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Abstract

Discovered in the beginning of the 20" century, nicotinamide
adenine dinucleotide (NAD*) has evolved from a simple oxido-
reductase cofactor to being an essential cosubstrate for a wide
range of regulatory proteins that include the sirtuin family of
NAD*-dependent protein deacylases, widely recognized regula-
tors of metabolic function and longevity. Altered NAD* metabo-
lism is associated with aging and many pathological conditions,
such as metabolic diseases and disorders of the muscular and
neuronal systems. Conversely, increased NAD* levels have shown
to be beneficial in a broad spectrum of diseases. Here, we
review the fundamental aspects of NAD* biochemistry and meta-
bolism and discuss how boosting NAD* content can help amelio-
rate mitochondrial homeostasis and as such improve healthspan
and lifespan.
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Introduction

The first cofactor ever described, nicotinamide adenine dinu-
cleotide (NAD ™), was discovered by the British biochemists Arthur
Harden and William John Young in 1906 (Harden & Young, 1906).
They observed that adding boiled yeast extracts to non-boiled yeast
extracts significantly accelerated alcoholic fermentation, suggesting
that the boiled yeast fraction contained something capable of
promoting the fermentation reaction. They named this heat-stable,
but yet unidentified factor, “cozymase”. Almost 25 years later,
Hans von Euler-Chelpin established the chemical composition of
the cozymase as an adenine, a reducing sugar group and a phos-
phate (von Euler & Myrbdack, 1930). Finally, in 1936, Otto Heinrich
Warburg discovered the capability of the cozymase to transfer
hydride from one molecule to another and identified nicotinamide
base as the site of redox reactions (Warburg & Christian, 1936).
Together with its reduced counterpart, NADH, NAD™ has since
been known for being involved in reactions that required the

transfer of electrons from one molecule to another. As such, the
redox couple NAD"/NADH has been reported to participate in
numerous reactions requiring an electron exchange, such as glycol-
ysis, pyruvate-to-lactate and pyruvate-to-acetyl-CoA interconver-
sions, B-oxidation, citric acid cycle (TCA cycle), and oxidative
phosphorylation. Moreover, addition of a phosphate to the adeno-
sine ribose of NAD* by NAD " kinases (NADKs) leads to a forma-
tion of nicotinamide adenine dinucleotide phosphate (NADP™).
NADP* and its reduced form, NADPH, play a key role in cellular
defense against oxidative stress, as well as in the synthesis of fatty
acids, cholesterol, and DNA. Detailed description of the physiologi-
cal roles of the NADP*/NADPH redox couple is reviewed else-
where (Ying, 2008). Although the role of NAD ™ in redox reactions
is now rather well understood, NAD* biology underwent a renais-
sance when NAD" was reported to influence the activity of the
sirtuins (Imai et al, 2000), a family of NAD*-dependent deacy-
lases, implicated in the regulation of metabolism and mitochondrial
function (Haigis & Sinclair, 2010; Houtkooper et al, 2012). Besides
sirtuins, other enzymes, such as the poly ADP-ribose polymerase
(PARP) protein family and the cyclic ADP-ribose (cADPR)
synthases, such as CD38 and CD157, are currently known to
require NAD" as a cosubstrate to perform their function. The
dependence of these important metabolic enzymes on NAD * levels
provides an attractive possibility to modulate their activity and
thereby achieve health benefits and has led to an increased interest
in NAD" metabolism over the last decade. The therapeutic poten-
tial of NAD ™ boosting techniques to activate the sirtuins has now
been explored in a large spectrum of preclinical disease models
that mimic rare genetic disorders, such as the Cockayne syndrome,
as well as pandemic-like contemporary diseases, such as obesity or
non-alcoholic fatty liver disease (NAFLD). The near future will
hopefully see these studies translate from the bench to the bedside.

Biosynthesis of NAD*

Intracellular NAD* can be produced through either de novo synthe-
sis or via salvage pathways from precursor molecules, naturally
occurring vitamins: nicotinamide (NAM), nicotinic acid (NA), and
nicotinamide riboside (NR) (Bogan & Brenner, 2008; Houtkooper
et al, 2010) (Fig 1). The NAD" de novo synthesis pathway starts
from the amino acid tryptophan (Bender, 1983; Houtkooper et al,
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Figure 1. Pathways modulating NAD* content in mammals.

NADS
NAM —— > NMN —— <—— (NAAD «<—— (NAMN <«——

The EMBO Journal

NMNAT NAPRT

NA

QPRTT

QA

ACMSD
<«— (ACMS €<« <<<( Tp

Intermediates of the amidated and deamidated routes are depicted in yellow and green, respectively. NAD*-consuming enzymes competing with sirtuins for NAD* availability
are depicted in orange. Purple color indicates metabolites not recycled in the NAD* synthesis pathway.

2010) and most likely takes place in the cytosol, since all the
enzymes catalyzing the different steps of this process are localized
there (Houtkooper et al, 2010).

