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Abstract

Discovered in the beginning of the 20th century, nicotinamide
adenine dinucleotide (NAD+) has evolved from a simple oxido-
reductase cofactor to being an essential cosubstrate for a wide
range of regulatory proteins that include the sirtuin family of
NAD+-dependent protein deacylases, widely recognized regula-
tors of metabolic function and longevity. Altered NAD+ metabo-
lism is associated with aging and many pathological conditions,
such as metabolic diseases and disorders of the muscular and
neuronal systems. Conversely, increased NAD+ levels have shown
to be beneficial in a broad spectrum of diseases. Here, we
review the fundamental aspects of NAD+ biochemistry and meta-
bolism and discuss how boosting NAD+ content can help amelio-
rate mitochondrial homeostasis and as such improve healthspan
and lifespan.
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Introduction

The first cofactor ever described, nicotinamide adenine dinu-

cleotide (NAD+), was discovered by the British biochemists Arthur

Harden and William John Young in 1906 (Harden & Young, 1906).

They observed that adding boiled yeast extracts to non-boiled yeast

extracts significantly accelerated alcoholic fermentation, suggesting

that the boiled yeast fraction contained something capable of

promoting the fermentation reaction. They named this heat-stable,

but yet unidentified factor, “cozymase”. Almost 25 years later,

Hans von Euler-Chelpin established the chemical composition of

the cozymase as an adenine, a reducing sugar group and a phos-

phate (von Euler & Myrbäck, 1930). Finally, in 1936, Otto Heinrich

Warburg discovered the capability of the cozymase to transfer

hydride from one molecule to another and identified nicotinamide

base as the site of redox reactions (Warburg & Christian, 1936).

Together with its reduced counterpart, NADH, NAD+ has since

been known for being involved in reactions that required the

transfer of electrons from one molecule to another. As such, the

redox couple NAD+/NADH has been reported to participate in

numerous reactions requiring an electron exchange, such as glycol-

ysis, pyruvate-to-lactate and pyruvate-to-acetyl-CoA interconver-

sions, b-oxidation, citric acid cycle (TCA cycle), and oxidative

phosphorylation. Moreover, addition of a phosphate to the adeno-

sine ribose of NAD+ by NAD+ kinases (NADKs) leads to a forma-

tion of nicotinamide adenine dinucleotide phosphate (NADP+).

NADP+ and its reduced form, NADPH, play a key role in cellular

defense against oxidative stress, as well as in the synthesis of fatty

acids, cholesterol, and DNA. Detailed description of the physiologi-

cal roles of the NADP+/NADPH redox couple is reviewed else-

where (Ying, 2008). Although the role of NAD+ in redox reactions

is now rather well understood, NAD+ biology underwent a renais-

sance when NAD+ was reported to influence the activity of the

sirtuins (Imai et al, 2000), a family of NAD+-dependent deacy-

lases, implicated in the regulation of metabolism and mitochondrial

function (Haigis & Sinclair, 2010; Houtkooper et al, 2012). Besides

sirtuins, other enzymes, such as the poly ADP-ribose polymerase

(PARP) protein family and the cyclic ADP-ribose (cADPR)

synthases, such as CD38 and CD157, are currently known to

require NAD+ as a cosubstrate to perform their function. The

dependence of these important metabolic enzymes on NAD+ levels

provides an attractive possibility to modulate their activity and

thereby achieve health benefits and has led to an increased interest

in NAD+ metabolism over the last decade. The therapeutic poten-

tial of NAD+ boosting techniques to activate the sirtuins has now

been explored in a large spectrum of preclinical disease models

that mimic rare genetic disorders, such as the Cockayne syndrome,

as well as pandemic-like contemporary diseases, such as obesity or

non-alcoholic fatty liver disease (NAFLD). The near future will

hopefully see these studies translate from the bench to the bedside.

Biosynthesis of NAD+

Intracellular NAD+ can be produced through either de novo synthe-

sis or via salvage pathways from precursor molecules, naturally

occurring vitamins: nicotinamide (NAM), nicotinic acid (NA), and

nicotinamide riboside (NR) (Bogan & Brenner, 2008; Houtkooper

et al, 2010) (Fig 1). The NAD+ de novo synthesis pathway starts

from the amino acid tryptophan (Bender, 1983; Houtkooper et al,
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2010) and most likely takes place in the cytosol, since all the

enzymes catalyzing the different steps of this process are localized

there (Houtkooper et al, 2010).

NAD+ synthesis from NAM requires only two steps: NAM gets

first converted by nicotinamide phosphoribosyltransferase

(NAMPRT) into NAM mononucleotide (NMN), which in its turn

leads to the production of NAD+ in a reaction catalyzed by nicoti-

namide mononucleotide adenylyltransferase (NMNAT) (Fig 1).

Three different isoforms of NMNAT have been reported, each of

them possessing a specific subcellular localization: NMNAT1 is a

nuclear enzyme (Emanuelli et al, 2001; Yalowitz et al, 2004),

NMNAT2 is located in the cytosol and Golgi apparatus (Yalowitz

et al, 2004; Berger et al, 2005), while NMNAT3 was detected in the

cytosol and mitochondria (Zhang et al, 2003; Berger et al, 2005;

Yang et al, 2007). NR also gets converted into NMN by nicotinamide

riboside kinase (NRK) (Bieganowski & Brenner, 2004). Mammals

possess two isoforms of NRK: an ubiquitously expressed NRK1 and

NRK2, whose expression was mainly detected in heart, skeletal

muscle, brown adipose tissue (BAT), and liver (Bogan & Brenner,

2008). Interestingly, it has been recently reported that NRK1 is

required for NAD+ synthesis not only from the exogenously admin-

istered NR, but also NMN (Ratajczak et al, 2016). Both NAM and

NR operate via the “amidated” route to produce NAD+ (Fig 1).

