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Mesenchymal stromal cell (MSC)-derived exosomes play a

promising role in regenerative medicine. Their trophic and

immunomodulatory potential has made them a promising candi-

date for cardiac regeneration and repair. Numerous studies have

demonstrated that MSC-derived exosomes can replicate the anti-

inflammatory, anti-apoptotic, and pro-angiogenic and anti-

fibrotic effects of their parent cells and are considered a substitute

for cell-based therapies. In addition, their lower tumorigenic risk,

superior immune tolerance, and superior stability compared with

their parent stem cells make them an attractive option in regener-

ative medicine. The therapeutic effects of MSC-derived exosomes

have consequently been evaluated for application in cardiac regen-

eration and repair. In this review, we summarize the potential

mechanisms and therapeutic effects of MSC-derived exosomes in

cardiac regeneration and repair and provide evidence to support

their clinical application.

Background

Cardiovascular diseases, in particular coronary heart dis-

ease (CHD), remain the leading cause of morbidity and

mortality worldwide (Virani et al., 2020). Among all

CHDs, acute myocardial infarction (MI) is a major cause

of death. Consequent complications such as heart failure

contribute to a significant medical, social, and financial

burden. A broad spectrumof therapeutic reperfusion strate-

gies is available, such as thrombolytic therapy or primary

percutaneous coronary intervention, as well as anti-remod-

eling medications such as angiotensin-converting enzyme

drugs and b-blockers. Nonetheless there is no effective

pharmacological intervention that prevents cardiomyo-

cyte death due to myocardial ischemia/reperfusion (I/R)

injury (Heusch and Gersh, 2017). This I/R injury may

also contribute to cardiac fibrosis, myocardial remodeling,

cardiac arrhythmia, and, eventually, heart failure (Frank

et al., 2012). At the end stage, the only available therapy

for heart failure is heart transplantation or permanent left

ventricular (LV) support. There is therefore tremendous in-

terest in andneed for novel therapies for post-MI LVremod-

eling and dysfunction.

In the last few years great advances have been made in

cell-based therapies. The ultimate aim of such therapies is

to generate sufficient functional cardiomyocytes to

compensate for those lost following MI, either with exoge-
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nous cells or by activating endogenous regeneration and

repair mechanisms (Menasche, 2018). Mesenchymal stem

cells (MSCs) are multipotent stem cells that reside in

various organs and can be derived from multiple tissues

or cells including bone marrow (BM) stroma, adipose tis-

sue, muscle, skin, fallopian tissue, umbilical cord blood,

menstrual blood, and even induced pluripotent stem cells

(iPSCs) (Caplan, 1991; Jackson et al., 2010; Lian et al.,

2010). Their strong paracrine effects make MSCs a prom-

ising candidate for endogenous regeneration and repair

pathways. There is evidence that intravenous, intracoro-

nary, or intramyocardial administration of MSCs can

improve LV function in an MI model (Bagno et al., 2018;

Hu et al., 2016; Liao et al., 2019). Moreover, our previous

study showed that pre-transplantation systemic intrave-

nous administration ofMSCs improved retention and ther-

apeutic efficacy of intramyocardially transplanted exoge-

nous cells (Sun et al., 2021).

Accumulating evidence shows that MSC-derived exo-

somes can ameliorate cardiac function and improve cardiac

regeneration and repair (de Abreu et al., 2020). In this re-

view, we discuss the therapeutic effects of MSC-derived

exosomes in cardiac regeneration and repair following MI

and describe the potential mechanisms underlying the

benefits of MSC-exosome-based therapies. Additionally,

we describe potential approaches to improve the efficacy

and production of MSC-derived exosomes.
The advantages of MSC-derived exosomes over their

parent MSCs

Exosomes are extracellular vesicles with a diameter of 30–

150 nm. Previous studies have shown that they are secreted

by endosomes, stored in the multivesicular endosomes

(MVEs), and released through exocytosis (Doyle and

Wang, 2019). The destiny of exosomes is either release

into the extracellular space through fusion of MVEs with

the cell plasma membrane or degradation by lysosomes

along with MVEs (Doyle and Wang, 2019). The exosome

transfers messages of the target cells through three possible

pathways (Figure 1). First, the membrane receptors as well

as protein or microRNA (miRNA) composition can be
uthors.
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Figure 1. Pathways for exosomes to target
toward and fuse with the receiving cells
First, membrane fusion: activated receptors
as well as the composition of exosomes can
be transferred to the target cells by mem-
brane fusion. Second, binding receptors:
exosomes can activate target cells through
binding their protein ligands to the receptors
in recipient cells. Third, endocytosis: when
exosomes are taken up by the target cells, the
protein or miRNA composition that they carry
can be released into target cells. MSC,
mesenchymal stromal cell.
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transferred to recipient cells by membrane fusion. Second,