NAD™ synthesis from NAM requires only two steps: NAM gets
first converted by nicotinamide phosphoribosyltransferase
(NAMPRT) into NAM mononucleotide (NMN), which in its turn
leads to the production of NAD™ in a reaction catalyzed by nicoti-
namide mononucleotide adenylyltransferase (NMNAT) (Fig 1).
Three different isoforms of NMNAT have been reported, each of
them possessing a specific subcellular localization: NMNATI is a
nuclear enzyme (Emanuelli et al, 2001; Yalowitz et al, 2004),
NMNAT?2 is located in the cytosol and Golgi apparatus (Yalowitz
et al, 2004; Berger et al, 2005), while NMNAT3 was detected in the
cytosol and mitochondria (Zhang et al, 2003; Berger et al, 2005;
Yang et al, 2007). NR also gets converted into NMN by nicotinamide
riboside kinase (NRK) (Bieganowski & Brenner, 2004). Mammals
possess two isoforms of NRK: an ubiquitously expressed NRK1 and
NRK2, whose expression was mainly detected in heart, skeletal
muscle, brown adipose tissue (BAT), and liver (Bogan & Brenner,
2008). Interestingly, it has been recently reported that NRK1 is
required for NAD* synthesis not only from the exogenously admin-
istered NR, but also NMN (Ratajczak et al, 2016). Both NAM and
NR operate via the “amidated” route to produce NAD * (Fig 1).

Nicotinic acid, in its turn, initiates the “deamidated” route
(Fig 1). Conversion of NA into NA mononucleotide (NAMN)
constitutes the first step of this route, which most often is referred
as the Preiss—Handler pathway (Preiss & Handler, 1958). The
NMNATS recognize both NAMN and NMN as substrates; however,
in the case of NAMN the conversion results in NA adenine dinu-
cleotide (NAAD), and therefore, one additional step, catalyzed by
NAD synthetase (NADS), is required to produce NAD" (Fig 1).
Interestingly, it has been recently reported that NR leads to the
production of NAAD via a yet-unknown mechanism (Trammell
et al, 2016a).

© 2017 The Authors

The de novo NAD" synthesis pathway, which converts trypto-
phan into NAD™, consists of eight steps. The first reaction of
this pathway constitutes of a conversion of tryptophan into
N-formylkynurenine, which in mammals can be catalyzed by two
different enzymes: tryptophan-2,3-dioxygenase (TDO) and indo-
leamine 2,3-dioxygenase (IDO). This conversion is considered to
be the first rate-limiting step for the pathway. TDO is the major
contributor to NAD" biosynthesis in liver, while IDO is ubiqui-
tously expressed in extrahepatic tissues, with the highest activity
detected in lung, intestine, and spleen (Yamazaki et al, 1985;
Kudo & Boyd, 2000). TDO is induced by tryptophan and gluco-
corticoids (Comings et al, 1995), while IDO is induced by
inflammatory stimuli (Yoshida & Hayaishi, 1978; Yoshida et al,
1979; Takikawa et al, 1986; Heyes et al, 1992; Reinhard, 1998;
Sanni et al, 1998; Daubener & MacKenzie, 1999). N-formylkynur-
enine gets converted by formamidase (KFase) into kynurenine.
Kynurenine in its turn leads to 3-OH kynurenine in a reaction
catalyzed by kynurenine 3-hydroxylase (K3H).
(Kyase) then forms 3-hydroxyanthranilate, which gets trans-
formed into o-amino-f-carboxymuconate-g-semialdehyde (ACMS)
by 3-hydroxyanthranilate 3,4-dioxygenase (3HAO). The formation
of this unstable ACMS constitutes a branching point of the de
novo NAD" synthesis pathway (Bender, 1983; Houtkooper et al,
2010). ACMS can either undergo cyclization forming quinolinic
acid (QA), which is then converted by quinolinate phosphoribo-
syltransferase (QPRT) into NAMN and from this point fuses with
the Preiss-Handler pathway to produce NAD™* (Fig 1). Otherwise,
the carbon group of ACMS can be removed, which either
leads to the production of picolinic acid or is directed to total
oxidation to CO, and H,0. While the cyclization of ACMS is
a spontaneous reaction, the transformation of ACMS into
o-amino-B-muconate-e-semialdehyde (AMS) is catalyzed by the
enzyme o-amino-fB-carboxymuconate-g-semialdehyde decarboxy-
lase (ACMSD) (Fig 1).

Kynureninase
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Preferential source for NAD* production

The existence of different pathways leading to NAD™ production
raises questions on the relative importance of each pathway and
which of them possess the highest potential to boost NAD* levels.
The preferable precursor for NAD* production within the organ-
ism is hence still a matter of debate. There is evidence that NAM
possesses a higher NAD™ boosting capability when compared to
NA in different organs in mice (Collins & Chaykin, 1971, 1972;
Mori et al, 2014; Yang et al, 2014). Additionally, in human
plasma, levels of NAM were reported to be fivefold higher than
NA levels (Jacobson et al, 1995). However, several other studies
claim the opposite: NA is a more effective NAD™ precursor than
NAM (Jjichi et al, 1966; Hagino et al, 1968; Lin & Henderson,
1972; Williams et al, 1985; Jackson et al, 1995; Hara et al, 2007).
It is important to mention that in Mori et al (2014) the authors
quantified the activity of NMNAT and NADS; therefore, the
comparison was rather made between the “deamidated” (e.g.,
from NA) and “amidated” route, which includes both NAM and
NR. And even if the authors of this study claim that NAM is the
main precursor for NAD " synthesis, the possibility of a significant
contribution of other precursors using the amidated NAD ™ biosyn-
thesis route (e.g., NR) cannot be discounted. In support of this, a
very recent study showed that NR has a greater capacity over NA
and NAM to boost hepatic NAD " levels (Trammell et al, 2016a).
It is also important to mention that both NA and NAM have
reported side effects, whereas no adverse effects are currently
reported for NR. NA activates the G protein-coupled receptor,
GPR109A and causes flushing, characterized by vasodilation and a
burning sensation (Benyo et al, 2006). While NAM raises health
concerns for treatment of diabetic patients, as high doses of NAM
can be hepatotoxic (Knip et al, 2000).

