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Abstract
Autoimmune diseases are complex clinical conditions that present significant 
therapeutic challenges due to their intricate immunological mechanisms. Conven-
tional treatment strategies, such as immunosuppressive drugs and anti-inflam-
matory therapies, often demonstrate limited efficacy and are associated with 
considerable side effects. Recently, mesenchymal stem cells (MSCs) have attracted 
growing interest as a promising therapeutic approach, owing to their immuno-
modulatory properties and ability to promote tissue repair. However, the direct 
application of MSCs faces several limitations, including the risk of immuno-
genicity and difficulties in large-scale production. In this context MSC-derived 
exosomes (MSC-Exos), nano-sized extracellular vesicles secreted by MSCs, have 
emerged as a compelling alternative to cell-based therapies. Enriched with 
proteins, lipids, and nucleic acids, these exosomes exhibit potent anti-inflam-
matory and immunomodulatory effects. Their primary mechanisms of action 
include enhancing the population of regulatory T cells, modulating macrophage 
polarization, and suppressing proinflammatory cytokines such as interleukin-6 
and tumor necrosis factor-α. The therapeutic potential of MSC-Exos extends 
beyond individual conditions, encompassing a wide range of autoimmune 
diseases. For instance in Behçet’s disease, they have been shown to regulate 
vasculitis and inflammatory processes by inhibiting proinflammatory cytokines 
and promoting endothelial cell regeneration. Moreover, MSC-Exos have demon-
strated promising immunomodulatory effects in other autoimmune diseases, 
including systemic lupus erythematosus, rheumatoid arthritis, and multiple 
sclerosis. Through mechanisms such as inflammation suppression, vascular 
repair, and the restoration of immune homeostasis, MSC-Exos represent a 
versatile and innovative approach to autoimmune disease therapy. This review 
explored the molecular and therapeutic effects of MSCs and MSC-Exos in autoi-
mmune diseases, with particular emphasis on their clinical potential in Behçet’s 
disease, systemic lupus erythematosus, rheumatoid arthritis, and multiple scle-
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Core Tip: Autoimmune diseases result from dysregulated immune responses directed against self-antigens, leading to chronic 
inflammation and tissue damage. Mesenchymal stem cells (MSCs) and MSC-derived exosomes have demonstrated 
significant potential as therapeutic agents due to their strong immunomodulatory and regenerative properties. MSC-derived 
exosomes modulate immune responses by regulating cytokine secretion, suppressing inflammatory cell activity, and promo-
ting immune tolerance. Their advantages, including low immunogenicity and the ability to cross biological barriers, make 
them a promising cell-free therapy for autoimmune. Even though preclinical and clinical findings are encouraging, further 
research is required to standardize protocols, optimize therapeutic efficacy, and ensure long-term safety.
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INTRODUCTION
Autoimmune diseases are a group of disorders resulting from an abnormal immune response against the body’s own 
tissues. These conditions are particularly common in females, affect all age groups, and are typically characterized by the 
production of autoantibodies and the dysregulation of B cell and T cell activity[1,2]. Their pathophysiology is complex, 
involving interactions between genetic, environmental, and immunological factors[3]. Clinically, autoimmune diseases 
may be organ-specific or systemic and can present as inflammatory, neurological, gastrointestinal, or systemic conditions 
such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes, multiple sclerosis (MS), Behçet’s 
disease (BD), psoriasis, and irritable bowel syndrome[4,5]. This overview specifically focused on RA, SLE, MS, and BD.

The molecular mechanisms underlying autoimmune diseases include the loss of autoantigen tolerance, cytokine 
dysregulation, molecular mimicry, and epitope spreading. The breakdown in tolerance of B and T cells to autoantigens 
leads to the production of autoantibodies, while specific variants of the human leukocyte antigen (HLA) genes are key in 
presenting these autoantigens. Elevated levels of proinflammatory cytokines and deficient anti-inflammatory cytokines 
contribute to chronic inflammation. Additionally, structural similarities between autoantigens and infectious agents can 
mislead the immune system into attacking healthy tissue, a phenomenon known as molecular mimicry. Epitope 
spreading refers to the expansion of the immune response from a single antigen to multiple autoantigens over time, 
further exacerbating disease progression. These processes are fundamental to the development and progression of 
autoimmune diseases[3].

Various therapeutic strategies aim to suppress abnormal immune responses and alleviate symptoms. Traditional 
treatments include corticosteroids and immunosuppressive drugs, but in recent years biological agents and targeted 
therapies have also been developed. In particular, tumor necrosis factor (TNF) inhibitors, therapies that target B cells, and 
agents that modulate cytokine signaling pathways have made significant advances in the treatment of autoimmune 
disease treatment. Regardless of all the advances, the treatment of autoimmune diseases still faces challenges, and a better 
understanding of the pathogenesis of these diseases requires the development of new and more effective therapeutic 
approaches. In this context mesenchymal stem cells (MSCs) are emerging as one of the most promising cellular therapies 
in the treatment of autoimmune diseases due to their immunomodulatory and regenerative properties[6].

MSCs were first isolated from bone marrow (BM) in the 1960s and 1970s and are defined as non-hematopoietic, 
multipotent cells capable of self-renewal and differentiation into various lineages[7]. They are present in multiple tissues, 
including BM, placenta, adipose tissue (AD), Wharton’s jelly, umbilical cord (UC), and teeth[8]. According to the Interna-
tional Society for Cellular Therapy, MSCs must adhere to plastic surfaces, express specific surface markers (positive for 
CD73, CD90, and CD105; negative for CD45, CD34, CD14, CD11b, CD79a, CD19, and HLA-DR), and differentiate into 
mesodermal cell types under in vitro conditions[9]. Beyond their differentiation potential, MSCs have immunomodu-
latory properties, enabling them to modulate both innate and adaptive immune responses[10]. Research has shown that 
MSCs can suppress the activation, proliferation, and differentiation of natural killer (NK) cells, dendritic cells (DCs), 
macrophages, and B and T lymphocytes[11]. Their therapeutic effects are largely mediated by paracrine factors and 
exosomes, small extracellular vesicles that regulate inflammation, reprogram immune cells, and support tissue repair via 
their rich cargo of immunoregulatory molecules[12]. MSC-derived exosomes (MSC-Exos) offer advantages over whole-
cell MSC therapies, including lower immunogenicity, the ability to cross the blood-brain barrier, no risk of unwanted 
differentiation, and the capacity to regulate inflammation through multiple mechanisms[13,14].
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Extracellular vesicles are classified based on their biogenesis and size into exosomes, microvesicles, and apoptotic 
bodies (Figure 1)[15]. Exosomes (about 30-150 nm) originate from endosomes and are released when multivesicular 
bodies fuse with the plasma membrane[16]. They are formed via both the endosomal sorting complex required for 
transport-dependent pathway and the endosomal sorting complex required for transport-independent pathway. Initially 
thought to be cellular waste products, exosomes are now known to play essential roles in intercellular communication 
and immune regulation[17,18].