Nicotinic acid, in its turn, initiates the “deamidated” route

(Fig 1). Conversion of NA into NA mononucleotide (NAMN)

constitutes the first step of this route, which most often is referred

as the Preiss–Handler pathway (Preiss & Handler, 1958). The

NMNATs recognize both NAMN and NMN as substrates; however,

in the case of NAMN the conversion results in NA adenine dinu-

cleotide (NAAD), and therefore, one additional step, catalyzed by

NAD synthetase (NADS), is required to produce NAD+ (Fig 1).

Interestingly, it has been recently reported that NR leads to the

production of NAAD via a yet-unknown mechanism (Trammell

et al, 2016a).

The de novo NAD+ synthesis pathway, which converts trypto-

phan into NAD+, consists of eight steps. The first reaction of

this pathway constitutes of a conversion of tryptophan into

N-formylkynurenine, which in mammals can be catalyzed by two

different enzymes: tryptophan-2,3-dioxygenase (TDO) and indo-

leamine 2,3-dioxygenase (IDO). This conversion is considered to

be the first rate-limiting step for the pathway. TDO is the major

contributor to NAD+ biosynthesis in liver, while IDO is ubiqui-

tously expressed in extrahepatic tissues, with the highest activity

detected in lung, intestine, and spleen (Yamazaki et al, 1985;

Kudo & Boyd, 2000). TDO is induced by tryptophan and gluco-

corticoids (Comings et al, 1995), while IDO is induced by

inflammatory stimuli (Yoshida & Hayaishi, 1978; Yoshida et al,

1979; Takikawa et al, 1986; Heyes et al, 1992; Reinhard, 1998;

Sanni et al, 1998; Daubener & MacKenzie, 1999). N-formylkynur-

enine gets converted by formamidase (KFase) into kynurenine.

Kynurenine in its turn leads to 3-OH kynurenine in a reaction

catalyzed by kynurenine 3-hydroxylase (K3H). Kynureninase

(Kyase) then forms 3-hydroxyanthranilate, which gets trans-

formed into a-amino-b-carboxymuconate-e-semialdehyde (ACMS)

by 3-hydroxyanthranilate 3,4-dioxygenase (3HAO). The formation

of this unstable ACMS constitutes a branching point of the de

novo NAD+ synthesis pathway (Bender, 1983; Houtkooper et al,

2010). ACMS can either undergo cyclization forming quinolinic

acid (QA), which is then converted by quinolinate phosphoribo-

syltransferase (QPRT) into NAMN and from this point fuses with

the Preiss–Handler pathway to produce NAD+ (Fig 1). Otherwise,

the carbon group of ACMS can be removed, which either

leads to the production of picolinic acid or is directed to total

oxidation to CO2 and H2O. While the cyclization of ACMS is

a spontaneous reaction, the transformation of ACMS into

a-amino-b-muconate-e-semialdehyde (AMS) is catalyzed by the

enzyme a-amino-b-carboxymuconate-e-semialdehyde decarboxy-

lase (ACMSD) (Fig 1).
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Figure 1. Pathways modulating NAD+ content in mammals.
Intermediates of the amidated and deamidated routes are depicted in yellow and green, respectively. NAD+-consuming enzymes competing with sirtuins for NAD+ availability
are depicted in orange. Purple color indicates metabolites not recycled in the NAD+ synthesis pathway.
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Preferential source for NAD+ production

The existence of different pathways leading to NAD+ production

raises questions on the relative importance of each pathway and

which of them possess the highest potential to boost NAD+ levels.

The preferable precursor for NAD+ production within the organ-

ism is hence still a matter of debate. There is evidence that NAM

possesses a higher NAD+ boosting capability when compared to

NA in different organs in mice (Collins & Chaykin, 1971, 1972;

Mori et al, 2014; Yang et al, 2014). Additionally, in human

plasma, levels of NAM were reported to be fivefold higher than

NA levels (Jacobson et al, 1995). However, several other studies

claim the opposite: NA is a more effective NAD+ precursor than

NAM (Ijichi et al, 1966; Hagino et al, 1968; Lin & Henderson,

1972; Williams et al, 1985; Jackson et al, 1995; Hara et al, 2007).

It is important to mention that in Mori et al (2014) the authors

quantified the activity of NMNAT and NADS; therefore, the

comparison was rather made between the “deamidated” (e.g.,

from NA) and “amidated” route, which includes both NAM and

NR. And even if the authors of this study claim that NAM is the

main precursor for NAD+ synthesis, the possibility of a significant

contribution of other precursors using the amidated NAD+ biosyn-

thesis route (e.g., NR) cannot be discounted. In support of this, a

very recent study showed that NR has a greater capacity over NA

and NAM to boost hepatic NAD+ levels (Trammell et al, 2016a).

