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Mesenchymal stromal cell (MSC)-derived exosomes play a
promising role in regenerative medicine. Their trophic and
immunomodulatory potential has made them a promising candi-
date for cardiac regeneration and repair. Numerous studies have
demonstrated that MSC-derived exosomes can replicate the anti-
inflammatory, anti-apoptotic, and pro-angiogenic and anti-
fibrotic effects of their parent cells and are considered a substitute
for cell-based therapies. In addition, their lower tumorigenic risk,
superior immune tolerance, and superior stability compared with
their parent stem cells make them an attractive option in regener-
ative medicine. The therapeutic effects of MSC-derived exosomes
have consequently been evaluated for application in cardiac regen-
eration and repair. In this review, we summarize the potential
mechanisms and therapeutic effects of MSC-derived exosomes in
cardiac regeneration and repair and provide evidence to support
their clinical application.

Background

Cardiovascular diseases, in particular coronary heart dis-
ease (CHD), remain the leading cause of morbidity and
mortality worldwide (Virani et al., 2020). Among all
CHDs, acute myocardial infarction (MI) is a major cause
of death. Consequent complications such as heart failure
contribute to a significant medical, social, and financial
burden. A broad spectrum of therapeutic reperfusion strate-
gies is available, such as thrombolytic therapy or primary
percutaneous coronary intervention, as well as anti-remod-
eling medications such as angiotensin-converting enzyme
drugs and B-blockers. Nonetheless there is no effective
pharmacological intervention that prevents cardiomyo-
cyte death due to myocardial ischemia/reperfusion (I/R)
injury (Heusch and Gersh, 2017). This I/R injury may
also contribute to cardiac fibrosis, myocardial remodeling,
cardiac arrhythmia, and, eventually, heart failure (Frank
et al., 2012). At the end stage, the only available therapy
for heart failure is heart transplantation or permanent left
ventricular (LV) support. There is therefore tremendous in-
terest in and need for novel therapies for post-MI LV remod-
eling and dysfunction.

In the last few years great advances have been made in
cell-based therapies. The ultimate aim of such therapies is
to generate sufficient functional cardiomyocytes to
compensate for those lost following MI, either with exoge-
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nous cells or by activating endogenous regeneration and
repair mechanisms (Menasche, 2018). Mesenchymal stem
cells (MSCs) are multipotent stem cells that reside in
various organs and can be derived from multiple tissues
or cells including bone marrow (BM) stroma, adipose tis-
sue, muscle, skin, fallopian tissue, umbilical cord blood,
menstrual blood, and even induced pluripotent stem cells
(iPSCs) (Caplan, 1991; Jackson et al., 2010; Lian et al.,
2010). Their strong paracrine effects make MSCs a prom-
ising candidate for endogenous regeneration and repair
pathways. There is evidence that intravenous, intracoro-
nary, or intramyocardial administration of MSCs can
improve LV function in an MI model (Bagno et al., 2018;
Hu et al., 2016; Liao et al., 2019). Moreover, our previous
study showed that pre-transplantation systemic intrave-
nous administration of MSCs improved retention and ther-
apeutic efficacy of intramyocardially transplanted exoge-
nous cells (Sun et al., 2021).

Accumulating evidence shows that MSC-derived exo-
somes can ameliorate cardiac function and improve cardiac
regeneration and repair (de Abreu et al., 2020). In this re-
view, we discuss the therapeutic effects of MSC-derived
exosomes in cardiac regeneration and repair following MI
and describe the potential mechanisms underlying the
benefits of MSC-exosome-based therapies. Additionally,
we describe potential approaches to improve the efficacy
and production of MSC-derived exosomes.