As for tryptophan, its administration to humans has been used
as treatment for pain, sleep disorders, depression, hyperactivity,
and bulimia (Richard et al, 2009). No severe adverse effects have
been reported for tryptophan administration, even with doses
going as high as 20 g/day in schizophrenic patients (Sidransky,
2001). A large number of reviews attribute a marginal role to the
de novo NAD™ synthesis pathway. However, a solid support for
this claim is lacking. One of the studies frequently cited to sustain
this point of view reports that tryptophan alone is not sufficient to
maintain the physiological NAD™" concentration of the cell
(Nikiforov et al, 2011). However, this conclusion was exclusively
based on the observation that supplementation with tryptophan is
not sufficient to protect cells from the death induced by NAMPRT
inhibitor FK866 and no NAD® quantification was performed in
this study. In addition, some studies show that, at least in the
liver, tryptophan constitutes the preferable substrate for NAD™"
production. Rat primary hepatocytes, treated with NA, NAM, or
tryptophan, were reported to use exclusively tryptophan for their
NAD™ biosynthesis, even though they were still able to take up
NA and NAM from the culture medium (Bender & Olufunwa,
1988). Administration of tryptophan, NA, or NAM to rats showed
that tryptophan resulted in the highest hepatic NAD* concentra-
tions (Bender et al, 1982). Moreover, it has been shown that in rat
liver, NA and NAM have a very limited capacity for NAD™"
production, probably due to the saturation of the involved phos-
phoribosyltransferases, whereas no such limitations were detected
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for the NAD" synthesis from tryptophan (Williams et al, 1950;
Bender et al, 1982; McCreanor & Bender, 1986).

NAD* consuming enzymes

Sirtuin proteins require NAD " as a cosubstrate for their activity. A
detailed description of their role in the regulation of metabolism and
aging is beyond the scope of this review, but has been extensively
covered elsewhere (Haigis & Sinclair, 2010; Satoh et al, 2011;
Houtkooper et al, 2012; Chang & Guarente, 2014). Besides sirtuins,
two different protein families are well known to use NAD™ as a
cofactor for their enzymatic activities. These include the PARPs and
the cADPR synthases, CD38 and CD157. PARPs are involved in
DNA repair, maintenance of genomic integrity, and cell death, with
PARP1 accounting for more than 85% of NAD* consumption of this
protein family (Bai & Canto, 2012). cADPR, which is generated by
CD38 and CD157, is a signaling molecule that controls intracellular
calcium fluxes. The catalytic efficiency of CD38 is significantly
higher than that of CD157 (Quarona et al, 2013). While CD38
expression was initially considered to be limited to the immune
system, it was later found to be ubiquitously distributed. CD38 is an
important NAD* consumer, as its loss of function (LOF) in mice led
up to a 30-fold increase in NAD * levels in different tissues (Barbosa
et al, 2007). Combined increases in PARP1 (Braidy et al, 2011;
Mouchiroud et al, 2013) and CD38 (Camacho-Pereira et al, 2016)
activities upon aging were reported to cause age-associated reduc-
tion in NAD ™ content. For more extensive coverage of these NAD ™"
consuming enzymes, we refer the readers to a few reviews on
PARPs (Bai & Canto, 2012; Canto et al, 2013; Jubin et al, 2016) and
cADPR synthases (Malavasi et al, 2008; Quarona et al, 2013).

Regulation of NAD* content

Regulation of NAD* content by diet and aging

An increase of NAD" levels followed by sirtuin activation is
observed in situations of energy deficit, such as fasting (Rodgers
et al, 2005; Chen et al, 2008; Cantd et al, 2010), calorie restriction
(CR) (Qin et al, 2006; Chen et al, 2008; Canto et al, 2010) or low
glucose feeding (Fulco et al, 2008), and exercise (Canto et al, 2009;
Cant6 et al, 2010; Costford et al, 2010). On the contrary, multiple
studies reported that high-fat (HF)/high-fat high-sucrose (HFHS)
feeding diminishes NAD™ content in liver (Yoshino et al, 2011;
Gariani et al, 2016, 2017; Trammell et al, 2016b), skeletal muscle
(Canto et al, 2012), BAT (Canto et al, 2012), and white adipose
tissue (WAT) (Yoshino et al, 2011). Orotic acid administration
(Fukuwatari et al, 2002) or feeding a methionine-/choline-deficient
(MCD) diet (Gariani et al, 2017) also leads to the concomitant
appearance of liver fat accumulation and a drop in hepatic NAD*
levels. A recent study, however, reported that administration of a
HF diet for 11 weeks led to an increase in NAD " content in mouse
liver, accompanied by enhanced Sirtl activity (Penke et al, 2015).
The stimulation of the NAD* biosynthesis could represent an initial
compensatory attempt to maintain energy homeostasis (Penke et al,
2015; Drew et al, 2016), whereas more prolonged exposure to HF
diet reduces NAD™ content, resulting in functional damage (Drew
et al, 2016). Interestingly, in Saccharomyces cerevisiae NAD*
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content is affected by the carbon source used: Yeast grown on
ethanol contain practically double the amount of NAD* compared
to yeast grown on glucose (Agrimi et al, 2011).