Exosomes are secreted by both hematopoietic (e.g., reticulocytes, B and T lymphocytes, platelets, mast cells, DCs, 
macrophages) and non-hematopoietic cells (e.g., epithelial cells, Schwann cells, astrocytes, neurons, melanocytes, 
mesothelial cells, adipocytes, fibroblasts, and tumor cells)[19]. They are present in biological fluids such as plasma, urine, 
cerebrospinal fluid, saliva, and breast milk. Their cargo [proteins, lipids, mRNAs, microRNAs (miRNAs), and DNA] 
reflects the physiological state of the parent cell and contributes to immune regulation, metabolism, and pathological 
processes (Figure 1)[20]. Exosome isolation methods include centrifugation, chromatography, polymer-based precip-
itation, and immunological techniques. Characterization is typically performed using nanoparticle tracking analysis, flow 
cytometry, electron microscopy, and western blotting[21,22]. Recent advances in high-throughput analysis of exosome 
content have led to the creation of dedicated databases such as ExoCarta, Vesiclepedia, and EVpedia[23-25].

IMMUNOMODULATORY EFFECT OF MSCS/MSC-EXOS
The immunosuppressive effect of MSCs is one of the key mechanisms underlying their immunotherapeutic potential. 
MSCs secrete various immunomodulatory factors to suppress the immune response and prevent autoimmune attacks in 
cases of excessive inflammation. These cells regulate the inflammatory response by secreting immunosuppressive 
mediators such as prostaglandin E2 (PGE2), indoleamine 2,3-dioxygenase (IDO), nitric oxide, transforming growth factor-
beta (TGF-β), hepatocyte growth factor, interleukin-10 (IL-10), CD39, CD73, and programmed cell death ligands (PD-L1, 
PD-L2). The immunomodulatory effects of MSCs on immune cells are mediated through direct cell-to-cell interactions 
and the suppression of proinflammatory cytokine production via extracellular vesicles.

Notably, MSCs possess the ability to recognize danger signals and modulate immune responses through toll-like 
receptors (TLRs), enhancing their therapeutic potential[26]. MSC-derived extracellular vesicles contain various miRNAs, 
proteins, and lipids that regulate the immune response and exert anti-inflammatory effects. While miRNAs such as let-7b, 
miR-146a, miR-181c and miR-122 reduce inflammation by inhibiting the polarization of proinflammatory macrophage 
(M1), miR-21, miR-146a, miR-182 and miR-223 modulate the immune response by regulating TLR signaling pathways[27-
29]. While miR-125a and miR-99b regulate TLR-4 signaling, miR-182 can affect MSC differentiation by decreasing TLR-4 
expression[30,31]. In addition, miR-17 inhibits the release of proinflammatory mediators by suppressing the activation of 
the NOD-like receptor protein-3 inflammasome[32].

MSC-derived extracellular vesicles reduce IL-1β production by suppressing the activation of nuclear factor kappa B 
(NF-κB) with their protein contents such as TGF-β and PGE2, and they calm inflammation[33,34]. These vesicles suppress 
the activation of T and B cells by acting directly on immune cell activity, support tissue regeneration by increasing the 
proportion of anti-inflammatory macrophage (M2), and reduce mast cell activity[35,36]. While M1 macrophages secrete 
proinflammatory cytokines such as TNF-α and IL-1β, M2 macrophages produce immunosuppressive factors such as IL-
10. MSC-Exos increase the expression of IL-10 and simultaneously decrease the levels of vascular endothelial growth 
factor (VEGF)-A, interferon-gamma (IFN-γ), IL-12, and TNF-α by promoting the conversion of M1 to M2[6].

Vasandan et al[37] showed that human MSCs modulate the immune response by modulating the metabolic phenotype 
of macrophages through PGE2. PGE2 secreted by MSCs promotes the conversion of macrophages from a proinflam-
matory (M1) to an anti-inflammatory (M2) phenotype by promoting the transition from glycolysis to oxidative phos-
phorylation[37]. This mechanism underscores the crucial role of MSC-Exos in modulating immune cells and 
demonstrates that it has therapeutic potential for regulating inflammation.

Moreover, MSC-derived extracellular vesicles carry anti-inflammatory proteins such as TNF-stimulated gene 6 and 
cyclooxygenase-2, inhibit the migration of polymorphonuclear granulocytes into tissues, and regulate the inflammatory 
immune response[38,39]. The C-C motif chemokine receptor 2 in their membrane structure inhibits inflammatory 
macrophage functions by interacting with monocyte chemoattractant protein 1[27,40].

MSC-Exos suppress the proliferation and differentiation of B cells and the secretion of immunoglobulins in a dose-
dependent manner. CD19+/CD86+ inhibit activated B cells and promote IL-10-producing regulatory B cells. They also 
decrease B cell activity by inhibiting the phosphatidylinositol 3-kinase/protein kinase B signaling pathway via miR-155-
5p and increasing the expression of genes involved in immune regulation[6].

One of the mechanisms of MSC-Exos is to prevent the progression of autoimmune diseases by suppressing the prolif-
eration and activation of T cells and restoring immune homeostasis. MSC-Exos, which carry immunosuppressive 
molecules such as TGF-β, IDO protein, and miR-125a-3p, regulate the T helper 1/2 (Th1/Th2) balance, promote regu-
latory T cell (Treg) differentiation, and suppress inflammatory responses. While adenosine inhibits T cells through its 
signaling effect, IL-1β-stimulated MSC-Exos induce apoptosis of T cells by increasing PD-L1 and TGF-β expression and 
increasing the proportion of Treg cells.

In experimental autoimmune encephalomyelitis (EAE) and colitis models, MSC-Exos have been shown to suppress 
CD4+ T cell proliferation, decrease IL-17 and IFN-γ production, and stabilize inflammation by increasing TGF-β and IL-10 
levels. In addition, it indirectly supports Treg cell formation by directing monocytes into the M2 macrophage phenotype 
and suppresses autoimmune responses by increasing immune tolerance[6,41].
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Figure 1 Biogenesis and composition of exosomes. Created with BioRender.com. miRNA: MicroRNA.