The advantages of MSC-derived exosomes over their
parent MSCs

Exosomes are extracellular vesicles with a diameter of 30-
150 nm. Previous studies have shown that they are secreted
by endosomes, stored in the multivesicular endosomes
(MVEs), and released through exocytosis (Doyle and
Wang, 2019). The destiny of exosomes is either release
into the extracellular space through fusion of MVEs with
the cell plasma membrane or degradation by lysosomes
along with MVEs (Doyle and Wang, 2019). The exosome
transfers messages of the target cells through three possible
pathways (Figure 1). First, the membrane receptors as well
as protein or microRNA (miRNA) composition can be
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transferred to recipient cells by membrane fusion. Second,
there are several protein ligands such as heat-shock pro-
teins in the exosome membrane that can activate recipient
cells through receptors in recipient cells. Third, the compo-
sition of exosomes such as protein and miRNAs can be
transferred to recipient cells by endocytosis (Loyer et al.,
2014). Exosomes have been considered one of the main
mediators that regulate cell-cell communication. Barile
et al. (2012) observed that exosomes secreted by MSCs
were absorbed by cardiomyocytes. This ultrastructural evi-
dence indicated that there is indeed an MSC-cardiomyo-
cyte communication modulated by exosomes and that
MSCs exerted their cardioprotective effect partly through
releasing exosomes. Administration of exosomes derived
from MSCs has been shown recently to recapitulate the car-
dioprotective effect of MSCs (de Abreu et al., 2020). There
are several advantages of using exosomes rather than cell-
based therapies. First, the risk of tumorigenicity in MSC-
based therapies has been observed in previous studies (Bar-
kholt et al., 2013), whereas no tumor formation has been
observed in exosome-based therapies. Second, inflamma-
tory cytokine interferon-y (IFN-y) can increase expression
of HLA and immune rejection of transplanted MSCs (Sun
et al., 2015), whereas no such effects have been reported
following transplantation of MSC-derived exosomes.
Third, MSC-derived exosomes are more stable to store
compared with MSCs (Lener et al., 2015). Fourth, the pro-
duction cost of MSC-derived exosomes is lower than that
of their parent cells. Finally, as the particle size of exosomes
is much smaller than that of their parent cells, exosomes

Figure 1. Pathways for exosomes to target
toward and fuse with the receiving cells
First, membrane fusion: activated receptors
as well as the composition of exosomes can
be transferred to the target cells by mem-
brane fusion. Second, binding receptors:
exosomes can activate target cells through
binding their protein ligands to the receptors
in recipient cells. Third, endocytosis: when
exosomes are taken up by the target cells, the
protein or miRNA composition that they carry
can be released into target cells. MSC,
mesenchymal stromal cell.

Recipient cell

could travel across capillaries without plugging. Therefore,
MSC-derived exosomes are more efficacious than their
parent cells after intravenous administration. In summary,
mounting evidence demonstrates that exosomes not only
recapitulate the beneficial effects of their parent cells but
also overcome some of the limitations of parent cells (Table

1.

The potential role of MSC-derived exosomes in cardiac
regeneration and repair

Use of exosomes for cardiac repair is still at an early stage,
and clinical studies of MSC-derived exosomes in the treat-
ment of cardiovascular disease are ongoing. Table 2 sum-
marizes the findings of pre-clinical studies (Arslan et al.,
2013; Bian et al., 2014; Feng et al., 2014; He et al., 2018;
Ju et al., 2018; Liu et al., 2020; Luther et al., 2018; Lv
et al.,, 2019; Ma et al., 2017, 2018; Mao et al., 2019; Ni
et al., 2019; Shao et al., 2017; Wang et al., 2017, 2018a;
Xiao et al., 2018; Xu et al.,, 2020; Yu et al., 2013; Zhao
etal., 2019) on the use of MSC-derived exosomes in cardiac
regeneration and repair. Application of exosomes derived
from BM-MSCs (Bian et al., 2014; Feng et al., 2014; He
et al., 2018; Liu et al., 2020; Luther et al., 2018; Lv et al.,
2019; Ma et al., 2018; Shao et al., 2017; Wang et al., 2017,
2018a; Xiao et al., 2018; Xu et al., 2020; Yu et al., 2013;
Zhao et al., 2019), embryonic stem cell (ESC)-MSCs (Arslan
et al., 2013), umbilical cord (UC)-MSCs (Ma et al., 2017; Ni
etal., 2019; Xu et al., 2020), adipose (AD)-MSCs (Xu et al.,
2020), and cardiac MSCs (Ju et al., 2018) resulted in signif-
icantly improved cardiac function in a pre-clinical model of
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Table 1. The advantages of MSC-derived exosomes over their
parent cells

MSC MSC-derived exosomes
Risk of tumorigenicity low no
Immune rejection low no
Stability low high
Production cost high low
Therapeutic efficacy after low high

systemic delivery

MSC, mesenchymal stromal cell.

MI. Among all these exosomes, BM-MSC-derived exosomes
and extracellular vesicle size from 30 to 180 nm were most
widely used for cardiac repair and regeneration. Intramyo-
cardial and intravenous transplantation were the two most
commonly used modes of delivery. For studies in mice, 20—
50 pg of MSC-derived exosomes is used for intravenous
administration while 1-600 pg is used for intramyocardial
administration. For studies in rats, 40-400 pg of MSC-
derived exosomes is used for intravenous administration
while 20-80 pg is used for intramyocardial administration.
In most of these studies, exosomes were administered
immediately after induction of MI. Other studies demon-
strated that when administration occurred 30 min, 48 h,
and even 1 week after MI, cardiac function was still
improved. Moreover, to define the therapeutic role of
MSC-derived exosomes, the following issues needed to be
clarified: (1) the source of their parent cells; (2) methods
of isolation and particle size distribution; and (3) the com-
ponents of exosomes. Here, we illustrate the mechanisms
that underlie the therapeutic efficacy of MSC-derived exo-
somes in cardiac regeneration and repair and their poten-
tial role in enhancing the therapeutic efficacy of cell-based
therapy.