Finally, a decrease in NAD" content was also reported to be
associated with aging in Caenorhabditis elegans, mice, rats, and
humans (Braidy et al, 2011; Yoshino et al, 2011; Massudi et al,
2012; Gomes et al, 2013; Mouchiroud et al, 2013; Camacho-Pereira
et al, 2016; Guan et al, 2017).

Regulation by circadian rhythm

Circadian rhythm is another important regulator of NAD ™" content.
The key regulators of the mammalian circadian clock machinery are
the transcription factors CLOCK and BMALI, which act together as
a heterodimer. Their transcriptional targets, PER and CRY, form a
negative feedback loop by repressing CLOCK-BMALI activity.
Hepatic NAD * levels oscillate in a diurnal manner (Nakahata et al,
2009; Ramsey et al, 2009). Mice with LOF mutations in the circa-
dian activator genes, Clock and Bmall, show reduced NAD"
content, while NAD™ levels were elevated in mice with mutations
in the clock repressor genes Cryl and Cry2 (Ramsey et al, 2009).
The circadian clock-controlled expression of Namprt is thought to
be responsible for this fine-tuning of the NAD™ availability
(Nakahata et al, 2009; Ramsey et al, 2009). Importantly, clock-
driven oscillations of NAD ™ were claimed to regulate the activity of
both SIRT1 (Nakahata et al, 2009; Ramsey et al, 2009) and SIRT3
(Peek et al, 2013). It is possible that modulation of the redox state
of NAD™ can reciprocally impact on the circadian clock. In vitro
NADH was shown to enhance binding of the CLOCK-BMALI1 hetero-
dimer to DNA, whereas NAD " was inhibiting this process (Rutter
et al, 2001). On their turn, the NAD " -dependent enzymes SIRTI,
SIRT6, and PARP1 were reported to control the circadian clock
machinery via post-translational modifications of the core clock
transcription factors and via regulation of their transcription (Asher
et al, 2008, 2010; Chang & Guarente, 2013; Masri et al, 2014).

NAD* boosting strategies

NAD ™ levels can be increased either by promoting its synthesis—by
enhancing the enzymes involved in NAD* biosynthesis or adminis-
tration of NAD™ precursor molecules—or by limiting its consump-
tion. Supplementation with NA, NAM, NR, NMN, or tryptophan can
increase NAD™ content (Canto et al, 2015). Overexpressing or acti-
vating enzymes catalyzing the rate-limiting steps of NAD™ biosyn-
thesis also are efficient to boost NAD™ levels (Araki et al, 2004;
Sasaki et al, 2006; Hsu et al, 2009; Wang et al, 2014a; Williams
et al, 2017). However, the translational potential of this approach
may be lower compared to the other strategies.

Pharmacological or genetic inhibition of non-sirtuin NAD™
consumers, such as PARP-1 or CD38 (Fig 1), can help to preserve
NAD™" levels for sirtuin activation (Aksoy et al, 2006a; Barbosa
et al, 2007; Bai et al, 2011; Pirinen et al, 2014), especially in situa-
tions when non-sirtuin NAD"* consumers are overactivated (Bai
et al, 2011; Braidy et al, 2011; Mouchiroud et al, 2013; Fang et al,
2014; Mukhopadhyay et al, 2014; Ryu et al, 2016; Gariani et al,
2017). For instance, DNA damage is known to cause a dramatic
decline in NAD™ intracellular levels, which is due to PARP activa-
tion (Berger, 1985), and overexpression of CD38 in cells leads to a
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~35% decrease in NAD " levels (Hu et al, 2014). On the contrary,
Cd38~/~ and PARP-1"/~ mice have increased NAD* content in dif-
ferent organs (Aksoy et al, 2006a,b; Young et al, 2006; Bai et al,
2011).

Increased nicotinamide methyl transferase (NNMT) expression
was reported in obesity and type 2 diabetes (Lee et al, 2005;
Yaguchi et al, 2005; Salek et al, 2007; Kraus et al, 2014). NNMT is
the enzyme catalyzing the transformation of NAM into methylnicoti-
namide (MNA) (Fig 1) and is highly expressed in liver and adipose
tissue (Aksoy et al, 1994; Riederer et al, 2009). Inhibiting NNMT in
these tissues should increase NAD™ content, since NAM would not
be degraded but exclusively reconverted into NAD " (Fig 1). In line,
the knockdown of NNMT increased NAD* levels in adipose tissue,
but not in the liver (Kraus et al, 2014).

Resveratrol, a natural polyphenol found in red wine, activates
AMPK and thereby increases NAD * levels (Fulco et al, 2008; Canto
et al, 2009; Price et al, 2012; Desquiret-Dumas et al, 2013), which
promotes sirtuin activation.