The ability of MSC-Exos to regulate the immune response is also mediated by NF-κB-mediated, MyD88-dependent 
mechanisms. These exosomes suppress proinflammatory cytokine levels while increasing the expression of IL-10 and 
TGF-β1. Monocytes interacting with exosomes contribute to immune tolerance by directing CD4+ T cells to the Treg 
phenotype. In animal models, MSC-Exos have been shown to prolong the survival of allogeneic skin grafts and regulate 
the immune response[42]. These mechanisms explain the immunosuppressive effect of MSC-Exos and reveal their 
therapeutic potential in autoimmune diseases and inflammatory processes.

THERAPEUTIC POTENTIAL OF MSCS/MSC-EXOS IN AUTOIMMUNE DISEASES
BD
BD is a relapsing autoinflammatory disorder with a broad clinical spectrum that includes oral and genital ulceration, skin 
lesions, uveitis, and vascular involvement[5]. Although the etiopathogenesis of the disease is not yet fully understood, it 
is believed that HLA-B51-related genetic predisposition, epigenetic alterations, environmental factors, and infectious 
agents trigger the immune system and lead to an increase in proinflammatory cytokines[43,44]. The disruption of the 
Th1/Th2 balance, the proliferation of Th17 cells, and the dysregulation of Treg cell functions play an important role in 
immunopathogenesis[45,46]. This process is characterized by an overactivation of the innate and adaptive immune 
system.

The interaction between major histocompatibility complex-II and the T cell receptor promotes Th1 cell differentiation 
(IFN-γ, TNF-α, IL-12) via antigen-presenting cells, IL-12, and IL-2 and Th17 cell differentiation (IL-17, TNF-α, IL-22) via 
TGF-β, IL-6, and IL-1β. Th2 (IL-4, IL-6, IL-10) cells play a limited role, while loss of function of IL-2 and IL-12-dependent 
Treg cells causes uncontrolled progression of inflammation[47-49]. Macrophages exacerbate inflammation by switching to 
the M1 phenotype (TNF-α, IL-6, IL-8) under the influence of IFN-γ and granulocyte-macrophage colony-stimulating 
factor, while IL-4, IL-13, and macrophage colony-stimulating factor-mediated M2 (IL-10) are suppressed. Gamma delta T 
and NK cells (IFN-γ, TNF-α) increase Th1/Th17 activity. Neutrophils (IFN-γ, IL-8, granulocyte-macrophage colony-
stimulating factor) are overactivated and lead to oxidative stress, endothelial dysfunction, thrombosis, and vasculitis, 
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which exacerbates the mucocutaneous lesions and inflammatory damage[48,49] (Figure 2).
Currently, various drugs such as colchicine, corticosteroids, immunosuppressants (azathioprine, cyclophosphamide), 

IFN, and anti-TNF biologics (infliximab, adalimumab, etanercept) are used to treat BD[50]. However, current treatments 
generally only alleviate symptoms, many patients develop resistance, and the need for more effective, less toxic new 
treatment options is increasing, especially in cases of severe organ involvement[47]. MSCs and their exosomes can 
suppress the autoimmune response by restoring the functions of Treg cells[51]. Considering the dysregulation of the 
innate immune response and the abnormalities in the adaptive immune system in the pathogenesis of BD, MSC-Exos 
could suppress the autoinflammatory process and alleviate the clinical symptoms by regulating the phenotype of 
immune cells[49]. In addition, it can suppress the activation of Th1 and Th17 cells and reduce inflammation by promoting 
the immunosuppressive functions of Treg cells[52].

In the study conducted by Mazaheri et al[47] in C57BL/6 mice in which herpes simplex virus type 1 was used as a 
model for BD, intraperitoneal MSCs were administered at different time points (before, simultaneously, and after herpes 
simplex virus type 1 infection). MSCs decreased the production of proinflammatory cytokines by suppressing TNF-α, 
IFN-γ, and IL-17 expression and regulated the immune response by inhibiting DC maturation and T cell, B cell, and NK 
cell activity. The results showed that MSCs slow disease progression by suppressing inflammation and have therapeutic 
potential[47].

In this context MSC-Exos have the potential as a novel therapeutic approach for patients resistant to conventional 
therapies in the treatment of BD. In a clinical case report, leg ulcers associated with BD that were resistant to conventional 
therapies were successfully healed by treatment with MSCs. A 55-year-old patient with recurrent oral and genital ulcers, 
papulopustular lesions, and walking disability was diagnosed with BD due to recurrent leg ulcers. Previously, conven-
tional immunosuppressive therapy and anti-TNF agents (adalimumab, etanercept) were administered, but no clinical 
improvement was achieved. The patient received MSC injections in combination with low-dose prednisone and 
thalidomide. After treatment complete healing of ulcers was observed on one leg and significant improvement on the 
other leg. During the follow-up period, remission of the lesions and preservation of leg function was reported for 
34 months. The results suggest that MSC infusion could be a safe and effective therapeutic option for the treatment of 
refractory leg ulcers due to BD[53].

BD-associated uveitis (BU) is characterized by severe inflammation that can lead to permanent vision loss and is 
refractory in some patients despite current immunosuppressive therapies[54]. Therefore, the need for new immunomodu-
latory treatment approaches is increasing. To investigate the therapeutic effect of MSC-Exos on experimental autoimmune 
uveitis (EAU), Bai et al[55] established an EAU model in rats immunized with the peptide interphotoreceptor retinol-
binding protein 1177-1191 and administered periocular MSC-Exos injections for 7 days after disease onset. After 
treatment, a significant decrease in the severity of EAU was observed, and T cell subsets and inflammatory cell infilt-
ration in ocular tissues were suppressed. MSC-Exos inhibited the chemotactic effects of C-C motif chemokine ligand 2 
and C-C motif chemokine ligand 21 on inflammatory cells and thus reduced the migration of immune cells into the eye. 
However, no direct inhibitory effect on interphotoreceptor retinol-binding protein-specific T cell proliferation was 
observed[55]. These results suggest that MSC-Exos alleviates the severity of EAU by regulating inflammation and 
protects ocular tissue by reducing immune cell infiltration. Since BU results from similar immune mechanisms, this study 
suggests that MSC-Exos could be considered as a potential immunomodulatory agent for the treatment of BU.

In a study published in the preprint, the immunomodulatory effect of exosomes derived from AD-derived MSCs, 
specifically IFN-γ-pre-stimulated exosomes (IFN + Exo), on BU was investigated. Peripheral blood mononuclear cells 
from patients with BU and healthy individuals were cultured with exosomes, and their effects on lymphocyte prolif-
eration, cell viability, and apoptosis were evaluated. IFN + Exo increased apoptosis of T lymphocytes in patients with BU, 
suppressed proinflammatory cytokines such as IL-17 and TGF-β, and stabilized the immune response by increasing IL-10 
expression. These effects have been shown to be mediated by the induction of apoptosis via the Fas/FasL signaling 
pathway and the suppression of proinflammatory cytokines. The results suggest that IFN + Exo can be used as a potential 
therapeutic agent by controlling inflammation in patients with BU[56].