Anti-inflammatory effects

Previous studies showed that MSCs have multiple anti-in-
flammatory effects that include regulating the polarization
of macrophages, inhibiting the activation of effector
T cells, and suppressing the secretion of B cells (Corcione
et al., 2006; Di Nicola et al., 2002; Le Blanc and Mougiaka-
kos, 2012). Recent studies show that MSC-derived exo-
somes replicate these anti-inflammatory effects of their
parent cells. Both intramyocardial (Lv et al., 2019; Shao
et al.,, 2017; Xu et al., 2020; Zhao et al., 2019) and intrave-
nous (Mao et al., 2019; Wang et al., 2018a) transplantation
of MSC-derived exosomes can decrease pro-inflammatory
immune cell infiltration in the infarcted heart. Sun et al.
(2018) demonstrated that MSC-derived exosomes switched
pro-inflammatory macrophages to anti-inflammatory mac-
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rophages. Collino et al. (2015) showed that miRNAs play a
key role in exosome-based therapies. This anti-inflamma-
tory effect may also be mediated by exosomal miRNAs, evi-
denced by the promotion of switching of M1 macrophages
to M2 macrophages in the peri-infarcted area by miR-182-
enriched MSC-derived exosomes (Zhao et al., 2019). More-
over, miR-233-enriched MSC-derived exosomes, which
were taken up by macrophages, downregulated SEMA3A
and STAT3 and reduced the inflammatory response in mac-
rophages (Wang et al., 2015). In addition, MSC-derived
exosomes regulated effector T cells and B cells, inhibited
T cell proliferation, and induced activated effective T cell
apoptosis (Mokarizadeh et al., 2012). miR-181c has been re-
garded as a key miRNA in this exosome-mediated T cell
regulation; miR-181c-enriched MSC-derived exosomes
were shown to blunt the Toll-like receptor 4 (TLR4)
signaling pathway-mediated release of pro-inflammatory
factors (Li et al., 2016). A recent study also showed that
MSC-derived exosomes fully reproduced the immunosup-
pressive effects of MSCs on B cell proliferation and immu-
noglobulin production by mediating the secretion of im-
munoglobulins (Budoni et al., 2013). Although the
precise mechanism of these anti-inflammatory effects re-
mains unclear, current clinical trials show that intravenous
administration of MSC-derived exosomes is a safe and
effective treatment for immune disease (Kordelas et al.,
2014).

Anti-apoptotic effects

Previous studies showed that intramyocardial (Feng et al.,
2014; Liu et al., 2020; Lv et al., 2019; Ni et al., 2019; Shao
et al., 2017; Wang et al., 2017; Xiao et al., 2018; Xu et al.,
2020; Yu et al., 2013), intravenous (He et al., 2018; Ma
etal., 2017; Maoetal., 2019; Wang et al., 2018a), intracoro-
nary (Arslan et al., 2013) or intrapericardial sac (Luther
et al., 2018) transplantation of MSC-derived exosomes
could ameliorate apoptosis of endogenous cardiomyocytes.
The infiltrated inflammatory cells released numerous reac-
tive oxygen species that led to programmed cell death in
the peri-infarcted area. MSC-derived exosomes may reduce
oxidative stress and improve the anti-apoptotic ability of
cardiomyocytes in the peri-infarcted area. A recent study
showed that administration of MSC-derived exosomes in
an I/R mouse model increased the ATP level, reduced oxida-
tive stress, and improved cardiomyocyte survival (Arslan
et al.,, 2013). Previous studies showed that miRNAs
including miR-19a (He et al., 2018), miR-22 (Feng et al.,
2014), miR-199a (Zhu et al., 2019), and miR-214 (Wang
et al., 2018b) play key roles in these exosome-mediated
anti-apoptotic effects. Exosomes derived from GATA4-
overexpressed MSCs exerted anti-apoptotic and cardiopro-
tective effects by delivering anti-apoptotic miRNAs,
including miR-19a (He et al., 2018). These anti-apoptotic
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Table 2. Pre-clinical studies of MSC-derived exosomes for cardiac regeneration and repair
Cell Cell Size

