., 2015, 2017, 2020a, 2021c; Ni et 
al., 2019; Yang et al., 2019; Chen et al., 2020; Xu et al., 2020) were analyzed. 
The results indicated that MSC-EVs treatment significantly promoted 
neurological recovery in rats (SMD = –4.48, 95% CI: –6.12 to –2.84, I2 = 79%, P 
< 0.01; Figure 7). The results of subgroup analyses showed that bone marrow-

derived MSCs showed a stronger recovery of neurological function than 
adipose-derived MSCs (bone marrow: SMD = –4.86, 95% CI: –6.66 to –3.06, 
I2 = 81%; adipose: SMD = –2.37, 95% CI: –3.73 to –1.01, I2 = 0%; P = 0.0306). 
Administration route (SMD = –5.47, 95% CI: –6.98 to –3.97, I2 = 53.3%, P 
= 0.0002) and dose (SMD = –5.47, 95% CI: –6.98 to –3.97, I2 = 53.3%, P < 
0.0001) may be related to higher EV efficacy, as intravenous administration 
and dose of administration equal to 100 μg showed better results than 
other administration routes and doses (Figure 8). However, there were no 
differences in efficacy among the immunocompatibility of MSCs, EV isolation 
methods, and EV subtypes (Figure 8). Despite heterogeneity between studies, 
sensitivity analysis indicated that the results were stable (Figure 3 and 
Additional Figure 3). 

Figure 8 ｜ Subgroup analysis of modified Neurological Severity Scores.
EV: Extracellular vesicle; MSCs: mesenchymal stem cells.
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Foot Fault Test: five included articles (Zhang et al., 2015, 2017, 2020b, c; 
Chen et al., 2020) were analyzed. The results showed that MSC-EVs treatment 
significantly promoted neurological recovery in rats (SMD = –3.26, 95% 
CI: –4.09 to –2.42, I2 = 21%, P = 0.28; Figure 9). The results of subgroup 
analyses demonstrated that no efficacy differences were observed between 
the tissue origin, immunocompatibility, EV isolation method, EV subtype, 
route of administration, and dose of administration of MSCs (Figure 10). The 
heterogeneity of the studies was small, and sensitivity analysis also indicated 
stable results (Figure 4 and Additional Figure 4). 

Foot Fault tests. These findings show the therapeutic effect of MSC-EVs for 
traumatic central nervous system diseases by significantly improving motor 
recovery in animals with SCI and neurological recovery in animals with TBI. 

Our meta-analysis systematically evaluated the efficacy of MSC-EVs for 
traumatic central nervous system diseases from various perspectives of 
experimental approaches. Given that the development of MSC-EVs therapies 
involves many variables, we performed a meta-analysis to evaluate relevant 
factors that may enhance the efficacy of EVs. In the study of SCI in rats, 
allogeneic administration of MSC-EVs may be more helpful for motor 
function recovery than xenogeneic administration, which may be because 
allogeneic administration of MSC-EVs has low immunogenicity and low 
immune rejection, thereby increasing their survival (van Balkom et al., 2019). 
In addition, EV obtained using ultrafiltration centrifugation combined with 
density gradient ultrafiltration may be associated with higher efficacy. Because 
the higher the purity of EV obtained by separation, the clearer the function, 
while a single separation method will likely produce many pollutants, which 
may have a negative impact on the function. A study has shown that the 
combination of 3D-cultured MSC and tangential flow filtration can obtain 
higher yield and purity of MSC-EVs (Haraszti et al., 2018). This shows that 
the combined separation method may be superior to the single separation 
method (Tieu et al., 2020), which was consistent with minimal information on 
extracellular vesicle studies (mid-September 2018). 

In studies of SCI in mice, while only one study showed stronger motor 
recovery using placenta-derived MSC-EVs, it is well-known that the placenta 
is less likely to produce immune rejection. Because it is designated as 
biohazardous waste, it can be used as a non-invasive and rich source of stem 
cells (Hua et al., 2013). Therefore, easy availability of the placenta shows 
its ethical advantages when considering clinical translation. As in studies of 
SCI in rats, EVs obtained using ultrafiltration centrifugation combined with 
ultrafiltration may show better results than other EV isolation methods. 
Finally, MSC-EVs may be more effective in treating the SCI contusion model 
than the SCI compression model, possibly because contusion is the oldest 
and most commonly used method for SCI models (Sharif-Alhoseini et al., 
2017), and the stability of the model can be controlled using parameterization 
to make the model more reproducible (Pearse et al., 2005). MSC-EVs have 
been shown to well inhibit the inflammatory response at the time of the 
cascade inflammatory response early in SCI, which may be related to its 
better efficacy in contusion models. The results in studies of TBI have shown 
that bone marrow-derived MSC-EVs showed stronger neurological recovery 
than other origins, which may be related to only one study of fat origin. 
However, it is difficult to obtain bone marrow-derived MSCs when it is used 
for clinical transformation (Kern et al., 2006). Therefore, it is important 
to choose the source of MSC-EVs. In addition, intravenous administration 
and the 100 μg dose showed better results, which shows that intravenous 
administration is safer, more controllable, and produces fewer side effects 
than other modalities. It also suggests that 100 μg may be the optimal dose 
at which EVs work and that a higher dosage is perhaps a burden for animals 
and is also more likely to produce toxicity or side effects. Some studies have 
shown that a single dose of EVs administered early can have a significant 
effect (Williams et al., 2020; Bambakidis et al., 2022). However, other studies 
have demonstrated that multiple doses of the same EVs are more effective 
than single doses (Nakazaki et al., 2021). Therefore, the dose and frequency 
of MSC-EVS administration still need to be further studied. Importantly, this 
study analyzed the quality of the included studies using the internationally 
accepted symbol animal study risk of bias tool. The methodological quality of 
all included studies was also satisfactory. 