Intravitreal BM-MSCs (1.8 × 106 cells) were injected in 3 patients with advanced retinal vasculitis due to BU and severe 
vision loss unresponsive to conventional immunosuppressive therapies. However, no significant improvement in visual 
acuity was achieved during the 12-month follow-up period. However, it was observed that MSC treatment partially 
modulated the inflammatory response[57]. The results suggest that MSCs are not sufficient to reverse vision loss in 
advanced retinal vasculitis but that they have the potential to suppress inflammation.

Although studies related to BD are limited, the fact that MSC-Exos suppress IL-17 and TGF-β levels, regulate Th1/Th17 
cell balance, and reduce inflammatory cell infiltration[6] can be considered a promising approach for the treatment of BD. 
Further clinical studies on the efficacy and long-term effects of MSC-Exos in different phenotypes of BD are needed. 
Figure 2 summarizes the immunopathogenesis of BD and potential therapeutic effects of MSCs/MSC-Exos.

SLE
SLE is a chronic autoimmune disease characterized by a dysregulation of the immune system leading to the production of 
autoantibodies (such as anti-double-stranded DNA and antinuclear antibodies) and subsequent inflammation affecting 
multiple organ systems[58]. This immunological imbalance is due to the presence of autoreactive T and B lymphocytes, 
leading to polyclonal activation of B cells and excessive production of autoantibodies and proinflammatory cytokines by 
plasma cells[59].

The pathogenesis of SLE is complex and multifactorial. It includes a genetic predisposition, environmental factors, and 
hormonal influences, which together contribute to impaired immune tolerance and activation of autoreactive T and B 
cells[60]. One of the most important clinical manifestations of SLE is lupus nephritis, which occurs in about 40%-60% of 
patients and can lead to end-stage renal disease if not treated effectively[61]. Treatment is usually with corticosteroids, 
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Figure 2 Immunopathogenesis of Behçet’s disease and potential therapeutic effects of mesenchymal stem cells/mesenchymal stem cell-
derived exosomes. Created with BioRender.com. MSCs: Mesenchymal stem cells; MSC-Exos: Mesenchymal stem cell-derived exosomes; MHC-II: Major 
histocompatibility complex class II; TCR: T cell receptor; IFN-γ: Interferon-gamma; TNF-α: Tumor necrosis factor-alpha; IL-12: Interleukin-12; Treg: Regulatory T cell; 
Th1: T helper 1; Th17: T helper 17; TGF-β: Transforming growth factor-beta; GM-CSF: Granulocyte-macrophage colony-stimulating factor; M-CSF: Macrophage 
colony-stimulating factor; γδ T cells: Gamma delta T cells; M1: Proinflammatory macrophage; M2: Anti-inflammatory macrophage; CCL2: C-C motif chemokine ligand 
2; CCL21: C-C motif chemokine ligand 21; miRNA: MicroRNA.

nonsteroidal anti-inflammatory drugs, and immunosuppressants (cyclophosphamide, mycophenolate mofetil, 
azathioprine, and leflunomide); intravenous (IV) immunoglobulin is rarely preferred. However, more than one-third of 
patients show resistance to these therapies or relapse[62,63], contributing to the need for new treatment strategies.

Recent studies have shown that MSCs can improve clinical outcomes in patients with SLE, especially in cases of 
refractory lupus nephritis[64]. This therapeutic efficacy of MSCs is largely regulated by paracrine factors, while their 
immunoregulatory activity has been shown to be mainly mediated by MSC-Exos[65]. For example, Liu et al[66] 
emphasized the potential of MSC-Exos to deliver miRNAs and other bioactive molecules that can regulate immune 
responses and promote tissue repair. Dou et al[67] demonstrated that tsRNA-21109 contained in MSC-Exos inhibited the 
conversion of macrophages to the proinflammatory M1 phenotype, thereby reducing inflammation and thus alleviating 
SLE symptoms.

The therapeutic effects of MSCs in SLE are mediated by different mechanisms. Geng et al[68] demonstrated that 
reduced Let-7f levels in BM-derived MSCs contribute to the Th17/Treg imbalance observed in patients with SLE, 
suggesting that MSCs may play a role in restoring immune homeostasis. AD-derived MSCs treatment suppressed 
autoimmunity by increasing IL-10-producing regulatory B cells, decreasing proinflammatory cytokine levels, increasing 
the proportion of Treg cells, and decreasing autoantibody production and tissue damage[69].

In a study conducted by Wang et al[70] in patients with active and refractory SLE, transplantation of UC-derived MSC 
was shown to significantly improve immune tolerance and clinical parameters by regulating T and B cells, suppressing 
the production of proinflammatory cytokines and increasing Treg cells, with a low side effect profile. Furthermore, in 
patients with severe and drug-resistant SLE, allogeneic transplantation of BM and/or UC-derived MSCs restored the 
balance of the immune system by increasing Treg cells and modulating the autoimmune response, while decreasing 
disease activity and improving renal function[71]. The 5-year overall survival rate was reported to be 84%[70]. Some 
representative clinical studies are listed in Table 1.

MSC-Exos have been shown to have anti-inflammatory properties and can inhibit the proliferation of autoreactive B 
cells, which play a central role in the pathogenesis of SLE. Ng et al[72] reported that MSCs can inhibit B cell proliferation 
and antibody production through T cell-mediated mechanisms (suppression of Th1/Th2/Th17 populations and increase 
in Treg cells), highlighting the importance of MSCs in regulating humoral immunity in SLE. This is particularly important 
given the role of autoantibodies in disease progression and associated organ damage.

BioRender.com
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Table 1 Clinical trials (completed and ongoing) investigating mesenchymal stem cell-based therapies in autoimmune diseases

Study 
type MSC source Disease Patients 

(treatment/control) Administration Follow-up 
(months) Mechanism of action Outcome 

measures Conclusion
Trial 
registration 
number

Ref.