No. Authors  Year Model source type of EV Administration Time Dose Effect
1 Arslan 2013 myocardial human ESC-MSC - intracoronary 5 min prior 0.4 pg/mL  reduced MI size, decreased
et al. I/R injury to reperfusion LV dilation, increased cardiac
(mouse) to 3 h after function, decreased ATP loss
2 Yuetal. 2013 myocardial rat BM-MSC average: intramyocardial immediately  derived from reduced CM apoptosis,
I/R injury 100 nm 4 x 10° MSC improved cardiac function
(rat)
3 Bian 2014 MI (rat) human BM-MSC 47-180 nm intramyocardial 30 min 80 ug improved cardiac function,
et al. after MI decreased MI size,

promoted angiogenesis

4 Fengetal. 2014 MI mouse BM-MSC average: intramyocardial immediately 1 g decreased MI size,
(mouse) 57.4 nm decreased apoptosis
5 Maetal. 2017 MI (rat) human UC-MSC average: intravenous immediately 400 pg improved cardiac function,
96 nm decreased apoptosis,

increased angiogenesis

6 Shaoetal. 2017 MI (rat) rat BM-MSC - intramyocardial immediately 20 pug improved cardiac function,
reduced MI size,
decreased inflammation

7  Wang 2017 MI mouse BM-MSC - intravenous immediately - improved angiogenesis
et al. (mouse) and cardiac function
8 Heetal. 2018 MI mouse BM-MSC - intravenous 48 h after MI 20 pg improved cardiac function,
(mouse) decreased apoptosis,
increased angiogenesis
9 Juetal 2018 MI mouse C-MSC  average: intramyocardial immediately 50 pg improved cardiac function,
(mouse) 120 nm increased angiogenesis
10  Luther 2018 MI mouse BM-MSC - pericardial sac  immediately  12.5 pg decreased apoptosis
et al. (mouse)
11  Wang 2018 MI mouse BM-MSC 30-150 nm intravenous immediately 50 pg improved cardiac function,
et al. (mouse) increased angiogenesis,
decreased MI size,
decreased inflammation
12 Xiaoetal. 2018 MI human BM-MSC - intramyocardial 30 min 5 ug improved cardiac function,
(mouse) after MI decreased apoptosis
13 Xuetal. 2018 MI (rat) human BM-MSC, BM-MSC: intramyocardial 30 min derived improved cardiac function,
AD-MSC, 40-100 nm; after MI from decreased MI size, decreased
UC-MSC  AD-MSC: 1.5 X 10°  apoptosis and inflammation
30-100 nm; MSC
UC-MSC:
10-90 nm
14 Maetal. 2018 MI mouse BM-MSC <150 nm intramyocardial 1 week 600 png improved cardiac function,
(mouse) after MI increased angiogenesis
15 Maoetal. 2019 MI (rat) human MSC 30-150 nm intravenous immediately 40 pg decreased MI size, decreased
apoptosis and inflammation
16 Nietal 2019 MI (rat) human UC-MSC 40-90 nm  intramyocardial immediately 50 pg improved cardiac function,

decreased MI size, reduced
apoptosis, increased
angiogenesis

(Continued on next page)
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Table 2. Continued
Cell Cell Size
No. Authors  Year Model source type of EV Administration Time Dose Effect
17 Lvetal 2019 MI (rat) rat BM-MSC average: intramyocardial 30 min 80 ug improved cardiac function,
90 nm after MI reduced MI size, decreased
apoptosis and inflammation,
increased angiogenesis
18 Zhaoetal. 2019 myocardial mouse BM-MSC 50-150 nm intramyocardial immediately 50 pg decreased MI size
I/R injury and inflammation
(mouse)
19 Liuetal. 2020 MI (rat) human BM-MSC average: intramyocardial immediately 30 g improved cardiac function,
50 nm decreased apoptosis

MSC, mesenchymal stromal cell; EV, extracellular vesicle; MI, myocardial infarction; I/R, ischemia/reperfusion; ESC, embryonic stem cell; BM, bone marrow;
UC, umbilical cord; AD, adipose; LV, left ventricle; ATP, adenosine triphosphate; CM, cardiomyocyte.