Therapeutic potential of NAD*

Pellagra

Pellagra, a disease that was epidemic in the XVII-XIX centuries in
several rural areas of Europe and the United States (Bender, 1983),
owes its name to the Italian “pelle” = skin and “agra” = sour or
rough, which describes its most noticeable feature. Otherwise, it is
also called the disease of “the three Ds”: Diarrhea, dermatitis, and
dementia, which, if untreated, can lead to the fourth “D”, i.e. death.
In 1915, Joseph Goldberger demonstrated that pellagra was not an
infectious disease, as previously thought, but is due to poor nutri-
tion and could be prevented by consumption of fresh meat and milk
(Bender, 1983). Administration of both NAM and NA (Elvehjem
et al, 1937), and later tryptophan (Krehl et al, 1945) were also
reported to prevent pellagra.

Aging

Sirtuins are well-known longevity regulators, and their decreased
function with age might at least be partially explained by a systemic
decline in NAD™ levels upon aging (Mouchiroud et al, 2013)
[reviewed in (Imai & Guarente, 2014; Menzies et al, 2016)]. Rising
NAD" content, followed by sirtuin activation, has been reported to
increase lifespan in yeast (Lin et al, 2004; Belenky et al, 2007;
Easlon et al, 2008), worms (Mouchiroud et al, 2013), and mice
(Zhang et al, 2016). Administration of NR, NMN, or NAM recovered
NAD™ content and protected against aging-related complications,
such as mitochondrial dysfunction (Gomes et al, 2013; Mouchiroud
et al, 2013; Mills et al, 2016), decline in physical performance (Mills
et al, 2016; Zhang et al, 2016) and muscle regeneration (Zhang et al,
2016), arterial dysfunction (de Picciotto et al, 2016), decline in
vision (Lin et al, 2016; Mills et al, 2016), including glaucoma
(Williams et al, 2017), and age-associated insulin resistance (Mills
et al, 2016).

The most striking benefits of NAD " supplementation on aging
were observed in several rare diseases linked to abnormal DNA
repair that are typified by accelerated aging, such as the Cockayne
syndrome group B (CSB), xeroderma pigmentosum group A (XPA),
or ataxia-telangiectasia (A-T). In a mouse model of CSB, neurons
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show mitochondrial defects, which have an impact on the cerebel-
lum and inner ear. Administration of PARP inhibitors or the NAD™*
precursor, NR, to ¢sb™/~ animals attenuated many of the pheno-
types of CSB and restored altered mitochondrial function in their
neurons (Scheibye-Knudsen et al, 2014). Another DNA damage
repair disorder is XPA, which is also characterized by mitochondrial
alterations and reduced NAD *-SIRT1 signaling due to the overacti-
vation of PARP1 (Fang et al, 2014). Treatment with NAD " precur-
sors, NR and NMN, or with the PARP inhibitor, Olaparib, rescued
the XPA phenotype in cells and worms. Similar observations of
increased PARylation, NAD ™ depletion, and mitochondrial dysfunc-
tion were made in mouse and worm models of another progressive
neurodegenerative disease, A-T (Fang et al, 2016). Restoring the
NAD*/SIRT1 pathway, by NR and NMN administration to
C. elegans and mice, improved A-T neuropathology (Fang et al,
2016).

Metabolic disorders

The importance of NAD* as a metabolic regulator has been demon-
strated by its efficacy to attenuate many features of the metabolic
syndrome, a cluster of pathologies including insulin resistance, fatty
liver, dyslipidemia, and hypertension, with increased risk of devel-
oping type 2 diabetes and heart failure. Different approaches aiming
to raise NAD™" levels were shown to provide protection against
obesity, such as (i) inhibition of NAD" consumers, PARPs (Bai
et al, 2011; Gariani et al, 2017) and CD38 (Barbosa et al, 2007), (ii)
administration of NAD ¥ precursors, such as NR (Canto et al, 2012;
Gariani et al, 2016; Trammell et al, 2016b) or NMN (Yoshino et al,
2011), (iii) or inhibition of NNMT (Kraus et al, 2014). NAD " boost-
ing was also efficient to improve glucose homeostasis in obese,
prediabetic, and T2DM animals (Barbosa et al, 2007; Bai et al,
2011; Yoshino et al, 2011; Canto et al, 2012; Kraus et al, 2014;
Gariani et al, 2016, 2017; Trammell et al, 2016b). Likewise, re-
establishing NAD * levels with NR or PARP inhibitors also protected
from non-alcoholic steatohepatitis (NASH) (Gariani et al, 2016,
2017; Mukhopadhyay et al, 2017) as well as alcoholic steatohepati-
tis (ASH) (Mukhopadhyay et al, 2017).

Muscle function

Increase in muscle NAD ™" content, resulting from NR administration
or PARP inhibition, improved muscle function and exercise capacity
in mice (Canto et al, 2012; Pirinen et al, 2014), including in aged
animals (Zhang et al, 2016). Interestingly, muscular dystrophy is
characterized by a dramatic drop in NAD* in the muscle (Ryu et al,
2016). NR administration to the mdx mouse, a model for muscular
dystrophy, improved muscle function by enhancing bioenergetics,
attenuating inflammation and fibrosis (Ryu et al, 2016), as well as,
by favoring regeneration and preventing the exhaustion and senes-
cence of muscle stem cells, typical to the mdx mice (Zhang et al,
2016).