- BM-MSCs 
(autologous)

SLE 2 (2/0) 1 × 106 cells/kg, IV 
infusion

4 Immunomodulation Safety and efficacy, 
Selena SLEDAI and 
BILAG scores

CD4+CD25+FoxP3+ cells 
increased, but the disease 
did not show remission

[121]

Phase I/II UC-MSCs 
(allogeneic)

SLE 244 (211/78) 1 × 106 cells/kg, IV 
infusion

6 FLT3 L production, CD1c+ 
DC proliferation, IFN-γ 
effect

Clinical 
improvement, 
CD1c+ DC and FLT3 
L levels

Increased FLT3 L levels 
and increased number of 
tolerant CD1c+ DCs, 
suppression of inflam-
mation

NCT01741857 [122]

Phase II BM-MSCs SLE 3 (3/0) 9 × 107 cells/kg, IV 
infusion

9 Immunomodulation SLEDAI, proteinuria 
values, renal 
function

Significant reduction in 
disease activity and 
improvement in kidney 
function

[123]

- UC-MSCs, BM-
MSCs

Persistently 
active SLE

87 (87/0) 1 × 106 cells/kg, IV 
infusion

48 Suppression of the prolif-
eration of T and B 
lymphocytes, modulation of 
the inflammatory reaction 
and proliferation of Treg 
cells

Selena SLEDAI, 
ANA, dsDNA, 
clinical remission, 
relapse, and survival 
rate

Prolonged clinical 
remission and 
improvement in organ 
function

[124]

Phase I AD-MSCs 
(allogeneic)

Refractory lupus 
nephritis

9 (9/0) 2 × 106 cells/kg, IV 
infusion

12 Immunomodulation SLEDAI, 24-h 
urinary protein 
excretion, serum 
creatinine, anti-
dsDNA antibodies

Effective in reducing 
urinary protein excretion 
and disease activity in 
the short term, single 
dose limited for long-
term remission

[125]

- UC-MSCs Lupus nephritis 37 (17/20) 3 × 107 cells/kg, IV 
infusion

12 Immunomodulation SLEDAI, ANA, 
dsDNA urinary 
protein excretion, 
safety, and 
tolerability

Reduction of disease 
activity, regulation of the 
balance of inflammatory 
cytokines, improvement 
of serological markers 
and renal function

[126]

Phase I/II BM-MSCs 
(autologous)

RA with knee 
involvement

30 (15/15) Intra-articular 
implantation of 40 
million autologous BM-
MSCs per knee joint

12 Immunomodulation, 
suppression of inflam-
matory cytokines

WOMAC, VAS, time 
to gelling, pain-free 
walking distance, 
standing time

Safe and well tolerated, 
with a trend towards 
clinical efficacy with 
improvements in 
WOMAC, VAS, gelling 
time, and pain-free 
walking distance

NCT01873625 [127]

UC-MSC 
transplantation, with 
some patients receiving 

The combination therapy 
of MSC and IFN-γ 
improved RA outcomes 

Phase I/II UC-MSCs RA 63 (32 MSC monotherapy 
group, 31 MSC + IFN-γ 
group)

3 IFN-γ enhanced MSC 
therapeutic efficacy

EULAR response 
rates, ACR20 
response rates

ChiCTR-INR-
17012462

[128]
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recombinant human 
IFN-γ 1 × 106 cells/kg 1 
dose

with an ACR20 response 
of 93.3% at 3 months vs 
53.3% with MSC alone, 
with no major safety 
concerns at 1 year

Phase 
I/IIa

AD-MSCs 
(autologous)

DMARD-
resistant RA

54 (392/15) 2.0 or 2.86 × 106 
cells/kg, IV infusion

12 Immunomodulation RAPID3, DAS28, 
and ACR20

Study ongoing NCT04170426

Phase I/II UC-MSCs RA 172 (136/36) IV infusion of 4 × 107 
UC-MSCs in 
combination with 
DMARDs

Follow-up 
examinations 
after 3, 6, and 8 
months

Immunomodulation, 
suppression of inflam-
matory cytokines

ACR improvement 
criteria, DAS28, 
HAQ, TNF-α, IL-6 
levels, CD4+CD25+

FoxP3+ Treg 
percentage

Safe, TNF-α and IL-6 
levels decreased, the 
proportion of Tregs 
increased, and a clinical 
improvement was 
observed. The 
therapeutic effect lasted 
3-6 months and repeated 
infusions increased the 
efficacy

NCT01547091 [89]

Phase I/II MSCs 
(allogeneic)

RA 30 (15/15) Dose not specified IV 
infusion

1 Immunomodulation, 
suppression of inflam-
matory response

Safety, tolerability, 
preliminary efficacy, 
DAS28

Study ongoing; results 
not yet published

NCT05925647

Phase I UC-MSCs 
(allogeneic) (BX-
U001)

RA 16 (8/8) (0.75-1.5) × 106 cells/kg, 
BX-U001 IV infusion

24 Immunomodulation and 
anti-inflammatory effect

Safety and 
tolerability, ACR20, 
HAQ, DAS28, CRP, 
ESR, SDAI, anti-CCP

Study ongoing NCT03828344

Phase I/II UC-MSCs 
(allogeneic)

RA 105 (52/53) 1 × 106 cells/kg, IV 
infusion

12 Immunomodulation, 
regulation of Treg/Th17 
balance, suppression of 
inflammatory cytokines

DAS28, HAQ, serum 
cytokine levels (IFN-
γ, IL-10, IL-6), 
Treg/Th17 ratio

Safe and effective, clinical 
improvement persisted 
for 48 weeks, and high 
IFN-γ levels correlated 
with better treatment 
response

ChiCTR-ONC-
16008770

[129]

Phase 
Ib/IIa

AD-MSCs 
(allogeneic) 
(Cx611)

Refractory RA 53 (46/7) 1, 2 or 4 × 106/kg, IV 
infusion

6 Immunomodulation, 
suppression of inflam-
matory response

Safety, tolerability, 
pre-activity

Well tolerated, with no 
dose-dependent toxicity 
observed. A trend 
towards clinical efficacy 
was observed

NCT01663116 [130]

Phase Ia UC-MSCs RA 9 (9/0) 2.5, 5.0 or 10.0 × 107 
cells/patient, IV 
infusion

1 Immunomodulation Safety, DAS28, ESR, 
and CRP levels

Significant decrease in 
DAS28 score at week 4, 
decrease in ESR and CRP 
values

NCT02221258 [131]

Phase I BM-MSCs 
(autologous)

RA 9 (9/0) 1 × 106 cells/kg, IV 
injection

12 Immunomodulation DAS28-ESR, VAS, 
and ESR

Significant reduction in 
DAS28-ESR, VAS, and 
ESR

NCT03333681 [132]

EDSS, cytokines, 
DTI, fMRI, cognitive 
and psychological 

Phase I Placenta derived 
MSCs 
(allogeneic)

SPMS 5 (5/0) 3 × 106 cells/kg, IV 
injection

6 Immunomodulation Results not yet published NCT06360861
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evaluations