there are several protein ligands such as heat-shock pro-

teins in the exosomemembrane that can activate recipient

cells through receptors in recipient cells. Third, the compo-

sition of exosomes such as protein and miRNAs can be

transferred to recipient cells by endocytosis (Loyer et al.,

2014). Exosomes have been considered one of the main

mediators that regulate cell-cell communication. Barile

et al. (2012) observed that exosomes secreted by MSCs

were absorbed by cardiomyocytes. This ultrastructural evi-

dence indicated that there is indeed an MSC-cardiomyo-

cyte communication modulated by exosomes and that

MSCs exerted their cardioprotective effect partly through

releasing exosomes. Administration of exosomes derived

fromMSCs has been shown recently to recapitulate the car-

dioprotective effect of MSCs (de Abreu et al., 2020). There

are several advantages of using exosomes rather than cell-

based therapies. First, the risk of tumorigenicity in MSC-

based therapies has been observed in previous studies (Bar-

kholt et al., 2013), whereas no tumor formation has been

observed in exosome-based therapies. Second, inflamma-

tory cytokine interferon-g (IFN-g) can increase expression

of HLA and immune rejection of transplanted MSCs (Sun

et al., 2015), whereas no such effects have been reported

following transplantation of MSC-derived exosomes.

Third, MSC-derived exosomes are more stable to store

compared with MSCs (Lener et al., 2015). Fourth, the pro-

duction cost of MSC-derived exosomes is lower than that

of their parent cells. Finally, as the particle size of exosomes

is much smaller than that of their parent cells, exosomes
could travel across capillaries without plugging. Therefore,

MSC-derived exosomes are more efficacious than their

parent cells after intravenous administration. In summary,

mounting evidence demonstrates that exosomes not only

recapitulate the beneficial effects of their parent cells but

also overcome some of the limitations of parent cells (Table

1).

The potential role ofMSC-derived exosomes in cardiac

regeneration and repair

Use of exosomes for cardiac repair is still at an early stage,

and clinical studies of MSC-derived exosomes in the treat-

ment of cardiovascular disease are ongoing. Table 2 sum-

marizes the findings of pre-clinical studies (Arslan et al.,

2013; Bian et al., 2014; Feng et al., 2014; He et al., 2018;

Ju et al., 2018; Liu et al., 2020; Luther et al., 2018; Lv

et al., 2019; Ma et al., 2017, 2018; Mao et al., 2019; Ni

et al., 2019; Shao et al., 2017; Wang et al., 2017, 2018a;

Xiao et al., 2018; Xu et al., 2020; Yu et al., 2013; Zhao

et al., 2019) on the use ofMSC-derived exosomes in cardiac

regeneration and repair. Application of exosomes derived

from BM-MSCs (Bian et al., 2014; Feng et al., 2014; He

et al., 2018; Liu et al., 2020; Luther et al., 2018; Lv et al.,

2019; Ma et al., 2018; Shao et al., 2017; Wang et al., 2017,

2018a; Xiao et al., 2018; Xu et al., 2020; Yu et al., 2013;

Zhao et al., 2019), embryonic stem cell (ESC)-MSCs (Arslan

et al., 2013), umbilical cord (UC)-MSCs (Ma et al., 2017; Ni

et al., 2019; Xu et al., 2020), adipose (AD)-MSCs (Xu et al.,

2020), and cardiac MSCs (Ju et al., 2018) resulted in signif-

icantly improved cardiac function in a pre-clinicalmodel of
Stem Cell Reports j Vol. 16 j 1662–1673 j July 13, 2021 1663



Table 1. The advantages of MSC-derived exosomes over their
parent cells

MSC MSC-derived exosomes

Risk of tumorigenicity low no

Immune rejection low no

Stability low high

Production cost high low

Therapeutic efficacy after

systemic delivery

low high

MSC, mesenchymal stromal cell.
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MI. Among all these exosomes, BM-MSC-derived exosomes

and extracellular vesicle size from 30 to 180 nm were most

widely used for cardiac repair and regeneration. Intramyo-

cardial and intravenous transplantation were the twomost

commonly used modes of delivery. For studies in mice, 20–

50 mg of MSC-derived exosomes is used for intravenous

administration while 1–600 mg is used for intramyocardial

administration. For studies in rats, 40–400 mg of MSC-

derived exosomes is used for intravenous administration

while 20–80 mg is used for intramyocardial administration.

In most of these studies, exosomes were administered

immediately after induction of MI. Other studies demon-

strated that when administration occurred 30 min, 48 h,

and even 1 week after MI, cardiac function was still

improved. Moreover, to define the therapeutic role of

MSC-derived exosomes, the following issues needed to be

clarified: (1) the source of their parent cells; (2) methods

of isolation and particle size distribution; and (3) the com-

ponents of exosomes. Here, we illustrate the mechanisms

that underlie the therapeutic efficacy of MSC-derived exo-

somes in cardiac regeneration and repair and their poten-

tial role in enhancing the therapeutic efficacy of cell-based

therapy.