effects were abolished by inhibition of miR-19a (He et al.,
2018). Researchers attributed the anti-apoptotic effects to
downregulation of phosphatase and tensin homolog
(PTEN) (Chen et al., 2013). Nonetheless, the clinical safety
of miR-19a-enriched exosomes is still under debate.
Although there are limited data on the arrhythmogenic
effect of miR-19a-enriched exosomes, overexpression of
miR-19a may induce arrhythmias, since miR-19a aber-
rantly inhibits connexin-43 expression (Danielson et al.,
2013). Feng et al. (2014) showed that after co-culture
with cardiomyocytes, MSCs transferred miR-22 into cardi-
omyocytes through exosome release. Intramyocardial
administration of miR-22-enriched MSC-derived exosomes
was shown to decrease cardiomyocyte apoptosis in the
ischemic area and reduce infarct size (Feng et al., 2014).
In a kidney ischemia/perfusion model, miR-199a-enriched
MSC-derived exosomes decreased apoptosis in renal cells
by modulating Sema3A and activating Akt and ERK path-
ways (Zhu et al., 2019). miR-199a is one of the key miRNAs
that blocked negative regulators of cardiomyocyte prolifer-
ation in a neonatal rat model (Eulalio et al., 2012). Indeed,
overexpression of miR-199a exerted cardioprotective ef-
fects and promoted cardiac regeneration and repair after
MI (Eulalio et al., 2012). Exosomes derived from miR-214-
enriched MSCs facilitated cardiac stem cell survival via
reduction of reactive oxygen species production. On the
contrary, depletion of miR-214 by miR-214 inhibitor or
miR-214 mimics impaired the anti-apoptotic effects of
these miR-214-enriched exosomes (Wang et al., 2018b).
miR-214 exerted its anti-apoptotic effects mainly through
regulation of sodium/calcium exchanger 1, cyclophilin D,
Bcl-2 like protein 11, and PTEN (Aurora et al., 2012; Lv
et al., 2014; Wang et al., 2018b). Nonetheless, miR-214
may induce dilated cardiomyocytes in the long term (Lv
et al., 2014). This side effect may limit the clinical applica-
tion of miR-214-enriched exosomes. Although no report is
available on miR-210-enriched exosomes, they may be also
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involved in the exosome-mediated anti-apoptosis effect.
miR-210 promoted endogenous cardiac regeneration
through upregulation of B-catenin and Bcl-2 and downre-
gulation of adenomatous polyposis coli, p16, and cas-
pase-3 (Arif et al., 2017).

Pro-angiogenic effects

Previous research showed that intravenous (He et al., 2018;
Maetal., 2017; Wang et al., 2017, 2018a) and intramyocar-
dial (Bian et al., 2014; Ju et al., 2018; Lv et al., 2019; Ma
et al., 2018; Ni et al., 2019) administration can improve
angiogenesis during cardiac regeneration and repair. Our
study showed that iPSC-MSCs ameliorated limb ischemia
through both vascular differentiation and paracrine secre-
tion, such as vascular endothelial growth factor (VEGF)
and basic fibroblast growth factor (Lian et al.,, 2010).
Recently, Hu et al. (2015) reported that intramuscular
administration of exosomes derived from iPSC-MSCs
partly replicated the pro-angiogenic effects of their parent
cells. In their in vitro study, iPSC-MSC-derived exosomes
promoted human umbilical vein endothelial cell migra-
tion, proliferation, tube formation, and angiogenesis-
related gene and molecule expression (Hu et al., 2015).
miRNAs and proteins packaged in the MSC-derived exo-
somes may mainly account for these angiogenic effects.
Endothelial cells treated with MSC-derived exosomes
demonstrated an increased ability for proliferation, migra-
tion, and tube formation. Intravenous administration of
these exosomes significantly increased cardiac function
and angiogenesis in a rat model of MI (Ma et al., 2017). Re-
searchers concluded that the pro-angiogenic effects were
due to increased expression of platelet-derived growth fac-
tor D (PDGF-D). As well as PDGEF-D, several miRNAs are
involved in MSC-derived exosome-mediated pro-angio-
genic effects. Evidence suggests that miR-126- and
VEGF-enriched MSC-derived exosomes promote pro-
angiogenic mRNA expression in ischemic tissues, while
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the pro-angiogenic effects were weakened in exosomes
derived from miR-126 knockdown MSCs in the treated
group (Du et al., 2017). Wang et al. (2017) showed that
MSC-derived exosomes promoted angiogenesis in the
mouse model of MI through delivery of miR-210. Exo-
some-derived MSCs with miR-210 silence demonstrated a
significantly decreased pro-angiogenic effect both in vitro
and in vivo (Wang et al., 2017). Interestingly, precondition-
ing MSCs with ischemic stroke serum significantly
increased miR-20a expression (Kim et al., 2016). Nonethe-
less, the effects of miR-20a on neovascularization are still
under debate. Inhibition of miR-20a has been suggested
to exert pro-angiogenic or anti-angiogenic effects (Doebele
et al., 2010; Pin et al., 2012; Suarez et al., 2008).