Phase I/II MSCs 
(autologous)

MS 24 (24/0) 1 × 106 cells/kg, IV or 
intrathecal injection

48 Immunomodulation EDSS, adverse 
events

Results not yet published NCT04823000

Phase I BM-MSCs 
(autologous)

MS 7 (7/0) (1-2) × 106 cells/kg, IV 
infusion

12 Immunomodulation EDSS, MRI, adverse 
events

Results not yet published NCT03778333

Phase II BM-MSCs 
(autologous)

MS 48 (32/16) 1 × 106 cells/kg, IV or 
intrathecal injection

12 Immunomodulation EDSS, MRI, 
ambulation score, 
relapse rate

Results not yet published NCT02166021

Phase I/II UC-MSCs 
(allogeneic)

MS 20 (20/0) Dose not specified IV 
injection

12 Immunomodulation EDSS, NRS, PASAT, 
the nine-hole peg 
test, and 25-foot 
walking time. Short-
form 36

Results not yet published NCT02034188

1A total of 166 patients with systemic lupus erythematous were included in the study. There were 21 patients with systemic lupus erythematous who did not respond to conventional treatment and were treated. 2Nine subjects in phase 
1 and 30 subjects in phase IIa. MSC: Mesenchymal stem cell; BM-MSCs: Bone marrow derived mesenchymal stem cells; SLE: Systemic lupus erythematous; IV: Intravenous; SLEDAI: Systemic lupus erythematous disease activity index; 
BILAG: British Isles lupus assessment group; UC-MSCs: Umbilical cord derived mesenchymal stem cells; FLT3 L: FMS-like tyrosine kinase 3 ligand; DC: Dendritic cells; IFN-γ: Interferon-gamma; ANA: Antinuclear antibody; dsDNA: 
Double-stranded DNA; AD-MSCs: Adipose tissue derived mesenchymal stem cells; RA: Rheumatoid arthritis; WOMAC: Western Ontario and McMaster Universities Arthritis Index; VAS: Visual analogue scale; EULAR: European 
Alliance of Associations for Rheumatology; ACR20: American College of Rheumatology 20; DMARD: Disease-modifying antirheumatic drug; RAPID3: Routine assessment of patient index data 3; DAS28: 28-joint Disease activity score; 
HAQ: Health Assessment Questionnaire; TNF-α: Tumor necrosis factor-alpha; IL-6: Interleukin-6; Treg: Regulatory T cell; CRP: C-reactive protein; ESR: Erythrocyte sediment rate; SDAI: Simplified Disease Activity Index; anti-CCP: 
Anti-cyclic citrullinated peptide; SPMS: Secondary progressive multiple sclerosis; MS: Multiple sclerosis; EDSS: Expanded Disability Status Scale; DTI: Diffusion tensor imaging; fMRI: Functional magnetic resonance imaging; MRI: 
Magnetic resonance imaging; NRS: Neurological rating scale; PASAT: Paced auditory serial addition test; Th: T helper cell.

Despite the promising results there are still some challenges in the clinical application of MSC therapies in SLE. The 
variability in the origin and preparation of MSCs may affect their therapeutic efficacy, and further research is needed to 
standardize protocols for the isolation and characterization of MSCs[73,74]. It is important that SLE is not recognized 
today as a uniform disease but as a heterogeneous spectrum of clinical phenotypes with different immunopathological 
courses. This phenotypic diversity poses a major challenge to standard treatment protocols and underscores the need for 
personalized medical approaches in the treatment of the disease[75].

MSC-Exos may offer phenotype-specific therapeutic benefits due to various immunoregulatory molecules such as 
miRNAs and tRNA fragments. Therefore, it is recommended that future clinical trials stratify patients according to their 
disease phenotype to further evaluate the efficacy of MSC-Exos treatment and tailor treatment strategies to individual 
immune profiles. This approach could significantly help to improve clinical outcomes and reduce treatment resistance in 
SLE.

RA
RA is a chronic, systemic, autoimmune, inflammatory disease that mainly affects the synovial joints and is associated 
with genetic and environmental factors although its etiology is not yet fully understood[76]. Epidemiologic data show 
that RA occurs in 0.5%-1.0% of the adult population and can affect any age group although it is more common in females 
and the elderly[77]. Synovial hyperplasia, cell activation, joint inflammation, and the invasion of synovial tissue into 
adjacent bone and cartilage are characteristic of RA[77]. Many different cell types such as macrophages, DCs, B 
lymphocytes, T lymphocytes, chondrocytes, fibroblasts, and osteoclasts are involved in the pathophysiology. Macro-
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phages trigger cartilage destruction, joint erosion, and fibroblast proliferation by producing proinflammatory cytokines 
and enzymes that maintain inflammation in RA[78], while B lymphocytes promote T cell activation through their autore-
active forms by increasing the production of autoantibodies (rheumatoid factor and anti-cyclic citrullinated peptide) and 
triggering the release of proinflammatory cytokines, leading to tissue damage[79]. CD4+ T cells activate the 
phosphatidylinositol 3-kinase signaling pathway by interacting with major histocompatibility complex class II and trigger 
the inflammatory response by stimulating CD8+ T cells[80,81]. Th1 and Th17 cells promote osteoclastogenesis, pannus 
formation, and synovial neoangiogenesis by secreting IFN-γ, TNF-α, and IL-17, while Th2 cells regulate B cell activation 
by secreting IL-4 and IL-5[82]. Figure 3 illustrates immunopathogenesis.

In RA fibroblast-like synoviocytes (FLS) initiate inflammatory and destructive processes in the joint and play an 
important role in cartilage damage[83]. Treatment includes synthetic disease-modifying antirheumatic drugs (DMARDs/
methotrexate, leflunomide, sulfasalazine, hydroxychloroquine), biological DMARDs (anti-TNF drugs, tocilizumab, 
anakinra, abatacept, rituximab), and corticosteroids, which aim to improve disease progression by suppressing inflam-
mation[84]. However, despite current advances many patients with RA do not respond to treatment and suffer from 
unwanted side effects[85].

MSCs have shown promise as a target for the treatment of RA as they can effectively regulate cartilage bone formation 
and immune response[86]. The first pilot study, published in 2011[87] investigated the safety and efficacy of autologous 
AD-derived MSCs in patients with RA. Four patients with RA received single, double, or quadruple dose IV infusions of 
2 × 108 to 3.5 × 108 cells. Two patients also received an intra-articular injection. During a 13-month follow-up period, an 
improvement in the visual analog scale and Korean Western Ontario McMaster Score was observed. Multiple infusions 
increased efficacy, and up to 8 × 108 cells were shown to be safe. The study was considered the first demonstration of the 
safety of autologous MSC therapy in RA[87].