The beneficial effects of improving muscle bioenergetics are also
illustrated in models of mitochondrial myopathies. Increasing
muscle NAD" levels by the administration of NR or a PARP inhi-
bitor preserved muscle function in two different models of mito-
chondrial myopathy (Cerutti et al, 2014; Khan et al, 2014). Similar
benefits on mitochondrial myopathy were seen with the AMPK
agonist, AICAR (Viscomi et al, 2011), which may at least in part be
due to the recovery of NAD ™ content upon AMPK activation.
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Cardiac function

Exposing the heart to different types of stresses was reported to
result in a decline in cardiac NAD " content (Pillai et al, 2005, 2010;
Karamanlidis et al, 2013; Yamamoto et al, 2014). For instance,
cardiomyocyte hypertrophy is characterized by a drop in cellular
NAD™ levels. Supplementation with NAD* was hence protective
against cardiac hypertrophy in mice, and these anti-hypertrophic
effects were in part attributed to the activation of SIRT3 (Pillai et al,
2010).

Cardiac ischemia is another condition causing a steep decrease in
NAD™ levels. NMN administration protected the mice from
ischemic injury via the recovery of cardiac NAD" content and
subsequent SIRT1 activation (Yamamoto et al, 2014). Similarly,
cardiac-specific overexpression of NAMPRT in mice increased
NAD™ content and reduced the extent of myocardial infarction and
apoptosis in response to prolonged ischemia and ischemia/reperfu-
sion (Hsu et al, 2009). Maintaining NAD* levels in pressure-over-
loaded hearts is crucial for myocardial adaptation and protection
from heart failure, as demonstrated by NMN administration to mice
treated with the NAMPRT inhibitor FK866 (Yano et al, 2015) and to
cardiac-specific mitochondrial complex I-deficient mice (Lee et al,
2016). In a mouse model of heart failure caused by iron deficit,
reconstituting NAD ™" content also improved mitochondrial quality,
protected cardiac function, and increased lifespan (Xu et al, 2015).
Similarly, NR administration improved cardiac function in aged mdx
mice, which, like muscular dystrophy patients, display cardio-
myopathy (Ryu et al, 2016).

Renal function

Multiple studies demonstrated the loss of SIRT1 and SIRT3 activity
as a key feature of kidney dysfunction, including kidney abnormali-
ties linked with aging (Koyama et al, 2011; Zhuo et al, 2011; Morigi
et al, 2015; Ugur et al, 2015; Guan et al, 2017). Acute kidney injury
(AKI) is characterized by a reduction in NAD® content and
NAMPRT expression (Morigi et al, 2015; Ugur et al, 2015). Promot-
ing NAD™ synthesis via NAM or NMN supplementation was
reported to mitigate AKI in ischemia/reperfusion- and cisplatin-
induced mouse models of AKI (Tran et al, 2016; Guan et al, 2017).
Furthermore, administration of the AMPK agonist, AICAR, which
positively impacts on NAD ™ levels (Canto et al, 2009), was protec-
tive against cisplatin-induced AKI in SIRT3-dependent manner
(Morigi et al, 2015). Although no NAD" quantification was
performed in this particular study, the involvement of SIRT3, as well
as the increase in Namprt expression detected upon AICAR adminis-
tration, points toward a potential increase in NAD™" levels (Morigi
et al, 2015). Kidney mesangial cell hypertrophy is also characterized
by a depletion of NAD™ content (Zhuo et al, 2011) and restoring
intracellular NAD™* levels via supplementation with exogenous
NAD™ prevented its onset by activating SIRT1 and SIRT3 (Zhuo
et al, 2011).

Neurodegeneration

NAD™ boosting has also been shown to be neuroprotective. Rais-
ing NAD™ levels protects against neuronal death induced by
ischemic brain (Klaidman et al, 2003; Sadanaga-Akiyoshi et al,
2003; Kabra et al, 2004; Feng et al, 2006; Kaundal et al, 2006;
Zheng et al, 2012) or spinal cord injuries (Xie et al, 2017). Axonal
degeneration is considered as an early pathological mechanism in
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this type of neurodegeneration. An accumulating amount of data
indicates that axonal degeneration is not only limited to ischemic
brain and spinal cord injuries, but constitutes a hallmark process,
preceding neuronal death, in a much larger spectrum of disease
states, including traumatic brain injury, inflammatory disorders,
like multiple sclerosis, and degenerative disorders, such as Alzhei-
mer’s and Parkinson’s diseases (Lingor et al, 2012; Johnson et al,
2013). Degenerating axons show a decrease in NAD" content
(Wang et al, 2005; Gerdts et al, 2015), while replenishing NAD "
by supplementing NAM (Wang et al, 2005), NR and NMN (Sasaki
et al, 2006), and high doses of NAD™ (Araki et al, 2004), or over-
expressing enzymes involved in NAD™ biosynthesis (Araki et al,
2004; Sasaki et al, 2006) delayed axonal degeneration. In line with
this, supplementation with NAM, NMN, or NR was neuroprotec-
tive in rodent models of Alzheimer disease (Qin et al, 2006; Gong
et al, 2013; Liu et al, 2013; Turunc Bayrakdar et al, 2014; Wang
et al, 2016a), and supplementation with NAM or LOF of PARP
were protective in Drosophila models of Parkinson’s disease
(Lehmann et al, 2017).