Anti-inflammatory effects

Previous studies showed that MSCs have multiple anti-in-

flammatory effects that include regulating the polarization

of macrophages, inhibiting the activation of effector

T cells, and suppressing the secretion of B cells (Corcione

et al., 2006; Di Nicola et al., 2002; Le Blanc and Mougiaka-

kos, 2012). Recent studies show that MSC-derived exo-

somes replicate these anti-inflammatory effects of their

parent cells. Both intramyocardial (Lv et al., 2019; Shao

et al., 2017; Xu et al., 2020; Zhao et al., 2019) and intrave-

nous (Mao et al., 2019; Wang et al., 2018a) transplantation

of MSC-derived exosomes can decrease pro-inflammatory

immune cell infiltration in the infarcted heart. Sun et al.

(2018) demonstrated thatMSC-derived exosomes switched

pro-inflammatorymacrophages to anti-inflammatorymac-
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rophages. Collino et al. (2015) showed that miRNAs play a

key role in exosome-based therapies. This anti-inflamma-

tory effect may also be mediated by exosomal miRNAs, evi-

denced by the promotion of switching of M1macrophages

to M2 macrophages in the peri-infarcted area by miR-182-

enriched MSC-derived exosomes (Zhao et al., 2019). More-

over, miR-233-enriched MSC-derived exosomes, which

were taken up by macrophages, downregulated SEMA3A

and STAT3 and reduced the inflammatory response inmac-

rophages (Wang et al., 2015). In addition, MSC-derived

exosomes regulated effector T cells and B cells, inhibited

T cell proliferation, and induced activated effective T cell

apoptosis (Mokarizadeh et al., 2012).miR-181c has been re-

garded as a key miRNA in this exosome-mediated T cell

regulation; miR-181c-enriched MSC-derived exosomes

were shown to blunt the Toll-like receptor 4 (TLR4)

signaling pathway-mediated release of pro-inflammatory

factors (Li et al., 2016). A recent study also showed that

MSC-derived exosomes fully reproduced the immunosup-

pressive effects of MSCs on B cell proliferation and immu-

noglobulin production by mediating the secretion of im-

munoglobulins (Budoni et al., 2013). Although the

precise mechanism of these anti-inflammatory effects re-

mains unclear, current clinical trials show that intravenous

administration of MSC-derived exosomes is a safe and

effective treatment for immune disease (Kordelas et al.,

2014).

Anti-apoptotic effects

Previous studies showed that intramyocardial (Feng et al.,

2014; Liu et al., 2020; Lv et al., 2019; Ni et al., 2019; Shao

et al., 2017; Wang et al., 2017; Xiao et al., 2018; Xu et al.,

2020; Yu et al., 2013), intravenous (He et al., 2018; Ma

et al., 2017;Mao et al., 2019;Wang et al., 2018a), intracoro-

nary (Arslan et al., 2013) or intrapericardial sac (Luther

et al., 2018) transplantation of MSC-derived exosomes

could ameliorate apoptosis of endogenous cardiomyocytes.

The infiltrated inflammatory cells released numerous reac-

tive oxygen species that led to programmed cell death in

the peri-infarcted area. MSC-derived exosomes may reduce

oxidative stress and improve the anti-apoptotic ability of

cardiomyocytes in the peri-infarcted area. A recent study

showed that administration of MSC-derived exosomes in

an I/Rmousemodel increased the ATP level, reduced oxida-

tive stress, and improved cardiomyocyte survival (Arslan

et al., 2013). Previous studies showed that miRNAs

including miR-19a (He et al., 2018), miR-22 (Feng et al.,

2014), miR-199a (Zhu et al., 2019), and miR-214 (Wang

et al., 2018b) play key roles in these exosome-mediated

anti-apoptotic effects. Exosomes derived from GATA4-

overexpressed MSCs exerted anti-apoptotic and cardiopro-

tective effects by delivering anti-apoptotic miRNAs,

including miR-19a (He et al., 2018). These anti-apoptotic



Table 2. Pre-clinical studies of MSC-derived exosomes for cardiac regeneration and repair

No. Authors Year Model
Cell
source

Cell
type

Size
of EV Administration Time Dose Effect

1 Arslan

et al.

2013 myocardial

I/R injury

(mouse)

human ESC-MSC – intracoronary 5 min prior

to reperfusion

to 3 h after

0.4 mg/mL reduced MI size, decreased

LV dilation, increased cardiac

function, decreased ATP loss

2 Yu et al. 2013 myocardial

I/R injury

(rat)

rat BM-MSC average:

100 nm

intramyocardial immediately derived from

4 3 106 MSC

reduced CM apoptosis,

improved cardiac function

3 Bian

et al.