It is also important to mention that both NA and NAM have

reported side effects, whereas no adverse effects are currently

reported for NR. NA activates the G protein-coupled receptor,

GPR109A and causes flushing, characterized by vasodilation and a

burning sensation (Benyo et al, 2006). While NAM raises health

concerns for treatment of diabetic patients, as high doses of NAM

can be hepatotoxic (Knip et al, 2000).

As for tryptophan, its administration to humans has been used

as treatment for pain, sleep disorders, depression, hyperactivity,

and bulimia (Richard et al, 2009). No severe adverse effects have

been reported for tryptophan administration, even with doses

going as high as 20 g/day in schizophrenic patients (Sidransky,

2001). A large number of reviews attribute a marginal role to the

de novo NAD+ synthesis pathway. However, a solid support for

this claim is lacking. One of the studies frequently cited to sustain

this point of view reports that tryptophan alone is not sufficient to

maintain the physiological NAD+ concentration of the cell

(Nikiforov et al, 2011). However, this conclusion was exclusively

based on the observation that supplementation with tryptophan is

not sufficient to protect cells from the death induced by NAMPRT

inhibitor FK866 and no NAD+ quantification was performed in

this study. In addition, some studies show that, at least in the

liver, tryptophan constitutes the preferable substrate for NAD+

production. Rat primary hepatocytes, treated with NA, NAM, or

tryptophan, were reported to use exclusively tryptophan for their

NAD+ biosynthesis, even though they were still able to take up

NA and NAM from the culture medium (Bender & Olufunwa,

1988). Administration of tryptophan, NA, or NAM to rats showed

that tryptophan resulted in the highest hepatic NAD+ concentra-

tions (Bender et al, 1982). Moreover, it has been shown that in rat

liver, NA and NAM have a very limited capacity for NAD+

production, probably due to the saturation of the involved phos-

phoribosyltransferases, whereas no such limitations were detected

for the NAD+ synthesis from tryptophan (Williams et al, 1950;

Bender et al, 1982; McCreanor & Bender, 1986).

NAD+ consuming enzymes

Sirtuin proteins require NAD+ as a cosubstrate for their activity. A

detailed description of their role in the regulation of metabolism and

aging is beyond the scope of this review, but has been extensively

covered elsewhere (Haigis & Sinclair, 2010; Satoh et al, 2011;

Houtkooper et al, 2012; Chang & Guarente, 2014). Besides sirtuins,

two different protein families are well known to use NAD+ as a

cofactor for their enzymatic activities. These include the PARPs and

the cADPR synthases, CD38 and CD157. PARPs are involved in

DNA repair, maintenance of genomic integrity, and cell death, with

PARP1 accounting for more than 85% of NAD+ consumption of this

protein family (Bai & Canto, 2012). cADPR, which is generated by

CD38 and CD157, is a signaling molecule that controls intracellular

calcium fluxes. The catalytic efficiency of CD38 is significantly

higher than that of CD157 (Quarona et al, 2013). While CD38

expression was initially considered to be limited to the immune

system, it was later found to be ubiquitously distributed. CD38 is an

important NAD+ consumer, as its loss of function (LOF) in mice led

up to a 30-fold increase in NAD+ levels in different tissues (Barbosa

et al, 2007). Combined increases in PARP1 (Braidy et al, 2011;

Mouchiroud et al, 2013) and CD38 (Camacho-Pereira et al, 2016)

activities upon aging were reported to cause age-associated reduc-

tion in NAD+ content. For more extensive coverage of these NAD+

consuming enzymes, we refer the readers to a few reviews on

PARPs (Bai & Canto, 2012; Canto et al, 2013; Jubin et al, 2016) and

cADPR synthases (Malavasi et al, 2008; Quarona et al, 2013).

Regulation of NAD+ content

Regulation of NAD+ content by diet and aging

An increase of NAD+ levels followed by sirtuin activation is

observed in situations of energy deficit, such as fasting (Rodgers

et al, 2005; Chen et al, 2008; Cantó et al, 2010), calorie restriction

(CR) (Qin et al, 2006; Chen et al, 2008; Cantó et al, 2010) or low

glucose feeding (Fulco et al, 2008), and exercise (Canto et al, 2009;

Cantó et al, 2010; Costford et al, 2010). On the contrary, multiple

studies reported that high-fat (HF)/high-fat high-sucrose (HFHS)

feeding diminishes NAD+ content in liver (Yoshino et al, 2011;

Gariani et al, 2016, 2017; Trammell et al, 2016b), skeletal muscle

(Canto et al, 2012), BAT (Canto et al, 2012), and white adipose

tissue (WAT) (Yoshino et al, 2011). Orotic acid administration

(Fukuwatari et al, 2002) or feeding a methionine-/choline-deficient

(MCD) diet (Gariani et al, 2017) also leads to the concomitant

appearance of liver fat accumulation and a drop in hepatic NAD+

levels. A recent study, however, reported that administration of a

HF diet for 11 weeks led to an increase in NAD+ content in mouse

liver, accompanied by enhanced Sirt1 activity (Penke et al, 2015).

The stimulation of the NAD+ biosynthesis could represent an initial

compensatory attempt to maintain energy homeostasis (Penke et al,

2015; Drew et al, 2016), whereas more prolonged exposure to HF

diet reduces NAD+ content, resulting in functional damage (Drew

et al, 2016). Interestingly, in Saccharomyces cerevisiae NAD+
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content is affected by the carbon source used: Yeast grown on

ethanol contain practically double the amount of NAD+ compared

to yeast grown on glucose (Agrimi et al, 2011).

