

1

2

3

4 **NAD⁺/NADH and skeletal muscle mitochondrial adaptations to exercise**

5 Amanda T. White^{1,2} and Simon Schenk^{2*}.

6

7 ¹Biomedical Sciences Graduate Program and ²Department of Orthopaedic Surgery, University of
8 California, San Diego, La Jolla, CA 92093.

9

10 * Corresponding Author: Simon Schenk, Department of Orthopaedic Surgery, University of California,
11 San Diego, 9500 Gilman Drive MC0863, La Jolla, CA 92093. Email: sschenk@ucsd.edu. Phone: ⁺¹ 858
12 822 0857. Fax: ⁺¹ 858 822 3807.

13

14 **Running title:** NAD⁺-mediated regulation of mitochondrial biogenesis

15

16

17

18 **Abstract**

19 The pyridine nucleotides, NAD⁺ and NADH, are coenzymes that provide oxidoreductive power for the
20 generation of ATP by mitochondria. In skeletal muscle, exercise perturbs the levels of NAD⁺, NADH and
21 consequently, the NAD⁺/NADH ratio, and initial research in this area focused on the contribution of
22 redox control to ATP production. More recently, numerous signaling pathways that are sensitive to
23 perturbations in NAD^{+(H)} have come to the fore, as has an appreciation for the potential importance of
24 compartmentation of NAD^{+(H)} metabolism and its subsequent affects on various signaling pathways.
25 These pathways, which include the sirtuin (SIRT) proteins, SIRT1 and SIRT3, the poly(ADP-ribose)
26 polymerase (PARP) proteins, PARP1 and PARP2, and C-terminal binding protein (CtBP), are of
27 particular interest because they potentially link changes in cellular redox state to both immediate,
28 metabolic-related changes and transcriptional adaptations to exercise. In this review we discuss what is
29 known, and not known, about the contribution of NAD^{+(H)} metabolism and these aforementioned
30 proteins to mitochondrial adaptions to acute and chronic endurance exercise.

31

32 **Introduction**

33 Nicotinamide (NAM) adenine dinucleotide (NAD⁺; initially known as diphosphopyridine nucleotide
34 [DPN⁺]), is a ubiquitous cellular coenzyme that was first discovered by Arthur Harden and William
35 Young, when they identified a heat-labile fraction of cell-free glucose fermentation containing ATP, Mg²⁺
36 and NAD⁺, which they coined, “cozymase” (78). Our understanding of the role of NAD⁺ and its reduced
37 form, NADH, in cellular function and metabolism was subsequently expanded by a “who’s who” of
38 biochemistry, with researchers such as Hans von Euler-Chelpin, Otto Warburg, Conrad Elvehjem, Arthur
39 Kornberg, Albert Lehninger and Britton Chance, all making substantial contributions. Four of the
40 aforementioned researchers were awarded the Nobel Prize, with Harden and von Euler-Chelpin sharing
41 the Nobel Prize in 1929 for their work on the fermentation of sugar and fermentative enzymes, which
42 included the identification of the “nucleotide sugar phosphate”, NAD⁺. Subsequently, Warburg
43 demonstrated that NAD⁺ acted as a carrier of hydrogen and transferred it from one molecule to another,
44 which was key to understanding the metabolic function of NAD⁺ (128). Ultimately, it was work by
45 Freidkin and Lehninger (55) that showed that NADH was an integral component of ATP production via
46 oxidative phosphorylation. Thus, for many years the primary cellular function of NAD⁺ was considered to
47 be its ability to harness energy from glucose, fatty acids, and amino acids in pathways such as glycolysis,
48 β-oxidation, and the citric acid cycle.

49 In recent years, however, the importance of NAD⁺ as a central signaling molecule and substrate
50 that can impact numerous fundamental biological processes has come to the fore. Indeed, a remarkable
51 number of regulatory pathways that utilize NAD⁺ in signaling reactions have been identified, and these
52 cover broad aspects of cellular homeostasis including functions in energy metabolism, lifespan regulation,
53 DNA repair, apoptosis and telomere maintenance (11, 12, 84, 97, 190). Thus, while the tissue
54 NAD⁺/NADH ratio was once thought to be ‘simply’ a balance of the redox state, the complexity of NAD⁺
55 metabolism has evolved considerably with the discovery of highly integrated networks of NAD⁺
56 consuming pathways and NAD⁺ biosynthetic and salvage pathways (11, 12, 84, 97, 128, 144, 190). Part