2014 MI (rat) human BM-MSC 47–180 nm intramyocardial 30 min

after MI

80 mg improved cardiac function,

decreased MI size,

promoted angiogenesis

4 Feng et al. 2014 MI

(mouse)

mouse BM-MSC average:

57.4 nm

intramyocardial immediately 1 mg decreased MI size,

decreased apoptosis

5 Ma et al. 2017 MI (rat) human UC-MSC average:

96 nm

intravenous immediately 400 mg improved cardiac function,

decreased apoptosis,

increased angiogenesis

6 Shao et al. 2017 MI (rat) rat BM-MSC – intramyocardial immediately 20 mg improved cardiac function,

reduced MI size,

decreased inflammation

7 Wang

et al.

2017 MI

(mouse)

mouse BM-MSC – intravenous immediately – improved angiogenesis

and cardiac function

8 He et al. 2018 MI

(mouse)

mouse BM-MSC – intravenous 48 h after MI 20 mg improved cardiac function,

decreased apoptosis,

increased angiogenesis

9 Ju et al. 2018 MI

(mouse)

mouse C-MSC average:

120 nm

intramyocardial immediately 50 mg improved cardiac function,

increased angiogenesis

10 Luther

et al.

2018 MI

(mouse)

mouse BM-MSC – pericardial sac immediately 12.5 mg decreased apoptosis

11 Wang

et al.

2018 MI

(mouse)

mouse BM-MSC 30–150 nm intravenous immediately 50 mg improved cardiac function,

increased angiogenesis,

decreased MI size,

decreased inflammation

12 Xiao et al. 2018 MI

(mouse)

human BM-MSC – intramyocardial 30 min

after MI

5 mg improved cardiac function,

decreased apoptosis

13 Xu et al. 2018 MI (rat) human BM-MSC,

AD-MSC,

UC-MSC

BM-MSC:

40–100 nm;

AD-MSC:

30–100 nm;

UC-MSC:

10–90 nm

intramyocardial 30 min

after MI

derived

from

1.5 3 106

MSC

improved cardiac function,

decreased MI size, decreased

apoptosis and inflammation

14 Ma et al. 2018 MI

(mouse)

mouse BM-MSC <150 nm intramyocardial 1 week

after MI

600 mg improved cardiac function,

increased angiogenesis

15 Mao et al. 2019 MI (rat) human MSC 30–150 nm intravenous immediately 40 mg decreased MI size, decreased

apoptosis and inflammation

16 Ni et al. 2019 MI (rat) human UC-MSC 40–90 nm intramyocardial immediately 50 mg improved cardiac function,

decreased MI size, reduced

apoptosis, increased

angiogenesis

(Continued on next page)
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Table 2. Continued

No. Authors Year Model
Cell
source

Cell
type

Size
of EV Administration Time Dose Effect

17 Lv et al. 2019 MI (rat) rat BM-MSC average:

90 nm

intramyocardial 30 min

after MI

80 mg improved cardiac function,

reduced MI size, decreased

apoptosis and inflammation,

increased angiogenesis

18 Zhao et al. 2019 myocardial

I/R injury

(mouse)

mouse BM-MSC 50–150 nm intramyocardial immediately 50 mg decreased MI size

and inflammation

19 Liu et al. 2020 MI (rat) human BM-MSC average:

50 nm

intramyocardial immediately 30 mg improved cardiac function,

decreased apoptosis

MSC, mesenchymal stromal cell; EV, extracellular vesicle; MI, myocardial infarction; I/R, ischemia/reperfusion; ESC, embryonic stem cell; BM, bone marrow;

UC, umbilical cord; AD, adipose; LV, left ventricle; ATP, adenosine triphosphate; CM, cardiomyocyte.
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effects were abolished by inhibition of miR-19a (He et al.,

2018). Researchers attributed the anti-apoptotic effects to

downregulation of phosphatase and tensin homolog

(PTEN) (Chen et al., 2013). Nonetheless, the clinical safety

of miR-19a-enriched exosomes is still under debate.

Although there are limited data on the arrhythmogenic

effect of miR-19a-enriched exosomes, overexpression of

miR-19a may induce arrhythmias, since miR-19a aber-

rantly inhibits connexin-43 expression (Danielson et al.,

2013). Feng et al. (2014) showed that after co-culture

with cardiomyocytes, MSCs transferred miR-22 into cardi-

omyocytes through exosome release. Intramyocardial

administration ofmiR-22-enrichedMSC-derived exosomes

was shown to decrease cardiomyocyte apoptosis in the

ischemic area and reduce infarct size (Feng et al., 2014).