Finally, a decrease in NAD+ content was also reported to be

associated with aging in Caenorhabditis elegans, mice, rats, and

humans (Braidy et al, 2011; Yoshino et al, 2011; Massudi et al,

2012; Gomes et al, 2013; Mouchiroud et al, 2013; Camacho-Pereira

et al, 2016; Guan et al, 2017).

Regulation by circadian rhythm

Circadian rhythm is another important regulator of NAD+ content.

The key regulators of the mammalian circadian clock machinery are

the transcription factors CLOCK and BMAL1, which act together as

a heterodimer. Their transcriptional targets, PER and CRY, form a

negative feedback loop by repressing CLOCK-BMAL1 activity.

Hepatic NAD+ levels oscillate in a diurnal manner (Nakahata et al,

2009; Ramsey et al, 2009). Mice with LOF mutations in the circa-

dian activator genes, Clock and Bmal1, show reduced NAD+

content, while NAD+ levels were elevated in mice with mutations

in the clock repressor genes Cry1 and Cry2 (Ramsey et al, 2009).

The circadian clock-controlled expression of Namprt is thought to

be responsible for this fine-tuning of the NAD+ availability

(Nakahata et al, 2009; Ramsey et al, 2009). Importantly, clock-

driven oscillations of NAD+ were claimed to regulate the activity of

both SIRT1 (Nakahata et al, 2009; Ramsey et al, 2009) and SIRT3

(Peek et al, 2013). It is possible that modulation of the redox state

of NAD+ can reciprocally impact on the circadian clock. In vitro

NADH was shown to enhance binding of the CLOCK-BMAL1 hetero-

dimer to DNA, whereas NAD+ was inhibiting this process (Rutter

et al, 2001). On their turn, the NAD+-dependent enzymes SIRT1,

SIRT6, and PARP1 were reported to control the circadian clock

machinery via post-translational modifications of the core clock

transcription factors and via regulation of their transcription (Asher

et al, 2008, 2010; Chang & Guarente, 2013; Masri et al, 2014).

NAD+ boosting strategies

NAD+ levels can be increased either by promoting its synthesis—by

enhancing the enzymes involved in NAD+ biosynthesis or adminis-

tration of NAD+ precursor molecules—or by limiting its consump-

tion. Supplementation with NA, NAM, NR, NMN, or tryptophan can

increase NAD+ content (Canto et al, 2015). Overexpressing or acti-

vating enzymes catalyzing the rate-limiting steps of NAD+ biosyn-

thesis also are efficient to boost NAD+ levels (Araki et al, 2004;

Sasaki et al, 2006; Hsu et al, 2009; Wang et al, 2014a; Williams

et al, 2017). However, the translational potential of this approach

may be lower compared to the other strategies.

Pharmacological or genetic inhibition of non-sirtuin NAD+

consumers, such as PARP-1 or CD38 (Fig 1), can help to preserve

NAD+ levels for sirtuin activation (Aksoy et al, 2006a; Barbosa

et al, 2007; Bai et al, 2011; Pirinen et al, 2014), especially in situa-

tions when non-sirtuin NAD+ consumers are overactivated (Bai

et al, 2011; Braidy et al, 2011; Mouchiroud et al, 2013; Fang et al,

2014; Mukhopadhyay et al, 2014; Ryu et al, 2016; Gariani et al,

2017). For instance, DNA damage is known to cause a dramatic

decline in NAD+ intracellular levels, which is due to PARP activa-

tion (Berger, 1985), and overexpression of CD38 in cells leads to a

~35% decrease in NAD+ levels (Hu et al, 2014). On the contrary,

Cd38�/� and PARP-1�/� mice have increased NAD+ content in dif-

ferent organs (Aksoy et al, 2006a,b; Young et al, 2006; Bai et al,

2011).

Increased nicotinamide methyl transferase (NNMT) expression

was reported in obesity and type 2 diabetes (Lee et al, 2005;

Yaguchi et al, 2005; Salek et al, 2007; Kraus et al, 2014). NNMT is

the enzyme catalyzing the transformation of NAM into methylnicoti-

namide (MNA) (Fig 1) and is highly expressed in liver and adipose

tissue (Aksoy et al, 1994; Riederer et al, 2009). Inhibiting NNMT in

these tissues should increase NAD+ content, since NAM would not

be degraded but exclusively reconverted into NAD+ (Fig 1). In line,

the knockdown of NNMT increased NAD+ levels in adipose tissue,

but not in the liver (Kraus et al, 2014).

Resveratrol, a natural polyphenol found in red wine, activates

AMPK and thereby increases NAD+ levels (Fulco et al, 2008; Canto

et al, 2009; Price et al, 2012; Desquiret-Dumas et al, 2013), which

promotes sirtuin activation.

Therapeutic potential of NAD+

Pellagra

Pellagra, a disease that was epidemic in the XVII–XIX centuries in

several rural areas of Europe and the United States (Bender, 1983),

owes its name to the Italian “pelle” = skin and “agra” = sour or

rough, which describes its most noticeable feature. Otherwise, it is

also called the disease of “the three Ds”: Diarrhea, dermatitis, and

dementia, which, if untreated, can lead to the fourth “D”, i.e. death.