Anti-fibrotic effects

Previous research showed that intravenous (Wang et al.,
2018a) and intramyocardial (Bian et al., 2014; Lv et al,,
2019; Ni et al., 2019; Shao et al., 2017) transplantation of
MSC-derived exosomes could ameliorate cardiac fibrosis
during cardiac regeneration and repair. Cardiac regenera-
tion and repair and deposition of extracellular collagen
are two parallel processes during the reparative phase.
The balance between scar formation and cardiac regenera-
tion is crucial for cardiac repair. Scar formation provides
mechanical strength and circumvents ventricular rupture,
and is beneficial for cardiac repair in the short term. None-
theless it is inversely correlated with cardiac regeneration
in the long term. Therefore, anti-fibrotic therapies are opti-
mized to target the reactive fibrosis that occurs during ven-
tricular remodeling. These are supported by a previous
study wherein systemic inhibition of fibrosis formation sig-
nals during the inflammatory phase following MI exacer-
bated cardiac impairment, while inhibition of systemic
fibrosis ameliorated cardiac remodeling and dysfunction
in the post-MI reparative phase (Ikeuchi et al., 2004). The
miRNA in the MSC-derived exosomes ameliorated collagen
deposition during cardiac remodeling. Apart from anti-
apoptotic effects, miR-19a regulated several extracellular
matrix proteins, including thrombospondin-1 and connec-
tive tissue growth factor (CTGF) (Wen et al., 2012).
Whether miR-19a-enriched exosomes regulated post-MI
fibrosis requires further exploration. A previous study
showed that miR-29 was expressed in BM-MSCs (Jin
etal., 2016). miR-29 is a well-defined miRNA that regulates
cardiac fibrosis. Lower miR-29 expression leads to more
extracellular matrix deposit, culminating in cardiac fibrosis
(van Rooij et al., 2008). Although no direct evidence sup-
ports the anti-fibrotic effect of miR-29, a pharmacological
study showed that MI rats treated with carvedilol had
reduced myocardial fibrosis that was miR-29 dependent
(Zhu et al., 2013). Interestingly, swim training ameliorated
the downregulated expression of miR-29 and decreased the

Ml-induced fibrotic gene expression (Melo et al., 2014).
These studies highlight the pivotal role of miR-29 in cardiac
fibrosis development following MI. A recent study also
showed that miR-133-overexpressed MSCs reduced infarct
size following MI (Chen et al., 2017). The anti-fibrotic ef-
fects of miR-133 may be due to regulation of the collagen
a1 chain and CTGF (Castoldi et al., 2012; Duisters et al.,
2009).

Taken together, exosomes carrying different contents
may elicit different therapeutic responses. Exosomes ex-
pressing abundant miR-182, miR-233, and miR-181c elicit
beneficial effects mainly through anti-inflammatory re-
sponses; exosomes expressing abundant miR-19a, miR-
22, miR-199a, miR-214, and miR-210 modulate the sur-
vival of cardiomyocytes in the ischemic region; exosomes
expressing abundant miR-126, miR-210, and miR-20a
improve cardiac regeneration and repair by promoting
angiogenesis; and exosomes expressing abundant miR-
19a, miR-29, and miR-133 inhibit fibrosis during cardiac
regeneration and repair. Post-MI regeneration and repair
can be divided into two phases: a pro-inflammatory phase,
which features pro-inflammatory cytokine release, inflam-
matory cell infiltration, and phagocytosis of necrotic cell
debris; and a reparative phase, characterized by resolution
of inflammation and formation of collagen-based scar
(Cahill et al., 2017). Therefore, anti-inflammatory and
anti-apoptotic exosomes may benefit cardiac regeneration
during the pro-inflammatory phase, whereas pro-angioge-
netic and anti-fibrotic exosomes promote vascularization
and cardiac regeneration during the reparative phase. The
miRNAs and downstream pathways relevant to the anti-in-
flammatory, anti-apoptotic, pro-angiogenic, and anti-
fibrotic effects are summarized in Table 3.

Potential role in enhancing therapeutic efficacy of
cell-based therapy

Recently, our group has investigated the immunomodula-
tory effect of human iPSC (hiPSC)-MSCs on improving
the survival and therapeutic efficacy of cells following in-
tramyocardial transplantation into a mouse model of MI
(Sun et al., 2021). Our results showed that pre-transplanta-
tion systemic administration of hiPSC-MSCs increased sys-
temic regulatory T cell (Treg) activation, decreased the
number of splenic natural killer (NK) cells and inflamma-
tion, enhanced survival of transplanted hiPSC-MSCs and
hiPSC-cardiomyocytes following intramyocardial trans-
plantation, and improved the therapeutic efficacy at
4 weeks post MI. Previous studies showed that MSC-derived
exosomes could upregulate CD4" T cell differentiation into
Tregs and downregulate the activation of NK cells (Kordelas
et al., 2014; Zhang et al., 2014). The immunomodulatory
effects of MSCs were orchestrated by immunosuppressive
factors  including  indoleamine  2,3-dioxygenase,
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Table 3. The miRNAs and underlying pathways for MSC-derived exosome-mediated cardiac regeneration