In a kidney ischemia/perfusion model, miR-199a-enriched

MSC-derived exosomes decreased apoptosis in renal cells

by modulating Sema3A and activating Akt and ERK path-

ways (Zhu et al., 2019). miR-199a is one of the key miRNAs

that blocked negative regulators of cardiomyocyte prolifer-

ation in a neonatal rat model (Eulalio et al., 2012). Indeed,

overexpression of miR-199a exerted cardioprotective ef-

fects and promoted cardiac regeneration and repair after

MI (Eulalio et al., 2012). Exosomes derived from miR-214-

enriched MSCs facilitated cardiac stem cell survival via

reduction of reactive oxygen species production. On the

contrary, depletion of miR-214 by miR-214 inhibitor or

miR-214 mimics impaired the anti-apoptotic effects of

these miR-214-enriched exosomes (Wang et al., 2018b).

miR-214 exerted its anti-apoptotic effects mainly through

regulation of sodium/calcium exchanger 1, cyclophilin D,

Bcl-2 like protein 11, and PTEN (Aurora et al., 2012; Lv

et al., 2014; Wang et al., 2018b). Nonetheless, miR-214

may induce dilated cardiomyocytes in the long term (Lv

et al., 2014). This side effect may limit the clinical applica-

tion of miR-214-enriched exosomes. Although no report is

available onmiR-210-enriched exosomes, theymay be also
1666 Stem Cell Reports j Vol. 16 j 1662–1673 j July 13, 2021
involved in the exosome-mediated anti-apoptosis effect.

miR-210 promoted endogenous cardiac regeneration

through upregulation of b-catenin and Bcl-2 and downre-

gulation of adenomatous polyposis coli, p16, and cas-

pase-3 (Arif et al., 2017).

Pro-angiogenic effects

Previous research showed that intravenous (He et al., 2018;

Ma et al., 2017;Wang et al., 2017, 2018a) and intramyocar-

dial (Bian et al., 2014; Ju et al., 2018; Lv et al., 2019; Ma

et al., 2018; Ni et al., 2019) administration can improve

angiogenesis during cardiac regeneration and repair. Our

study showed that iPSC-MSCs ameliorated limb ischemia

through both vascular differentiation and paracrine secre-

tion, such as vascular endothelial growth factor (VEGF)

and basic fibroblast growth factor (Lian et al., 2010).

Recently, Hu et al. (2015) reported that intramuscular

administration of exosomes derived from iPSC-MSCs

partly replicated the pro-angiogenic effects of their parent

cells. In their in vitro study, iPSC-MSC-derived exosomes

promoted human umbilical vein endothelial cell migra-

tion, proliferation, tube formation, and angiogenesis-

related gene and molecule expression (Hu et al., 2015).

miRNAs and proteins packaged in the MSC-derived exo-

somes may mainly account for these angiogenic effects.

Endothelial cells treated with MSC-derived exosomes

demonstrated an increased ability for proliferation, migra-

tion, and tube formation. Intravenous administration of

these exosomes significantly increased cardiac function

and angiogenesis in a rat model of MI (Ma et al., 2017). Re-

searchers concluded that the pro-angiogenic effects were

due to increased expression of platelet-derived growth fac-

tor D (PDGF-D). As well as PDGF-D, several miRNAs are

involved in MSC-derived exosome-mediated pro-angio-

genic effects. Evidence suggests that miR-126- and

VEGF-enriched MSC-derived exosomes promote pro-

angiogenic mRNA expression in ischemic tissues, while
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the pro-angiogenic effects were weakened in exosomes

derived from miR-126 knockdown MSCs in the treated

group (Du et al., 2017). Wang et al. (2017) showed that

MSC-derived exosomes promoted angiogenesis in the

mouse model of MI through delivery of miR-210. Exo-

some-derived MSCs with miR-210 silence demonstrated a

significantly decreased pro-angiogenic effect both in vitro

and in vivo (Wang et al., 2017). Interestingly, precondition-

ing MSCs with ischemic stroke serum significantly

increased miR-20a expression (Kim et al., 2016). Nonethe-

less, the effects of miR-20a on neovascularization are still

under debate. Inhibition of miR-20a has been suggested

to exert pro-angiogenic or anti-angiogenic effects (Doebele

et al., 2010; Pin et al., 2012; Suárez et al., 2008).

Anti-fibrotic effects

Previous research showed that intravenous (Wang et al.,

2018a) and intramyocardial (Bian et al., 2014; Lv et al.,

2019; Ni et al., 2019; Shao et al., 2017) transplantation of

MSC-derived exosomes could ameliorate cardiac fibrosis

during cardiac regeneration and repair. Cardiac regenera-

tion and repair and deposition of extracellular collagen

are two parallel processes during the reparative phase.