In 1915, Joseph Goldberger demonstrated that pellagra was not an

infectious disease, as previously thought, but is due to poor nutri-

tion and could be prevented by consumption of fresh meat and milk

(Bender, 1983). Administration of both NAM and NA (Elvehjem

et al, 1937), and later tryptophan (Krehl et al, 1945) were also

reported to prevent pellagra.

Aging

Sirtuins are well-known longevity regulators, and their decreased

function with age might at least be partially explained by a systemic

decline in NAD+ levels upon aging (Mouchiroud et al, 2013)

[reviewed in (Imai & Guarente, 2014; Menzies et al, 2016)]. Rising

NAD+ content, followed by sirtuin activation, has been reported to

increase lifespan in yeast (Lin et al, 2004; Belenky et al, 2007;

Easlon et al, 2008), worms (Mouchiroud et al, 2013), and mice

(Zhang et al, 2016). Administration of NR, NMN, or NAM recovered

NAD+ content and protected against aging-related complications,

such as mitochondrial dysfunction (Gomes et al, 2013; Mouchiroud

et al, 2013; Mills et al, 2016), decline in physical performance (Mills

et al, 2016; Zhang et al, 2016) and muscle regeneration (Zhang et al,

2016), arterial dysfunction (de Picciotto et al, 2016), decline in

vision (Lin et al, 2016; Mills et al, 2016), including glaucoma

(Williams et al, 2017), and age-associated insulin resistance (Mills

et al, 2016).

The most striking benefits of NAD+ supplementation on aging

were observed in several rare diseases linked to abnormal DNA

repair that are typified by accelerated aging, such as the Cockayne

syndrome group B (CSB), xeroderma pigmentosum group A (XPA),

or ataxia-telangiectasia (A-T). In a mouse model of CSB, neurons
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show mitochondrial defects, which have an impact on the cerebel-

lum and inner ear. Administration of PARP inhibitors or the NAD+

precursor, NR, to csb�/� animals attenuated many of the pheno-

types of CSB and restored altered mitochondrial function in their

neurons (Scheibye-Knudsen et al, 2014). Another DNA damage

repair disorder is XPA, which is also characterized by mitochondrial

alterations and reduced NAD+-SIRT1 signaling due to the overacti-

vation of PARP1 (Fang et al, 2014). Treatment with NAD+ precur-

sors, NR and NMN, or with the PARP inhibitor, Olaparib, rescued

the XPA phenotype in cells and worms. Similar observations of

increased PARylation, NAD+ depletion, and mitochondrial dysfunc-

tion were made in mouse and worm models of another progressive

neurodegenerative disease, A-T (Fang et al, 2016). Restoring the

NAD+/SIRT1 pathway, by NR and NMN administration to

C. elegans and mice, improved A-T neuropathology (Fang et al,

2016).

Metabolic disorders

The importance of NAD+ as a metabolic regulator has been demon-

strated by its efficacy to attenuate many features of the metabolic

syndrome, a cluster of pathologies including insulin resistance, fatty

liver, dyslipidemia, and hypertension, with increased risk of devel-

oping type 2 diabetes and heart failure. Different approaches aiming

to raise NAD+ levels were shown to provide protection against

obesity, such as (i) inhibition of NAD+ consumers, PARPs (Bai

et al, 2011; Gariani et al, 2017) and CD38 (Barbosa et al, 2007), (ii)

administration of NAD+ precursors, such as NR (Canto et al, 2012;

Gariani et al, 2016; Trammell et al, 2016b) or NMN (Yoshino et al,

2011), (iii) or inhibition of NNMT (Kraus et al, 2014). NAD+ boost-

ing was also efficient to improve glucose homeostasis in obese,

prediabetic, and T2DM animals (Barbosa et al, 2007; Bai et al,

2011; Yoshino et al, 2011; Canto et al, 2012; Kraus et al, 2014;

Gariani et al, 2016, 2017; Trammell et al, 2016b). Likewise, re-

establishing NAD+ levels with NR or PARP inhibitors also protected

from non-alcoholic steatohepatitis (NASH) (Gariani et al, 2016,

2017; Mukhopadhyay et al, 2017) as well as alcoholic steatohepati-

tis (ASH) (Mukhopadhyay et al, 2017).

Muscle function

Increase in muscle NAD+ content, resulting from NR administration

or PARP inhibition, improved muscle function and exercise capacity

in mice (Canto et al, 2012; Pirinen et al, 2014), including in aged

animals (Zhang et al, 2016). Interestingly, muscular dystrophy is

characterized by a dramatic drop in NAD+ in the muscle (Ryu et al,

2016). NR administration to the mdx mouse, a model for muscular

dystrophy, improved muscle function by enhancing bioenergetics,

attenuating inflammation and fibrosis (Ryu et al, 2016), as well as,

by favoring regeneration and preventing the exhaustion and senes-

cence of muscle stem cells, typical to the mdx mice (Zhang et al,

2016).

The beneficial effects of improving muscle bioenergetics are also

illustrated in models of mitochondrial myopathies. Increasing

muscle NAD+ levels by the administration of NR or a PARP inhi-

bitor preserved muscle function in two different models of mito-

chondrial myopathy (Cerutti et al, 2014; Khan et al, 2014). Similar

benefits on mitochondrial myopathy were seen with the AMPK

agonist, AICAR (Viscomi et al, 2011), which may at least in part be

due to the recovery of NAD+ content upon AMPK activation.