Function Route of administration miRNA Pathway Target cell Reference
Anti-inflammatory intramyocardial, miR-182  TLR4 signal macrophage Zhao et al., 2019
intravenous .
miR-233  SEMA3A; STAT3 macrophage Wang et al., 2015
miR-181c  TLR4 signal T cell Mokarizadeh et al., 2012
Anti-apoptotic intramyocardial, miR-19a  PTEN cardiomyocyte Heetal., 2018
intravenous, )
intracoronary miR-22 MeCP2 Feng et al., 2014
intrapericardial miR-199a Sema3A Zhu et al., 2019
miR-214  sodium/calcium exchanger 1; cyclophilin D; Wang et al., 2018b
Bcl-2 like protein 11; PTEN
miR-210  B-catenin; Bcl-2; adenomatous polyposis Arif et al., 2017
coli; p16; caspase-3
Pro-angiogenic intramyocardial, miR-126  Spred-1 endothelial cell Duetal., 2017
intravenous
miR-210  Efna3 Wang et al., 2017
miR-20a  p38 MAP kinase Pin et al., 2012
Anti-fibrotic intramyocardial, miR-19a  thrombopondin-1; CTGF fibroblast Wen et al., 2012
intravenous . .
miR-29  fibrotic gene Melo et al., 2014
miR-133  collagen a1 chain; CTGF Chen et al., 2017

MSC, mesenchymal stromal cell; TLR4, Toll-like receptor 4; PTEN, phosphatase and tensin homolog; CTGF, connective tissue growth factor.

transforming growth factor 1, prostaglandin E,, nitric ox-
ide, and interleukin-10 (English et al., 2009; Maggini et al.,
2010; Nauta et al., 2006; Ren et al., 2012; van Koppen et al.,
2012). Recently, researchers proposed that these immuno-
suppressive factors were packed in the extracellular
vesicles, especially exosomes (Lener et al., 2015). Indeed,
subcutaneous administration of MSC-derived exosomes
improved the survival of transplanted immortal human
keratinocytes in a rat skin wound model (Zhang et al.,
2015). As a result, if hiPSC-MSC-derived exosomes can
recapitulate the immunomodulatory effect of their parent
cells, pre-transplantation systemic administration of
hiPSC-MSC-derived exosomes is a promising strategy by
which to improve the cell retention of cell-based therapy
because of their advantages of low tumorigenicity and su-
perior immune tolerance and stability. Isolation of immu-
nomodulatory exosomes from MSCs may provide a prom-
ising means by which to combine cell-based therapies and
exosome-based therapies for cardiac regeneration and
repair.

Approaches to improve the production and
therapeutic effects of MSC-derived exosomes

Although MSC-derived exosomes represent a promising
candidate for cardiac regeneration and repair, their low-
level production from routine culture conditions limits
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their therapeutic efficacy. Different culture conditions
may result in altered production of MSC-derived exosomes
and even different components in the released exosomes.
For example, culture of MSCs with stroke serum, obtained
from the blood of mice with middle cerebral artery occlu-
sion, demonstrated remarkably increased miR-20a expres-
sion in their released exosomes when compared with
MSCs cultured with fetal bovine serum or normal serum
(Kim et al., 2016). It is evident that culture conditions
will considerably affect the constituents of its relevant
exosomes as well as their production. It is of paramount
importance to define the appropriate culture conditions
to improve the production of exosomes without
compromising their therapeutic effect. Apart from culture
medium, cell type also influences the efficacy of exo-
some-based therapies, since exosomes from different mi-
croenvironments may have a different focus on a certain
cell type. For example, extracellular vesicles derived from
the nervous system are preferentially absorbed by cells in
the nervous system (Pegtel et al., 2014). Whether co-
culturing of MSCs with cardiomyocytes can improve the ef-
ficacy of MSC-derived exosomes remains to be revealed.
As mentioned above, the destiny of exosomes is either
degradation by lysosomes or release into the extracellular
space. Therefore, increased production of MSC-derived
exosomes can be realized by decreasing degradation and
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increasing exosome secretion. For example, inhibition of
P2X7 receptors, soluble NSF attachment protein receptors,
tumor suppressor-activated pathway 6, rhomboid domain-
containing protein 1, or phospholipase D2 compromises
exosome release. Overexpressing these mediators may
enhance exosome extracellular secretion and prevent exo-
some degradation (Phan et al., 2018). Regulating the key
mediators in the exosome degradation or secretion path-
ways may promote effective MSC-derived exosome secre-
tion, culminating in increased exosome production.
Genetic modification of their parent cells is another effi-
cient means to improve the therapeutic effect of exosomes.
The therapeutic efficacy of MSC-derived exosomes can be
improved by overexpression or knockdown of certain
RNAs or proteins. Several DNA or RNA sequences have
been regarded as cardioprotective or pro-angiogenic. For
example, modifying MSCs by transfecting them with a re-
combinant adenovirus carrying the Akt gene sequence
could increase the expression of PDGEF-D in its related exo-
somes (Ma et al., 2017). These genetically modified MSCs
and their related exosomes have an increased ability to pro-
mote neovascularization, cardiac regeneration, and cardiac
repair. Both DNA sequences and RNA sequences could be
regarded as modified target and non-coding RNAs that
were increased in the exosomes derived from genetically
modified MSCs, and have been considered to play a pivotal
role in cardiac regeneration and repair following MI.
Although there is no consensus on the optimum delivery
route for MSC-derived exosomes, intramyocardial trans-
plantation, especially transendocardial transplantation,
may be the most efficacious (Collantes et al., 2017; Kaneli-
dis et al., 2017). Nonetheless, previous studies showed that
more than 90% of cells were lost within the first few days
following transplantation because a large percentage of
cells spilled out from the myocardium when they were
delivered via direct intramyocardial injection. The same
problem exists for administration of exosome-based ther-
apy. An alternative approach is to use cardiac tissue engi-
neering to produce a scaffold and then seed exosomes
onto the patch to optimize retention and engraftment.