NAD™ depletion is also involved in the neurodegeneration
induced by highly toxic misfolded prion protein (Zhou et al, 2015).
Replenishment of intracellular NAD " stocks, either by providing
NAD™ or NAM, rescued the neurotoxic effects of protein aggregates
(Zhou et al, 2015). Importantly, restoring NAD™ content is not
exclusively protecting neurons, since it has also been reported to
prevent the death of astrocytes (Alano et al, 2004).

P7C3, a compound that enhances neurogenesis (Pieper et al,
2010) and that was neuroprotective in mouse models of Parkinson’s
disease (De Jesus-Cortes et al, 2012), amyotrophic lateral sclerosis
(Tesla et al, 2012) and brain injury (Yin et al, 2014), was subse-
quently identified as an NAMPRT activator (Wang et al, 2014a).
Therefore, the beneficial effects of P7C3 on neuron preservation
seem at least in part to be due to a NAMPRT-mediated increase in
NAD ™ levels (Wang et al, 2014a).

Nicotinamide riboside supplementation recovered depressed
sensory and motor neuron conduction velocities and thermal insen-
sitivity in T2DM mice (Trammell et al, 2016b) and alleviated
chemotherapy-induced peripheral neuropathy in rats (Hamity et al,
2017), indicating that NAD™ also is beneficial in the peripheral
neuronal system.

NAD™ boosting was also able to protect mice from loss of
vision and hearing (Shindler et al, 2007; Brown et al, 2014).
Intravitreal injections of NR in mice attenuated optic neuritis in a
dose-dependent manner (Shindler et al, 2007). Even if no NAD"
quantification was performed in this study, SIRT1 activity was
necessary for the neuroprotective effects of NR, since the protec-
tion was blunted in the presence of sirtinol, a SIRT1 inhibitor
(Shindler et al, 2007). Furthermore, systemic administration of
NAM and overexpression of Nmnatl had spectacular effects on
vision in DBA/2J mice, which are prone to glaucoma (Williams
et al, 2017). Noise exposure results in degeneration of the neurons
innervating the cochlear hair cells. Increase in NAD™ levels
induced by NR administration prevented against noise-induced
hearing loss and neurite degeneration (Brown et al, 2014). In line
with this, CR was shown to protect against cochlear cell death and
aging-associated hearing loss in a Sirt3-dependent manner (Someya
et al, 2010). It is therefore tempting to speculate that this improve-
ment could also be associated with increased NAD " levels upon
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CR, though no direct measurements of NAD" levels were
performed in this study.

Future challenges and perspectives

Although it was thought that the NAD* biosynthetic pathways were
entirely understood, we still continue to discover new actors of
NAD ™ metabolism. For instance, whereas the conversion of NR into
NMN by NRK was established some time ago (Bieganowski &
Brenner, 2004), the opposite reaction, that is, the transformation of
NMN into NR by CD73, was only recently shown to occur in
humans (Garavaglia et al, 2012). Another example is the recent
description that NR not only induced NAAD concentrations by
45-fold, but that it is also a direct biosynthetic precursor of NAAD
(Trammell et al, 2016a). The biochemical basis of this conversion
cannot be explained with our current state of knowledge, as NAD™
synthetase, which catalyzes the transformation of NAAD into
NAD™, works unidirectionally (Bieganowski et al, 2003; Wojcik
et al, 2006) and can therefore not catalyze the reverse reaction from
NAD™ into NAAD.

Additionally, it is possible that we still ignore some functions
that NAD™ might accomplish within the cell. For instance, very
recently NAD™ was found to be linked to RNA in bacteria (Chen
et al, 2009). By forming a cap at the 5'-terminus of bacterial RNA
molecule, it is not only increasing its stability (Cahova et al,
2015), but also serves as non-canonical initiation nucleotides for
de novo transcription initiation (Bird et al, 2016). Initially thought
to be prokaryote-specific, this RNA modification appears to be also
conserved in eukaryotic systems (Jiao et al, 2017; Walters et al,
2017). Similarly to bacteria, in eukaryotic cells NAD" addition
seems to occur during transcription initiation (Bird et al, 2016;
Walters et al, 2017). Intriguingly, a subset of eukaryotic non-
coding RNAs have also been reported to possess a NAD *-cap.
Since these RNAs are formed exonucleolytically, NAD* cap addi-
tion in their case would occur post-transcriptionally (Jiao et al,
2017). Oppositely to prokaryotes, in mammalian cells the NAD*
cap was reported to rather promote mRNA decay (Jiao et al,
2017). The full physiological significance of NAD*-capping is yet
to be discovered. It is, however, tempting to speculate that the
proportion of cellular mRNA possessing NAD* cap might be influ-
enced by intracellular NAD" content and thus by the energy state
of the cell.

Devising better NAD " quantification methods is a critical chal-
lenge in the field. Measurements based on UV-Vis methods are less
accurate and sensitive than mass spectrometry methods (Trammell
& Brenner, 2013). Moreover, accurate NAD " quantification in dif-
ferent subcellular compartments is challenging due the complexity
of subcellular fractionations and the NAD " isolation procedures.
Over the last few years, a new generation of NAD™ biosensors was
developed, allowing NAD ™ quantification in intact cells as well as
within specific subcellular compartments (Hung et al, 2011; Bilan
et al, 2014; Cambronne et al, 2016). Further development and wider
application of these biosensors combined with strategies to explore
the kinetics of NAD * biosynthesis and metabolism, using flux stud-
ies, will hence be important for future research. Besides, according
to a recent study NADP and NADPH were more significantly deregu-
lated in T2DM and obesity than NAD " and less correctable by NR
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supplementation (Trammell et al, 2016b). Monitoring of the entire
NAD ™ metabolome could hence help our further understanding of
its role in metabolism, which might extend far beyond NAD -
sirtuin or NAD " —PARP axis.