Cardiac function

Exposing the heart to different types of stresses was reported to

result in a decline in cardiac NAD+ content (Pillai et al, 2005, 2010;

Karamanlidis et al, 2013; Yamamoto et al, 2014). For instance,

cardiomyocyte hypertrophy is characterized by a drop in cellular

NAD+ levels. Supplementation with NAD+ was hence protective

against cardiac hypertrophy in mice, and these anti-hypertrophic

effects were in part attributed to the activation of SIRT3 (Pillai et al,

2010).

Cardiac ischemia is another condition causing a steep decrease in

NAD+ levels. NMN administration protected the mice from

ischemic injury via the recovery of cardiac NAD+ content and

subsequent SIRT1 activation (Yamamoto et al, 2014). Similarly,

cardiac-specific overexpression of NAMPRT in mice increased

NAD+ content and reduced the extent of myocardial infarction and

apoptosis in response to prolonged ischemia and ischemia/reperfu-

sion (Hsu et al, 2009). Maintaining NAD+ levels in pressure-over-

loaded hearts is crucial for myocardial adaptation and protection

from heart failure, as demonstrated by NMN administration to mice

treated with the NAMPRT inhibitor FK866 (Yano et al, 2015) and to

cardiac-specific mitochondrial complex I-deficient mice (Lee et al,

2016). In a mouse model of heart failure caused by iron deficit,

reconstituting NAD+ content also improved mitochondrial quality,

protected cardiac function, and increased lifespan (Xu et al, 2015).

Similarly, NR administration improved cardiac function in aged mdx

mice, which, like muscular dystrophy patients, display cardio-

myopathy (Ryu et al, 2016).

Renal function

Multiple studies demonstrated the loss of SIRT1 and SIRT3 activity

as a key feature of kidney dysfunction, including kidney abnormali-

ties linked with aging (Koyama et al, 2011; Zhuo et al, 2011; Morigi

et al, 2015; Ugur et al, 2015; Guan et al, 2017). Acute kidney injury

(AKI) is characterized by a reduction in NAD+ content and

NAMPRT expression (Morigi et al, 2015; Ugur et al, 2015). Promot-

ing NAD+ synthesis via NAM or NMN supplementation was

reported to mitigate AKI in ischemia/reperfusion- and cisplatin-

induced mouse models of AKI (Tran et al, 2016; Guan et al, 2017).

Furthermore, administration of the AMPK agonist, AICAR, which

positively impacts on NAD+ levels (Canto et al, 2009), was protec-

tive against cisplatin-induced AKI in SIRT3-dependent manner

(Morigi et al, 2015). Although no NAD+ quantification was

performed in this particular study, the involvement of SIRT3, as well

as the increase in Namprt expression detected upon AICAR adminis-

tration, points toward a potential increase in NAD+ levels (Morigi

et al, 2015). Kidney mesangial cell hypertrophy is also characterized

by a depletion of NAD+ content (Zhuo et al, 2011) and restoring

intracellular NAD+ levels via supplementation with exogenous

NAD+ prevented its onset by activating SIRT1 and SIRT3 (Zhuo

et al, 2011).

Neurodegeneration

NAD+ boosting has also been shown to be neuroprotective. Rais-

ing NAD+ levels protects against neuronal death induced by

ischemic brain (Klaidman et al, 2003; Sadanaga-Akiyoshi et al,

2003; Kabra et al, 2004; Feng et al, 2006; Kaundal et al, 2006;

Zheng et al, 2012) or spinal cord injuries (Xie et al, 2017). Axonal

degeneration is considered as an early pathological mechanism in
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this type of neurodegeneration. An accumulating amount of data

indicates that axonal degeneration is not only limited to ischemic

brain and spinal cord injuries, but constitutes a hallmark process,

preceding neuronal death, in a much larger spectrum of disease

states, including traumatic brain injury, inflammatory disorders,

like multiple sclerosis, and degenerative disorders, such as Alzhei-

mer’s and Parkinson’s diseases (Lingor et al, 2012; Johnson et al,

2013). Degenerating axons show a decrease in NAD+ content

(Wang et al, 2005; Gerdts et al, 2015), while replenishing NAD+

by supplementing NAM (Wang et al, 2005), NR and NMN (Sasaki

et al, 2006), and high doses of NAD+ (Araki et al, 2004), or over-

expressing enzymes involved in NAD+ biosynthesis (Araki et al,

2004; Sasaki et al, 2006) delayed axonal degeneration. In line with

this, supplementation with NAM, NMN, or NR was neuroprotec-

tive in rodent models of Alzheimer disease (Qin et al, 2006; Gong

et al, 2013; Liu et al, 2013; Turunc Bayrakdar et al, 2014; Wang

et al, 2016a), and supplementation with NAM or LOF of PARP

were protective in Drosophila models of Parkinson’s disease

(Lehmann et al, 2017).

NAD+ depletion is also involved in the neurodegeneration

induced by highly toxic misfolded prion protein (Zhou et al, 2015).