In patients with refractory RA, infusion of allogeneic MSCs from the BM and endometrium was reported to reduce 
erythrocyte sedimentation rate, improved the 28-joint Disease Activity Score, and reduced anti-cyclic citrullinated peptide 
levels although this clinical improvement was transient due to the short follow-up period[88]. A study in a larger group 
of patients showed that coadministration of allogeneic UC-derived MSCs with DMARDs increased CD4+ Treg cells and 
suppressed disease activity for up to 6 months, and repeated MSC infusions increased therapeutic efficacy[89]. In vitro 
UC-derived MSCs suppressed FLS proliferation and IL-6 secretion from patients with RA via IL-10, IDO, and TGF-β1, 
induced T cell hyporesponsivity via PGE2, TGF-β1, and nitric oxide, and increased CD4+FoxP3+Treg cells.

In a mouse model systemic infusion of UC-derived MSCs reduced the severity of arthritis, decreased proinflammatory 
cytokines, and regulated the Th1/Th2 balance by increasing IL-10 levels[90]. In another study IL-1β-stimulated human 
UC-derived MSCs alleviated RA symptoms by inducing apoptosis of FLS[91]. BM-derived MSCs suppressed the 
production of TNF-α, IL-17, IL-6, IL-2, IFN-γ, and IL-9 in T cells from patients with RA, and this effect was observed in all 
T cell subsets. It also supported immune tolerance by increasing the mRNA expression of IL-10 and TGF-β[92].

UC-derived MSCs with increased TNF receptor 2 expression reduced joint inflammation and cartilage destruction by 
blocking TNF-α[93]. Orthotopic transplantation of BM-derived MSCs with microfracturing and thermal gel reduced joint 
inflammation by lowering the concentration of inflammatory cytokines[94]. Encapsulation of BM-derived MSCs in 
alginate hydrogel suppressed inflammation by inhibiting DCs[95]. MSCs with increased expression of CXC chemokine 
receptor 7 alleviated arthritis symptoms by suppressing inflammation, while BM-derived MSCs expressing IL-10 
promoted articular cartilage repair by inhibiting inflammation[96,97]. Consistent with these findings, the immunomodu-
latory and anti-inflammatory effects of MSC-Exos in RA have been extensively studied. Other representative clinical 
studies in this field are summarized in Table 1 (http://www.clinicaltrials.gov/).

Studies have reported that these exosomes can suppress the activation and proliferation of synovial FLS involved in 
RA pathology. For example, Su et al[98] showed that MSC-derived exosomal long non-coding RNA HAND2-AS1 
suppressed FLS activation and proliferation via miR-143-3p/TNFAIP3/NF-κB pathways, while reducing inflammation 
and inducing apoptosis[98]. Exosomal miRNA-320a derived from BM-derived MSC suppressed the expression of CXC 
motif chemokine ligand 9, a chemokine involved in inflammatory responses, and halted the progression of RA by 
reducing FLS activation and inflammatory response[86].

These exosomes also suppressed apoptosis and promoted FLS proliferation by inhibiting the NF-κB signaling pathway 
via the expression of fibrinogen-like protein 1, thereby reducing RA-induced joint damage[99]. In addition, MSC 
exosomes containing miR-150-5p inhibited synoviocyte hyperplasia and angiogenesis by suppressing the expression of 
matrix metalloproteinase 14 and VEGF, thereby slowing RA progression[100]. MiR-21-containing exosomes have been 
shown to alleviate RA symptoms by regulating immune imbalance via the ten-eleven translocation protein 1/Kruppel-
like factor 4 axis[101]. Exosomes from UC-derived MSCs inhibited the development of RA by exerting a regulatory effect 
on the balance of Th1/Th17 and Treg cells. MiRNA-140-3p from UC-derived MSC exosomes reduced joint damage by 
suppressing serum/glucocorticoid regulated kinase 1 expression[102]. Synovium-derived MSC-Exos suppressed signal 
transducer and activator of transcription 3 activity by targeting miR-485-3p via the circEDIL3 molecule and limited RA-
induced angiogenesis by reducing VEGF levels[103]. MiR-146a-modified MSC-Exos have been shown to maintain 
immune balance by restoring the immunologic potential of MSCs[104].

MSC-derived exosomal circFBXW7 suppressed FLS proliferation, movement, and inflammation in RA. CircFBXW7 
levels were low, miR-216a-3p levels were high, and histone deacetylation 4 levels were low in patients with RA. 
CircFBXW7, which is carried by MSC-Exos, bound miR-216a-3p, reduced its effect, and increased histone deacetylation 4 
levels. This suppressed the excessive proliferation and inflammatory activity of FLS[105]. Meng et al[106] produced 
exosomes from MSCs overexpressing miRNA-124a and investigated the effects of these exosomes on RA-associated FLS 
cells. These exosomes inhibited the proliferation and migration of FLS cells and promoted their apoptosis. These results 
suggested that MSC-Exos are a suitable vector for the delivery of therapeutic miRNA-124a and may represent a novel 
strategy for the treatment of RA[106].

http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
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Figure 3 Immunopathogenesis of rheumatoid arthritis and therapeutic effects of mesenchymal stem cells/mesenchymal stem cell-
derived exosomes. Created with BioRender.com. Anti-CCP: Anti-cyclic citrullinated peptide; RA: Rheumatoid arthritis; MSCs: Mesenchymal stem cells; MSC-
Exos: Mesenchymal stem cell-derived exosomes; TNF-α: Tumor necrosis factor-alpha; IL-4: Interleukin-4; IFN-γ: Interferon gamma; Treg: Regulatory T cell; Th1: T 
helper 1; Th17: T helper 17; TGF-β: Transforming growth factor-beta; CD4+ T cells: Cluster of differentiation 4 positive T cells; Breg: Regulatory B cells; MMP14: 
Matrix metalloproteinase-14; VEGF: Vascular endothelial growth factor; STAT3: Signal transducer and activator of transcription 3; lncRNA: Long non-coding RNA; 
FGL1: Fibrinogen-like protein 1; NF-κB: Nuclear factor kappa B; CXCL9: CXC motif chemokine ligand 9; M1: Pro-inflammatory macrophage; M2: Anti-inflammatory 
macrophage; miRNA: MicroRNA.