As reviewed here, manipulations of NAD ™ concentrations have
demonstrated multiple beneficial effects in a large spectrum of
diseases in animal models (Fig 2). Translating these effects into clin-
ical benefits now becomes one of the main challenges. The fact that
the long-term administration of the NAD™ precursor molecules
showed no deleterious effects in animals should be considered
promising. As such, administration of NMN for 12 months demon-
strated no toxicity in mice (Mills et al, 2016). Similarly, administra-
tion of NR to mice for a duration of 5-6 months (Gong et al, 2013),
10 months (Zhang et al, 2016), and 12 months (Tummala et al,
2014) showed no obvious adverse effects. Moreover, 2016 was
marked by the first report on the effects of NR in humans, showing
that the oral administration of NR led to a dose-dependent increase
in NAD" levels in blood in healthy volunteers (Trammell et al,
2016a). Another NAD™ precursor, NAM, has also been already
tested in humans and protected B-cell function in type 1 diabetes
patients (Olmos et al, 2006) and even though the clinical trials for
NAM as a treatment for type 1 diabetes failed, no adverse effects of
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NAM were detected (Gale et al, 2004; Cabrera-Rode et al, 2006).
Furthermore, a slow release form of NA (acipimox) was effective in
inducing mitochondrial activity in skeletal muscle of type 2 diabetic
patients (van de Weijer et al, 2015).

In theory, all this bodes well for the use of NAD ™ precursors in
the clinic. The fact that many of these NAD* precursors are right-
fully considered vitamins (which are generally regarded as safe
(GRAS)), and that they are widely available to the public at large,
however, also poses some issues. Despite the many health benefits
that are inferred from their use in animal disease models, these
NAD™ precursors need still to undergo rigorous clinical testing in
diseases setting, before one can recommend their widespread use.
Therefore, some caution is required, so that the overuse or improper
use in uncontrolled settings does not hamper their clinical develop-
ment as nutra- or pharmaceutical agents.

It will also be important to identify which pharmacological strate-
gies aiming to boost NAD* content would be the most appropriate
in patients. Various monoclonal antibodies targeting CD38 have
been developed as a treatment for hematological malignancies,
some of them being in preclinical, and some even in late clinical,
studies (van de Donk et al, 2016). Many flavonoids were reported
to inhibit human CD38 at low micromolar concentrations
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Figure 2. Therapeutic potential of NAD* boosting in humans based on findings in animal studies.

NAFLD, non-alcoholic fatty liver disease; AFLD, alcoholic fatty liver disease.
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(Kellenberger et al, 2011; Escande et al, 2013), some of them show-
ing promising therapeutic effects in mice (Escande et al, 2013;
Boslett et al, 2017). Thiazoloquin(az)olinones have recently been
described as potent CD38 inhibitors, able to elevate NAD™ in
plasma, liver, and muscle in mice (Haffner et al, 2015). Moreover,
several reports have disclosed different small molecules blocking
CD38 activity at low micromolar concentrations (Zhou et al, 2012;
Moreau et al, 2013; Swarbrick et al, 2014; Wang et al, 2014b;
Becherer et al, 2015). Testing and exploring their therapeutic poten-
tial in animal models is now just a matter of time.

Several PARP inhibitors are currently either marketed (Olaparib)
or undergoing advanced clinical trials for the treatment of cancers
in patients with BRCA mutations (Wang et al, 2016b). The draw-
back of these PARP inhibitors is that none of them is selective for a
specific PARP family member (Wang et al, 2016b). For instance,
the clinically approved compound, Olaparib, inhibits PARP-1,
PARP-2, PARP-3, and PARP-4 (Wahlberg et al, 2012), increasing
chances of adverse effects. As a case in point, the loss of both
PARP-1 and PARP-2 in mice was reported to cause embryonic
lethality (Menissier de Murcia et al, 2003), while a T cell-specific
deficiency in both them leads to highly aggressive lymphomas
(Navarro et al, 2017). Moreover, all current PARP inhibitors are
genotoxic (Ito et al, 2016), which raises concerns about their use
for non-oncologic indications. Indeed, some side effects that could
be tolerated in case of the treatment of life-threatening diseases
such as advanced cancers (Brown et al, 2016) may not be tolerated
for non-oncologic indications. All these evidences indicate that
the development of safer and more selective PARP inhibitors is
necessary.

The growing literature on the beneficial effects of raising and
maintaining NAD ™ levels in different disease models and the high
evolutionary conservation of the NAD*-sirtuin signaling axis
suggests that strategies that increase cellular NAD* content may
have a preventive and/or therapeutic potential in a large number of
human diseases (Fig 2). With the first reports on human trials of
various NAD™ boosting techniques that start to appear, we are
entering in the exciting era of NAD * therapeutics. While there is no
certitude that NAD™ boosting will be able to extend lifespan in
humans, such strategies definitely possess the potential to delay
age-associated physiological decline, and therefore, we predict that
they will be useful to manage aging-related diseases and extend
healthspan.
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