Replenishment of intracellular NAD+ stocks, either by providing

NAD+ or NAM, rescued the neurotoxic effects of protein aggregates

(Zhou et al, 2015). Importantly, restoring NAD+ content is not

exclusively protecting neurons, since it has also been reported to

prevent the death of astrocytes (Alano et al, 2004).

P7C3, a compound that enhances neurogenesis (Pieper et al,

2010) and that was neuroprotective in mouse models of Parkinson’s

disease (De Jesus-Cortes et al, 2012), amyotrophic lateral sclerosis

(Tesla et al, 2012) and brain injury (Yin et al, 2014), was subse-

quently identified as an NAMPRT activator (Wang et al, 2014a).

Therefore, the beneficial effects of P7C3 on neuron preservation

seem at least in part to be due to a NAMPRT-mediated increase in

NAD+ levels (Wang et al, 2014a).

Nicotinamide riboside supplementation recovered depressed

sensory and motor neuron conduction velocities and thermal insen-

sitivity in T2DM mice (Trammell et al, 2016b) and alleviated

chemotherapy-induced peripheral neuropathy in rats (Hamity et al,

2017), indicating that NAD+ also is beneficial in the peripheral

neuronal system.

NAD+ boosting was also able to protect mice from loss of

vision and hearing (Shindler et al, 2007; Brown et al, 2014).

Intravitreal injections of NR in mice attenuated optic neuritis in a

dose-dependent manner (Shindler et al, 2007). Even if no NAD+

quantification was performed in this study, SIRT1 activity was

necessary for the neuroprotective effects of NR, since the protec-

tion was blunted in the presence of sirtinol, a SIRT1 inhibitor

(Shindler et al, 2007). Furthermore, systemic administration of

NAM and overexpression of Nmnat1 had spectacular effects on

vision in DBA/2J mice, which are prone to glaucoma (Williams

et al, 2017). Noise exposure results in degeneration of the neurons

innervating the cochlear hair cells. Increase in NAD+ levels

induced by NR administration prevented against noise-induced

hearing loss and neurite degeneration (Brown et al, 2014). In line

with this, CR was shown to protect against cochlear cell death and

aging-associated hearing loss in a Sirt3-dependent manner (Someya

et al, 2010). It is therefore tempting to speculate that this improve-

ment could also be associated with increased NAD+ levels upon

CR, though no direct measurements of NAD+ levels were

performed in this study.

Future challenges and perspectives

Although it was thought that the NAD+ biosynthetic pathways were

entirely understood, we still continue to discover new actors of

NAD+ metabolism. For instance, whereas the conversion of NR into

NMN by NRK was established some time ago (Bieganowski &

Brenner, 2004), the opposite reaction, that is, the transformation of

NMN into NR by CD73, was only recently shown to occur in

humans (Garavaglia et al, 2012). Another example is the recent

description that NR not only induced NAAD concentrations by

45-fold, but that it is also a direct biosynthetic precursor of NAAD

(Trammell et al, 2016a). The biochemical basis of this conversion

cannot be explained with our current state of knowledge, as NAD+

synthetase, which catalyzes the transformation of NAAD into

NAD+, works unidirectionally (Bieganowski et al, 2003; Wojcik

et al, 2006) and can therefore not catalyze the reverse reaction from

NAD+ into NAAD.

Additionally, it is possible that we still ignore some functions

that NAD+ might accomplish within the cell. For instance, very

recently NAD+ was found to be linked to RNA in bacteria (Chen

et al, 2009). By forming a cap at the 50-terminus of bacterial RNA

molecule, it is not only increasing its stability (Cahova et al,

2015), but also serves as non-canonical initiation nucleotides for

de novo transcription initiation (Bird et al, 2016). Initially thought

to be prokaryote-specific, this RNA modification appears to be also

conserved in eukaryotic systems (Jiao et al, 2017; Walters et al,

2017). Similarly to bacteria, in eukaryotic cells NAD+ addition

seems to occur during transcription initiation (Bird et al, 2016;

Walters et al, 2017). Intriguingly, a subset of eukaryotic non-

coding RNAs have also been reported to possess a NAD+-cap.

Since these RNAs are formed exonucleolytically, NAD+ cap addi-

tion in their case would occur post-transcriptionally (Jiao et al,

2017). Oppositely to prokaryotes, in mammalian cells the NAD+

cap was reported to rather promote mRNA decay (Jiao et al,

2017). The full physiological significance of NAD+-capping is yet

to be discovered. It is, however, tempting to speculate that the

proportion of cellular mRNA possessing NAD+ cap might be influ-

enced by intracellular NAD+ content and thus by the energy state

of the cell.

Devising better NAD+ quantification methods is a critical chal-

lenge in the field. Measurements based on UV–Vis methods are less

accurate and sensitive than mass spectrometry methods (Trammell

& Brenner, 2013). Moreover, accurate NAD+ quantification in dif-

ferent subcellular compartments is challenging due the complexity

of subcellular fractionations and the NAD+ isolation procedures.

Over the last few years, a new generation of NAD+ biosensors was

developed, allowing NAD+ quantification in intact cells as well as

within specific subcellular compartments (Hung et al, 2011; Bilan

et al, 2014; Cambronne et al, 2016). Further development and wider

application of these biosensors combined with strategies to explore

the kinetics of NAD+ biosynthesis and metabolism, using flux stud-

ies, will hence be important for future research. Besides, according

to a recent study NADP and NADPH were more significantly deregu-

lated in T2DM and obesity than NAD+ and less correctable by NR
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supplementation (Trammell et al, 2016b). Monitoring of the entire

NAD+ metabolome could hence help our further understanding of

its role in metabolism, which might extend far beyond NAD+–

sirtuin or NAD+–PARP axis.