The balance between scar formation and cardiac regenera-

tion is crucial for cardiac repair. Scar formation provides

mechanical strength and circumvents ventricular rupture,

and is beneficial for cardiac repair in the short term. None-

theless it is inversely correlated with cardiac regeneration

in the long term. Therefore, anti-fibrotic therapies are opti-

mized to target the reactive fibrosis that occurs during ven-

tricular remodeling. These are supported by a previous

studywherein systemic inhibition of fibrosis formation sig-

nals during the inflammatory phase following MI exacer-

bated cardiac impairment, while inhibition of systemic

fibrosis ameliorated cardiac remodeling and dysfunction

in the post-MI reparative phase (Ikeuchi et al., 2004). The

miRNA in theMSC-derived exosomes ameliorated collagen

deposition during cardiac remodeling. Apart from anti-

apoptotic effects, miR-19a regulated several extracellular

matrix proteins, including thrombospondin-1 and connec-

tive tissue growth factor (CTGF) (Wen et al., 2012).

Whether miR-19a-enriched exosomes regulated post-MI

fibrosis requires further exploration. A previous study

showed that miR-29 was expressed in BM-MSCs (Jin

et al., 2016). miR-29 is a well-defined miRNA that regulates

cardiac fibrosis. Lower miR-29 expression leads to more

extracellular matrix deposit, culminating in cardiac fibrosis

(van Rooij et al., 2008). Although no direct evidence sup-

ports the anti-fibrotic effect of miR-29, a pharmacological

study showed that MI rats treated with carvedilol had

reduced myocardial fibrosis that was miR-29 dependent

(Zhu et al., 2013). Interestingly, swim training ameliorated

the downregulated expression of miR-29 and decreased the
MI-induced fibrotic gene expression (Melo et al., 2014).

These studies highlight the pivotal role ofmiR-29 in cardiac

fibrosis development following MI. A recent study also

showed that miR-133-overexpressed MSCs reduced infarct

size following MI (Chen et al., 2017). The anti-fibrotic ef-

fects of miR-133 may be due to regulation of the collagen

a1 chain and CTGF (Castoldi et al., 2012; Duisters et al.,

2009).

Taken together, exosomes carrying different contents

may elicit different therapeutic responses. Exosomes ex-

pressing abundant miR-182, miR-233, and miR-181c elicit

beneficial effects mainly through anti-inflammatory re-

sponses; exosomes expressing abundant miR-19a, miR-

22, miR-199a, miR-214, and miR-210 modulate the sur-

vival of cardiomyocytes in the ischemic region; exosomes

expressing abundant miR-126, miR-210, and miR-20a

improve cardiac regeneration and repair by promoting

angiogenesis; and exosomes expressing abundant miR-

19a, miR-29, and miR-133 inhibit fibrosis during cardiac

regeneration and repair. Post-MI regeneration and repair

can be divided into two phases: a pro-inflammatory phase,

which features pro-inflammatory cytokine release, inflam-

matory cell infiltration, and phagocytosis of necrotic cell

debris; and a reparative phase, characterized by resolution

of inflammation and formation of collagen-based scar

(Cahill et al., 2017). Therefore, anti-inflammatory and

anti-apoptotic exosomes may benefit cardiac regeneration

during the pro-inflammatory phase, whereas pro-angioge-

netic and anti-fibrotic exosomes promote vascularization

and cardiac regeneration during the reparative phase. The

miRNAs and downstream pathways relevant to the anti-in-

flammatory, anti-apoptotic, pro-angiogenic, and anti-

fibrotic effects are summarized in Table 3.

Potential role in enhancing therapeutic efficacy of

cell-based therapy

Recently, our group has investigated the immunomodula-

tory effect of human iPSC (hiPSC)-MSCs on improving

the survival and therapeutic efficacy of cells following in-

tramyocardial transplantation into a mouse model of MI

(Sun et al., 2021). Our results showed that pre-transplanta-

tion systemic administration of hiPSC-MSCs increased sys-

temic regulatory T cell (Treg) activation, decreased the

number of splenic natural killer (NK) cells and inflamma-

tion, enhanced survival of transplanted hiPSC-MSCs and

hiPSC-cardiomyocytes following intramyocardial trans-

plantation, and improved the therapeutic efficacy at

4weeks postMI. Previous studies showed thatMSC-derived

exosomes could upregulate CD4+ T cell differentiation into

Tregs and downregulate the activation of NK cells (Kordelas

et al., 2014; Zhang et al., 2014). The immunomodulatory

effects of MSCs were orchestrated by immunosuppressive

factors including indoleamine 2,3-dioxygenase,
Stem Cell Reports j Vol. 16 j 1662–1673 j July 13, 2021 1667