57 of the reason for the renaissance of NAD⁺ has been the discovery of NAD⁺-consuming enzymes,
58 particularly, sirtuins (SIRT). SIRT1 is the most well-described of the seven mammalian sirtuins, and
59 based on its dependence for NAD⁺ as a substrate (and therefore its sensitivity to perturbations in NAD⁺),
60 SIRT1 has been put forth as a key regulator of acute and chronic exercise-mediated mitochondrial
61 adaptations in skeletal muscle (40, 70, 72, 76, 174, 185, 193). In addition, SIRT3 and poly-ADP-ribose
62 (PAR) polymerases (PARPs), which also use NAD⁺ as a substrate, have been proposed as important
63 regulators of mitochondrial function and/or biogenesis (40, 76, 125, 174, 185, 193). In this review our aim
64 is to provide an overview of NAD⁺ metabolism in skeletal muscle and the changes that occur in NAD⁺,
65 NADH, and the NAD⁺/NADH ratio in response to acute and chronic endurance exercise. Our intention is
66 not to discuss the impact of the redox state and NAD⁺/NADH ratio on cellular bioenergetics and substrate
67 utilization, which is covered in highly informative reviews by others (9, 26, 106, 109, 110). Rather, our
68 goal is to discuss the changes in pyridine nucleotide redox state that occur with exercise in the context of
69 what we know and do not know about the effects of SIRT1, SIRT3, the PARPs and carboxyl-terminal
70 binding protein (CtBP), on mitochondrial adaptations to exercise in skeletal muscle. It is of course
71 difficult to extrapolate the findings from one cell line or tissue type to another, and we acknowledge that
72 we do not discuss many important studies that have contributed to our understanding of NAD⁺
73 metabolism and SIRT1, SIRT3 and PARP biology in cell lines and tissue types other than skeletal muscle
74 and muscle cell lines. For a more general and encompassing discussion on NAD⁺ metabolism and its
75 potential clinical implications, readers are encouraged to read some excellent and comprehensive reviews
76 (see, (11, 12, 84, 97, 128, 144, 190)).

77

78 **Where in the cell is NAD⁺?**

79 It is broadly accepted that NAD⁺ is primarily found in three distinct cellular pools, 1) the
80 cytosolic, 2) the mitochondrial, and 3) the nuclear pools. A general overview of the compartmentation of
81 NAD⁺ and NADH is provided in Figure 1, and provides a point of reference for the ensuing discussion on

NAD⁺(H) compartmentation and their movement into the mitochondria and nucleus. Initial studies used differential centrifugation methods, cell disruption methods, and compounds, to modulate mitochondrial NAD⁺(H) metabolism in order to determine NAD⁺(H) location. More recently, the ‘compartmentation’ of NAD⁺, which was originally suggested by Ragland and Hackett (146), has been extrapolated from the localization of enzymes in the NAD⁺ consuming, biosynthetic, and salvage pathways, and the use of innovative molecular biology techniques (11, 12, 84, 97, 144, 190). Thus, Dölle et al. (43) used a novel PAR Assisted Protein Localization AssaY (PARAPLAY) in HeLa S3 cells, in which they targeted the catalytic domain of PARP1 (which consumes NAD⁺) to various cellular compartments. The idea behind this method is that if NAD⁺ is present in the compartment to which PARP1 is targeted, then PAR will accumulate and can be detected by immunocytochemistry (43). Using PARAPLAY, NAD⁺ was found in the mitochondria (specifically the matrix but not intermembrane space) and peroxisomes, and surprisingly to the endoplasmic reticulum (ER) and Golgi complex (43, 112). Cytosolic NAD⁺ was not detected in this study, most likely due to the fact that PAR glycohydrolase (PARG), which consumes PAR, is most abundant in the cytosol. Little is known about the role of NAD⁺ and NADH in regulating Golgi complex and ER function, and certainly its function in skeletal muscle is unknown. Furthermore, surprisingly very little is known about nuclear NAD⁺ levels in general, and to our knowledge nuclear NAD⁺(H) levels have not been measured in skeletal muscle. Overall, the free cytosolic and nuclear NAD⁺(H) compartments are traditionally thought to be in equilibrium, with NAD⁺(H) being able to freely pass through pore complexes in the nuclear membrane (46, 98-103, 187, 190). In Cos7 cells the free nuclear NAD⁺ concentration is estimated to be ~10-100 μ M (53, 188), which is comparable to the estimations for the cytosol (~150 μ M) of muscle (42, 119). Thus, in response to exercise, it would be expected that the pyridine redox state in the nucleus reflect changes that occur in the cytosol. The relevance of nuclear NAD⁺(H) to adaptations to exercise will be covered when discussing SIRT1, PARPs, and C-terminal binding protein (CtBP).