As reviewed here, manipulations of NAD+ concentrations have

demonstrated multiple beneficial effects in a large spectrum of

diseases in animal models (Fig 2). Translating these effects into clin-

ical benefits now becomes one of the main challenges. The fact that

the long-term administration of the NAD+ precursor molecules

showed no deleterious effects in animals should be considered

promising. As such, administration of NMN for 12 months demon-

strated no toxicity in mice (Mills et al, 2016). Similarly, administra-

tion of NR to mice for a duration of 5–6 months (Gong et al, 2013),

10 months (Zhang et al, 2016), and 12 months (Tummala et al,

2014) showed no obvious adverse effects. Moreover, 2016 was

marked by the first report on the effects of NR in humans, showing

that the oral administration of NR led to a dose-dependent increase

in NAD+ levels in blood in healthy volunteers (Trammell et al,

2016a). Another NAD+ precursor, NAM, has also been already

tested in humans and protected b-cell function in type 1 diabetes

patients (Olmos et al, 2006) and even though the clinical trials for

NAM as a treatment for type 1 diabetes failed, no adverse effects of

NAM were detected (Gale et al, 2004; Cabrera-Rode et al, 2006).

Furthermore, a slow release form of NA (acipimox) was effective in

inducing mitochondrial activity in skeletal muscle of type 2 diabetic

patients (van de Weijer et al, 2015).

In theory, all this bodes well for the use of NAD+ precursors in

the clinic. The fact that many of these NAD+ precursors are right-

fully considered vitamins (which are generally regarded as safe

(GRAS)), and that they are widely available to the public at large,

however, also poses some issues. Despite the many health benefits

that are inferred from their use in animal disease models, these

NAD+ precursors need still to undergo rigorous clinical testing in

diseases setting, before one can recommend their widespread use.

Therefore, some caution is required, so that the overuse or improper

use in uncontrolled settings does not hamper their clinical develop-

ment as nutra- or pharmaceutical agents.

It will also be important to identify which pharmacological strate-

gies aiming to boost NAD+ content would be the most appropriate

in patients. Various monoclonal antibodies targeting CD38 have

been developed as a treatment for hematological malignancies,

some of them being in preclinical, and some even in late clinical,

studies (van de Donk et al, 2016). Many flavonoids were reported

to inhibit human CD38 at low micromolar concentrations
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Figure 2. Therapeutic potential of NAD+ boosting in humans based on findings in animal studies.
NAFLD, non-alcoholic fatty liver disease; AFLD, alcoholic fatty liver disease.
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(Kellenberger et al, 2011; Escande et al, 2013), some of them show-

ing promising therapeutic effects in mice (Escande et al, 2013;

Boslett et al, 2017). Thiazoloquin(az)olinones have recently been

described as potent CD38 inhibitors, able to elevate NAD+ in

plasma, liver, and muscle in mice (Haffner et al, 2015). Moreover,

several reports have disclosed different small molecules blocking

CD38 activity at low micromolar concentrations (Zhou et al, 2012;

Moreau et al, 2013; Swarbrick et al, 2014; Wang et al, 2014b;

Becherer et al, 2015). Testing and exploring their therapeutic poten-

tial in animal models is now just a matter of time.

Several PARP inhibitors are currently either marketed (Olaparib)

or undergoing advanced clinical trials for the treatment of cancers

in patients with BRCA mutations (Wang et al, 2016b). The draw-

back of these PARP inhibitors is that none of them is selective for a

specific PARP family member (Wang et al, 2016b). For instance,

the clinically approved compound, Olaparib, inhibits PARP-1,

PARP-2, PARP-3, and PARP-4 (Wahlberg et al, 2012), increasing

chances of adverse effects. As a case in point, the loss of both

PARP-1 and PARP-2 in mice was reported to cause embryonic

lethality (Menissier de Murcia et al, 2003), while a T cell-specific

deficiency in both them leads to highly aggressive lymphomas

(Navarro et al, 2017). Moreover, all current PARP inhibitors are

genotoxic (Ito et al, 2016), which raises concerns about their use

for non-oncologic indications. Indeed, some side effects that could

be tolerated in case of the treatment of life-threatening diseases

such as advanced cancers (Brown et al, 2016) may not be tolerated

for non-oncologic indications. All these evidences indicate that

the development of safer and more selective PARP inhibitors is

necessary.

The growing literature on the beneficial effects of raising and

maintaining NAD+ levels in different disease models and the high

evolutionary conservation of the NAD+–sirtuin signaling axis

suggests that strategies that increase cellular NAD+ content may

have a preventive and/or therapeutic potential in a large number of

human diseases (Fig 2). With the first reports on human trials of

various NAD+ boosting techniques that start to appear, we are

entering in the exciting era of NAD+ therapeutics. While there is no

certitude that NAD+ boosting will be able to extend lifespan in

humans, such strategies definitely possess the potential to delay

age-associated physiological decline, and therefore, we predict that

they will be useful to manage aging-related diseases and extend

healthspan.
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