Table 3. The miRNAs and underlying pathways for MSC-derived exosome-mediated cardiac regeneration

Function Route of administration miRNA Pathway Target cell Reference

Anti-inflammatory intramyocardial,

intravenous

miR-182 TLR4 signal macrophage Zhao et al., 2019

miR-233 SEMA3A; STAT3 macrophage Wang et al., 2015

miR-181c TLR4 signal T cell Mokarizadeh et al., 2012

Anti-apoptotic intramyocardial,

intravenous,

intracoronary,

intrapericardial

miR-19a PTEN cardiomyocyte He et al., 2018

miR-22 MeCP2 Feng et al., 2014

miR-199a Sema3A Zhu et al., 2019

miR-214 sodium/calcium exchanger 1; cyclophilin D;

Bcl-2 like protein 11; PTEN

Wang et al., 2018b

miR-210 b-catenin; Bcl-2; adenomatous polyposis

coli; p16; caspase-3

Arif et al., 2017

Pro-angiogenic intramyocardial,

intravenous

miR-126 Spred-1 endothelial cell Du et al., 2017

miR-210 Efna3 Wang et al., 2017

miR-20a p38 MAP kinase Pin et al., 2012

Anti-fibrotic intramyocardial,

intravenous

miR-19a thrombopondin-1; CTGF fibroblast Wen et al., 2012

miR-29 fibrotic gene Melo et al., 2014

miR-133 collagen a1 chain; CTGF Chen et al., 2017

MSC, mesenchymal stromal cell; TLR4, Toll-like receptor 4; PTEN, phosphatase and tensin homolog; CTGF, connective tissue growth factor.
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transforming growth factor b1, prostaglandin E2, nitric ox-

ide, and interleukin-10 (English et al., 2009; Maggini et al.,

2010; Nauta et al., 2006; Ren et al., 2012; van Koppen et al.,

2012). Recently, researchers proposed that these immuno-

suppressive factors were packed in the extracellular

vesicles, especially exosomes (Lener et al., 2015). Indeed,

subcutaneous administration of MSC-derived exosomes

improved the survival of transplanted immortal human

keratinocytes in a rat skin wound model (Zhang et al.,

2015). As a result, if hiPSC-MSC-derived exosomes can

recapitulate the immunomodulatory effect of their parent

cells, pre-transplantation systemic administration of

hiPSC-MSC-derived exosomes is a promising strategy by

which to improve the cell retention of cell-based therapy

because of their advantages of low tumorigenicity and su-

perior immune tolerance and stability. Isolation of immu-

nomodulatory exosomes from MSCs may provide a prom-

ising means by which to combine cell-based therapies and

exosome-based therapies for cardiac regeneration and

repair.

Approaches to improve the production and

therapeutic effects of MSC-derived exosomes

Although MSC-derived exosomes represent a promising

candidate for cardiac regeneration and repair, their low-

level production from routine culture conditions limits
1668 Stem Cell Reports j Vol. 16 j 1662–1673 j July 13, 2021
their therapeutic efficacy. Different culture conditions

may result in altered production of MSC-derived exosomes

and even different components in the released exosomes.

For example, culture of MSCs with stroke serum, obtained

from the blood of mice with middle cerebral artery occlu-

sion, demonstrated remarkably increased miR-20a expres-

sion in their released exosomes when compared with

MSCs cultured with fetal bovine serum or normal serum

(Kim et al., 2016). It is evident that culture conditions

will considerably affect the constituents of its relevant

exosomes as well as their production. It is of paramount

importance to define the appropriate culture conditions

to improve the production of exosomes without

compromising their therapeutic effect. Apart from culture

medium, cell type also influences the efficacy of exo-

some-based therapies, since exosomes from different mi-

croenvironments may have a different focus on a certain

cell type. For example, extracellular vesicles derived from

the nervous system are preferentially absorbed by cells in

the nervous system (Pegtel et al., 2014). Whether co-

culturing ofMSCswith cardiomyocytes can improve the ef-

ficacy of MSC-derived exosomes remains to be revealed.

As mentioned above, the destiny of exosomes is either

degradation by lysosomes or release into the extracellular

space. Therefore, increased production of MSC-derived

exosomes can be realized by decreasing degradation and
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increasing exosome secretion. For example, inhibition of

P2X7 receptors, soluble NSF attachment protein receptors,

tumor suppressor-activated pathway 6, rhomboid domain-

containing protein 1, or phospholipase D2 compromises

exosome release. Overexpressing these mediators may

enhance exosome extracellular secretion and prevent exo-

some degradation (Phan et al., 2018). Regulating the key

mediators in the exosome degradation or secretion path-

ways may promote effective MSC-derived exosome secre-

tion, culminating in increased exosome production.