107 **NAD⁺ and NADH concentrations in skeletal muscle at rest.**

108 While PARAPLAY provides qualitative insight into the location of NAD⁺, determining the
109 precise concentration of NAD⁺ in various compartments remains challenging. Typically, absolute
110 concentrations of NAD⁺ and NADH have been calculated using biochemical and extraction methods,
111 whilst the metabolite indicator method (MIM) has been used to extrapolate the ‘free’ cytoplasmic and
112 mitochondrial NAD⁺/NADH ratio by measuring the concentrations of specific cytoplasmic and
113 mitochondrial redox couples. The MIM carries a number of assumptions, such as the selected
114 dehydrogenase reaction being a near-equilibrium reaction and that the reaction occurs in one cellular
115 compartment, at pH 7.0 (63, 107, 179). In skeletal muscle, the most common application of the MIM is
116 calculation of the cytosolic free NAD⁺/NADH ratio, via measurement of lactate and pyruvate levels,
117 based on the lactate dehydrogenase (LDH) reaction (107, 179). The mitochondrial free NAD⁺/NADH
118 ratio, can be determined by measuring the concentrations of glutamate, α -ketoglutarate, and NH₃, and is
119 based on the glutamate dehydrogenase (GDH) reaction (107, 179), although GDH activity is low in
120 skeletal muscle (10, 179).

121 In resting human muscle, total NAD⁺ and NADH concentrations are estimated to be ~1.5-1.9 and
122 ~0.08-0.20 mmol/kg dry weight (dw) muscle, respectively (62, 80, 93, 154, 155, 159, 160). Based on the
123 approximate volumes of distributions of mitochondria, the extra-mitochondrial space (i.e., cytosol) and
124 their mass fractions (i.e., % of cell volume: cytosol = 90% and mitochondria = 10% (50)), Cabrera and
125 colleagues (42, 119) estimate the total, mitochondrial, and cytosolic compartment concentrations in
126 skeletal muscle for NAD⁺ and NADH, respectively, to be approximately- Total: 0.45 and 0.05 mmol/kg
127 cell wet weight [ww]; Cytosol: 0.15 and 0.00028 mmol/kg cytosolic ww; Mitochondria: 3.15 and 0.5
128 mmol/kg mitochondrial ww (Note: to convert to dw muscle, multiply by ~4.2 (145)). Thus, the
129 NAD⁺/NADH ratio in resting skeletal muscle is estimated to be much higher in the cytosol (~540) as
130 compared to mitochondria (~6.3), and overall, greater than ~95% of cellular NADH is estimated to be in
131 the mitochondrial compartment. The nucleus comprises ~1% of muscle cell volume (50), and considering

132 that the nuclear-to-cytosolic NAD⁺(H) levels are considered to be in equilibrium, the nuclear NAD⁺ and
133 NADH concentrations would be estimated to be comparable to the aforementioned values for the cytosol.
134 Although higher than estimates in other cells (NAD⁺: ~10-100 μ M; NADH: ~130 nM (53, 188),
135 considering the high density of mitochondria and metabolic turnover of skeletal muscle, these
136 approximations seem reasonable.

137 Relevant to the redox state and covalent activation of NAD⁺- or NADH-dependent signaling
138 proteins is the fact that most cellular NAD⁺ and NADH is bound to proteins (13, 54, 171, 176, 179, 180).
139 This makes it quantitatively difficult to determine the free NAD⁺ and NADH levels (and the free
140 NAD⁺/NADH ratio), which ultimately represent the metabolically active forms of these coenzymes.
141 Measurement of free NAD⁺(H) levels is further complicated by the fact that NADH binds proteins more
142 firmly than NAD⁺ (54, 171, 180). It should be noted, however, that studies in rat hippocampus using time-
143 resolved fluorescence and anisotropy decay suggest the ratio of free-to-bound NADH to be ~0.78 (175).
144 Whether this is the case in skeletal muscle is unknown. Based on the MIM for LDH, in resting skeletal
145 muscle the free cytosolic NADH level is estimated to be ~0.5-1.5% of total cytosolic NADH (158).