Limitations of MSC-derived exosomes

Although MSC-derived exosomes are a promising substi-
tute for MSCs in regenerative medicine, there are several
considerations that should be addressed prior to their clin-
ical application. First, exosomes are currently isolated ac-
cording to their vesicle size. If different vesicle sizes reflect
different components in exosomes, more accurate isola-
tion methods need to be adopted, since different-size-
defined exosomes may have variable therapeutic efficacy
for cardiac regeneration and repair. Second, exosomes are
stored in MVEs before release into intercellular substance.
Extracting MSC-derived exosomes from MVEs before they

are released may help to isolate purified exosomes, as
MSC-derived exosomes isolated from culture media and
blood may be contaminated by exosomes from other cell
types. Third, a well-defined method for single-exosome
analysis is currently unavailable. Investigating cargoes
from a single exosome rather than the whole exosome pop-
ulation would provide a better understanding of the exact
mechanisms underlying exosome-based therapies. Finally,
it is pertinent to define the appropriate microenvironment
in which to generate therapeutic exosomes for cardiac
regeneration and repair. Recent evidence demonstrates
that MSC-derived exosomes may contain different com-
pounds and exert different therapeutic effects in different
microenvironments. For example, MSCs may secrete
immunomodulatory exosomes in the pro-inflammatory
phase after MI and then pro-angiogenic exosomes in the
reparative phase of cardiac regeneration and repair. Taken
together, difficulty in detecting exosomes in vivo, dynamic
secretion and uptake at the tissue level, and lack of an effi-
cient purification route are all challenges for current exo-
some studies.

Perspective and conclusion

Mounting evidence suggests that exosomes derived from
MSCs can be a potential therapy to promote cardiac regen-
eration and repair after MI. The therapeutic role of MSC-
derived exosomes is extremely complex. Demonstrating
the components in exosomes and their exact interaction
with other cells in the infarcted heart may help researchers
to understand their therapeutic effects and optimize the ef-
fects of exosome-based therapies. Exosome research is still
in its infancy although a pre-clinical large animal study is
currently ongoing. Studying the therapeutic efficacy of
MSC-exosome-based therapy in this porcine model or
other pre-clinical large animal model could provide further
evidence to support clinical translation of MSC-exosome-
based therapy. Moreover, our previous study showed that
hiPSC-MSCs demonstrated superior therapeutic efficacy
for cardiac repair and regeneration in comparison with
BM-MSCs due to their increased survival after transplanta-
tion (Lian et al., 2010). Therefore, it is of great interest to
investigate whether hiPSC-MSC-derived exosomes have
therapeutic benefits for cardiac repair and regeneration
that are superior to those of BM-MSC-derived exosomes.
Our previous study also showed that pre-transplantation
systemic intravenous administration of hiPSC-MSCs
induced immunomodulation and facilitated the survival
of intramyocardially transplanted cells to improve cardiac
function in MI. Pre-transplantation systemic administra-
tion of MSC-derived exosomes may be a promising strategy
to improve cell retention of cell-based therapy. In conclu-
sion, studying exosomes provides insight into the exact
mechanism of cardiac regeneration and repair, helps
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optimize cell-based therapies, and promotes the develop-
ment of precision medicine.
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