In a study on inhibition of bone and cartilage destruction, You et al[107] showed that dextran sulphate-modified MSC-
Exos (DS-EXOs) have an anti-inflammatory effect in the treatment of RA by regulating macrophage heterogeneity. DS-
EXOs accumulated in inflamed joints after systemic administration, converted M1 macrophages to an M2 phenotype, 
decreased TNF-α and IL-6 levels, and increased IL-10 production. It also provided an immunomodulatory effect in the 
synovial microenvironment by promoting the activation of Treg cells and suppressing the autoimmune response by 
inhibiting Th17. In a collagen-induced arthritis model, DS-EXOs, which showed similar therapeutic efficacy at a 10-fold 
lower dose compared with naked exosomes, reduced joint damage[107]. Figure 3 summarizes the immunopathogenesis 
of RA and potential therapeutic effects of MSCs/MSC-Exos.

MS
MS is a chronic, progressive disease of the central nervous system characterized by degeneration of the myelin sheath, 
axonal damage, and neuroinflammation through autoimmune mechanisms. It occurs in three clinical forms. Relapsing-
remitting MS, the most common form, progresses in relapses and complete/partial remissions and affects 85%-90% of 
patients. Over time, it progresses to secondary progressive MS, which occurs without remission in 50%-60% of cases. 
Primary progressive MS, on the other hand, is a form that occurs in 15% of patients and in which neurological function 
gradually deteriorates[108].

Th1 and Th17 cells cause demyelination by secreting IFN-γ, IL-17, TNF-α, and IL-1, while CD8+ T cells contribute to 
axonal damage. Autoimmune B cells drive the disease through antigen presentation, autoantibody production, and 
cytokine secretion[109]. To investigate the immune-mediated mechanisms of MS, the EAE model is used as the gold 
standard in preclinical studies[110]. MSC-derived microvesicles carry immunosuppressive molecules such as PD-L1, 
galectin-1, and TGF-β and through these mechanisms reduce disease activity in the EAE model[111]. In addition, MSC-
Exos containing immunosuppressive cytokines (TGF-β, IL-10) and anti-inflammatory biomolecules (PGE2, miR-155, miR-
146a, miR-181c, miR-17, miR-21) suppressed T cell proliferation and effector T cell activity through these factors. These 
mechanisms contribute to the attenuation of the inflammatory process in the central nervous system by reducing the 
activity of Th1 and Th17 cells[41].

Intranasal administration of MSC-Exos by Fathollahi et al[112] reduced disease severity, increased the ratio of CD25+

FoxP3+ Treg cells, and showed a significant immunomodulatory effect by increasing TGF-β levels. After administration of 
placental MSC-Exos, improvement of motor function, activation of oligodendrocyte progenitor cells, and increased 
myelin repair were observed[113]. In mice with EAE, human AD-derived MSCs and MSC-Exos have been shown to 
reduce disease severity, attenuate myelin damage, and suppress inflammatory responses[114]. BM-derived MSCs 
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promoted remyelination by promoting oligodendrocyte progenitor cell proliferation and reduced neuroinflammation by 
shifting the microglia/macrophage phenotype from M1 to anti-inflammatory M2. Exosomes promoted the maturation of 
oligodendrocytes by increasing myelin-associated miRNAs such as miR-219 and miR-338 and suppressed inflammation 
by inhibiting the NF-κB/TLR4 signaling pathway[115].

The periodontal ligament stem cell-derived secretome inhibited NOD-like receptor protein-3 inflammasome activation, 
decreased the production of proinflammatory cytokines (IL-1β, IL-18), increased the proportion of Treg cells, and 
suppressed Th1 and Th17 responses[116]. Riazifar et al[14] observed that IV injection of IFNγ-Exo decreased the clinical 
score, reduced demyelination, and suppressed neuroinflammation. It also increased the number of CD4+CD25+FoxP3+ 
Tregs in spinal cord tissue. In vitro studies have shown that IFNγ-Exo decreased the levels of proinflammatory Th1 and 
Th17 cytokines in peripheral blood mononuclear cells and increased IDO levels. In addition, exosomes have been shown 
to suppress inflammatory processes by regulating cellular immune responses and could potentially be used in the 
treatment of autoimmune diseases and central nervous system disorders[14]. Therefore, MSC-Exos are thought to have 
important therapeutic potential in the regulation of neuroinflammation and the treatment of autoimmune diseases.

In the study conducted by Li et al[117], an improvement in the Expanded Disability Status Scale scores, a reduction in 
relapse frequency and a shift in immune response from Th1 to Th2 were observed in patients receiving UC-derived MSC 
infusions at a dose of 4 × 106 cells/kg every 2 weeks for a total of 6 weeks. However, in a triple-blind, placebo-controlled, 
randomized phase I/II clinical trial, AD-derived MSC (1 × 106 or 4 × 106 cells/kg) were administered to patients with 
secondary progressive MS, and it was reported that MSC treatment was safe but did not provide significant clinical 
improvement during the 12-month follow-up period[118]. In another phase I/II branch group study (NCT03326505), 
intrathecally administered doses of UC-derived MSCs (group A: Two doses; group B: One dose), and secretomes of UC-
derived MSCs were administered 3 months later. Significant clinical improvements were observed in group A, partic-
ularly positive changes in CD3+CD4+ T cells and neurocognitive function. Magnetic resonance imaging data demon-
strated neuroprotective effects with reduced lesion burden and increased cortical thickness in group A, while analysis of 
gene expression revealed activation of anti-inflammatory mechanisms[119]. To date there are 23 clinical studies on MS, 
some of which are summarized in Table 1 (http://www.clinicaltrials.gov/). A systematic review and meta-analysis 
reported that 40.4% of patients with MS improved after MSC therapy, 32.8% remained stable, and 18.1% worsened. 
Common minor adverse events included headache and fever, with no major complications observed[120].

CONCLUSION
Current approaches to the treatment of autoimmune diseases are still inadequate, and long-term effective solutions are 
limited. In this review the immunomodulatory effects of MSC-Exos on immune cells and their potential in the treatment 
of autoimmune diseases were discussed. The results suggested that MSC-Exos hold promise as cell-free biological 
treatment options and may offer a novel therapeutic approach for autoimmune diseases. However, despite the promising 
potential of MSC-Exos therapies, the lack of standardized protocols, isolation methods, and dosages pose a major 
challenge. In addition, the source of MSCs used for exosome production (autologous or allogeneic) is an important factor 
that may influence therapeutic consistency, production scalability, and clinical applicability. While autologous sources 
increase costs and complicate the process, allogeneic sources allow for standardization and off-the-shelf product 
development. Exosome engineering makes it possible to direct and optimize immunomodulatory components to the 
target tissue, while combination therapies with biological agents can improve treatment efficacy. Long-term clinical trials 
could provide more data on the safety and efficacy of MSC exosomes and clarify their role in autoimmune diseases.
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