This meta-analysis has some limitations. First, the body weight of the rat 
was not considered. Second, in addition to studies of BBB scores in rats, the 
number of studies and sample size of other outcome indicators are very 
small, which may cause risk of bias. Third, these functional scores, using BBB, 
BMS, mNSS, and Foot Fault Tests as indicators for efficacy evaluation, are not 
comprehensive enough. It is remarkably subjective. Fourth, the funnel plot 
showed significant publication bias, which may be related to the fact that the 
included studies were preclinical studies. Last, most of the included studies 
showed unclear risks in many items. Only 17% of the studies had a low risk of 
bias, mainly because the studies we included and analyzed were preclinical 
studies (Begley and Ioannidis, 2015).

Preclinical studies of MSC-EVs are essential for their subsequent clinical 
application. A considerable number of articles have assessed the consequence 
of MSC-EVs in traumatic central nervous system diseases. However, no trial 
has directly compared the efficacy of different tissue- or cell-derived MSC-
EVs in traumatic central nervous system diseases. This finding provides 
directions for future research. In addition, there is also no optimal parameter 
for the dose, route, and method of administration of MSC-EVs. Therefore, 
the optimal administration parameters of EVs should be the focus of future 
research. Most of the included studies demonstrated the effectiveness of EVs 
for traumatic central nervous system diseases. However, there is only one 
study on its safety (Huang et al., 2021a), which shows that MSC-EVs do not 
cause damage to the liver and lungs. Therefore, attention should be paid to 
the safety aspect of using MSC-EVs. 

Conclusion 
In the treatment of traumatic central nervous system diseases, MSC-EVs may 
play a crucial role in promoting motor function recovery. However, through 
comprehensive analysis of the experimental methods and EV parameters of 

Figure 9 ｜ Meta-analysis of Foot Fault Test results.
The references Zhang-2020 and Zhang-2021 correspond to Zhang et al., 2020a and 
Zhang et al., 2021c in the reference list, respectively.

Figure 10 ｜ Subgroup analysis of Foot Fault Test results.
EV: Extracellular vesicle; MSCs: mesenchymal stem cells.
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Figure 11 ｜ Assessment of publication bias in Basso, Beattie and Bresnahan 
locomotor rating scale scores. 
(A) Funnel plots showed pronounced asymmetry. (B) Trim-and-fill analysis predicted 16 
“missing” studies (unfilled circles). The dotted lines represent 95% confidence intervals.

Publication bias 
We used Funnel plots and Egger’s regression test to evaluate publication 
bias (Figure 11). There was a significant publication bias in the funnel plot 
for visual inspection of rat BBB scores. Egger regression confirmed this result 
and also showed evidence of publication bias (Egger’s test: t = 6.27, df = 41, 
P < 0.0001). The absence of 16 articles on the left (unfilled circles) could have 
been predicted by pruning and filling analysis. Because the number of articles 
for the other outcome measures was ≤ 10, no publication bias assessment 
was performed for the other outcome measures.

Discussion
Our systematic review comprehensively synthesizes the preclinical study 
design, methods, therapeutic effect, and preclinical reports of studies of MSC-
EVs for traumatic central nervous system diseases. The results showed that 
MSC-EVs administration obviously promoted outcome measures of traumatic 
central nervous system diseases, as assessed by the BBB, BMS, mNSS, and 
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the included studies, we believe that there is still some heterogeneity among 
the various studies that affect the results of the current study. Therefore, 
further standardization of preclinical trials is needed to promote clinical 
translation. 
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studies were included according to the author’s standard. Furthermore, they 
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brain injury. Moreover, the authors concluded that placenta-derived MSC-
EVs were more effective than bone marrow-derived MSC-EVs, intravenous 
administration and dose of administration equal to 100 μg had better effect. 
Therefore, MSC-EVs may play a significant role in improving motor function 
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