Genetic modification of their parent cells is another effi-

cientmeans to improve the therapeutic effect of exosomes.

The therapeutic efficacy of MSC-derived exosomes can be

improved by overexpression or knockdown of certain

RNAs or proteins. Several DNA or RNA sequences have

been regarded as cardioprotective or pro-angiogenic. For

example, modifying MSCs by transfecting them with a re-

combinant adenovirus carrying the Akt gene sequence

could increase the expression of PDGF-D in its related exo-

somes (Ma et al., 2017). These genetically modified MSCs

and their related exosomes have an increased ability to pro-

mote neovascularization, cardiac regeneration, and cardiac

repair. Both DNA sequences and RNA sequences could be

regarded as modified target and non-coding RNAs that

were increased in the exosomes derived from genetically

modifiedMSCs, and have been considered to play a pivotal

role in cardiac regeneration and repair following MI.

Although there is no consensus on the optimumdelivery

route for MSC-derived exosomes, intramyocardial trans-

plantation, especially transendocardial transplantation,

may be the most efficacious (Collantes et al., 2017; Kaneli-

dis et al., 2017). Nonetheless, previous studies showed that

more than 90% of cells were lost within the first few days

following transplantation because a large percentage of

cells spilled out from the myocardium when they were

delivered via direct intramyocardial injection. The same

problem exists for administration of exosome-based ther-

apy. An alternative approach is to use cardiac tissue engi-

neering to produce a scaffold and then seed exosomes

onto the patch to optimize retention and engraftment.

Limitations of MSC-derived exosomes

Although MSC-derived exosomes are a promising substi-

tute for MSCs in regenerative medicine, there are several

considerations that should be addressed prior to their clin-

ical application. First, exosomes are currently isolated ac-

cording to their vesicle size. If different vesicle sizes reflect

different components in exosomes, more accurate isola-

tion methods need to be adopted, since different-size-

defined exosomes may have variable therapeutic efficacy

for cardiac regeneration and repair. Second, exosomes are

stored in MVEs before release into intercellular substance.

Extracting MSC-derived exosomes from MVEs before they
are released may help to isolate purified exosomes, as

MSC-derived exosomes isolated from culture media and

blood may be contaminated by exosomes from other cell

types. Third, a well-defined method for single-exosome

analysis is currently unavailable. Investigating cargoes

from a single exosome rather than the whole exosome pop-

ulation would provide a better understanding of the exact

mechanisms underlying exosome-based therapies. Finally,

it is pertinent to define the appropriate microenvironment

in which to generate therapeutic exosomes for cardiac

regeneration and repair. Recent evidence demonstrates

that MSC-derived exosomes may contain different com-

pounds and exert different therapeutic effects in different

microenvironments. For example, MSCs may secrete

immunomodulatory exosomes in the pro-inflammatory

phase after MI and then pro-angiogenic exosomes in the

reparative phase of cardiac regeneration and repair. Taken

together, difficulty in detecting exosomes in vivo, dynamic

secretion and uptake at the tissue level, and lack of an effi-

cient purification route are all challenges for current exo-

some studies.

Perspective and conclusion

Mounting evidence suggests that exosomes derived from

MSCs can be a potential therapy to promote cardiac regen-

eration and repair after MI. The therapeutic role of MSC-

derived exosomes is extremely complex. Demonstrating

the components in exosomes and their exact interaction

with other cells in the infarcted heart may help researchers

to understand their therapeutic effects and optimize the ef-

fects of exosome-based therapies. Exosome research is still

in its infancy although a pre-clinical large animal study is

currently ongoing. Studying the therapeutic efficacy of

MSC-exosome-based therapy in this porcine model or

other pre-clinical large animal model could provide further

evidence to support clinical translation of MSC-exosome-

based therapy. Moreover, our previous study showed that

hiPSC-MSCs demonstrated superior therapeutic efficacy

for cardiac repair and regeneration in comparison with

BM-MSCs due to their increased survival after transplanta-

tion (Lian et al., 2010). Therefore, it is of great interest to

investigate whether hiPSC-MSC-derived exosomes have

therapeutic benefits for cardiac repair and regeneration

that are superior to those of BM-MSC-derived exosomes.

Our previous study also showed that pre-transplantation

systemic intravenous administration of hiPSC-MSCs

induced immunomodulation and facilitated the survival

of intramyocardially transplanted cells to improve cardiac

function in MI. Pre-transplantation systemic administra-

tion ofMSC-derived exosomesmay be a promising strategy

to improve cell retention of cell-based therapy. In conclu-

sion, studying exosomes provides insight into the exact

mechanism of cardiac regeneration and repair, helps
Stem Cell Reports j Vol. 16 j 1662–1673 j July 13, 2021 1669
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optimize cell-based therapies, and promotes the develop-

ment of precision medicine.
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