146 In skeletal muscle, NAD⁺ levels are highest in the mitochondria (42, 119), thus by extension one
147 might infer that oxidative skeletal muscle (with a greater abundance of mitochondria) would have overall
148 higher NAD⁺ levels compared to glycolytic muscle. Supporting this notion, in human resting muscle,
149 NAD⁺ concentration is positively correlated with the % of slow twitch fibers (62). However, in rat soleus
150 and extensor digitorum longus (EDL) muscles, no differences in NAD⁺ levels were noted, although
151 differences in the degree of reduction of the NAD⁺ couple were found (i.e., higher NAD⁺ levels in soleus
152 vs. EDL mitochondria), which may be indicative of the differing metabolic characteristics of these
153 muscles (158).

154

155 **Changes in NAD⁺ and NADH concentrations and the NAD⁺/NADH ratio in muscle during exercise.**

156 *Animal studies.* Early studies by Britton Chance and colleagues (27, 28, 33) and others (61, 87,

157 88), typically in amphibian muscle, used fluorescence-based methods (128, 129) to demonstrate that
158 NADH levels decrease (and thus NAD⁺ levels increase) during muscle contraction. With respect to
159 mammalian muscle, Jobsis and Stainsby (89) used the same technique to study NADH oxidation in the
160 gastrocnemius-plantaris and gracilis muscle groups in dogs, and found that low-intensity (5 Hz) and
161 tetanic contractions increased NAD⁺ levels. By manipulating the ability of mitochondria to oxidize
162 NADH, they concluded that the increase in tissue NAD⁺ primarily occurs inside mitochondria (89). In
163 contrast to studies that show that NAD⁺ increase with contraction, Duboc et al. reported an increase in
164 NADH during tetanic contractions in soleus and EDL muscles of the rat (44). A limitation of the
165 fluorometric technique used in these studies is that it does not provide quantitative assessment of NAD⁺,
166 NADH, and the NAD⁺/NADH ratio. Addressing this limitation, Edington and colleagues (48) measured
167 NAD⁺ biochemically, and estimated the NAD⁺/NADH ratio using the MIM method (using the
168 lactate/pyruvate and β -hydroxybutyrate/acetoacetate ratios). Thus, in untrained and trained rats, cytosolic
169 and mitochondrial NAD⁺ concentrations, as well as the NAD⁺/NADH ratio, were increased by low-
170 intensity muscle contraction of the gastrocnemius-plantaris muscles. As one would expect, the increase in
171 the mitochondrial NAD⁺/NADH ratio during the same absolute exercise was lower in trained rats (47,
172 48). In the soleus and EDL muscles of the rat, twitch or tetanic contractions increased NAD⁺ levels (as
173 measured by decreased NADH fluorescence) during contraction (178). Supporting this notion, studies in
174 insect and canine muscle using the MIM method (based on the glutamate dehydrogenase [GDH] reaction)
175 found that the mitochondrial NAD⁺/NADH ratio is increased during exercise at a variety of exercise
176 intensities (34, 135, 152, 153, 181). Chronic low-frequency (10 Hz) stimulation of the rat tibialis anterior
177 muscle also increased NAD⁺ levels after 15 min of contraction, and the NAD⁺/NADH ratio was
178 significantly increased for up to 24 h of stimulation (65). In mice, swimming exercise increased muscle
179 NAD⁺ levels (23), and in rats endurance exercise training resulted in a sustained (as samples were
180 measured 2 days after the last exercise bout) increase in NAD⁺ levels in gastrocnemius muscle of young
181 and old rats (104). However, an increase in NAD⁺ and the NAD⁺/NADH ratio during exercise is not a

182 universal finding. In one study NADH increased and the NAD⁺/NADH ratio decreased during flight in
183 insect muscle (77), whilst in mouse muscle no change in NAD⁺ levels at the end of running exercise was
184 found, though an increase 3 h after exercise was noted (22). In addition, in electrically-stimulated canine
185 muscle (gastrocnemius-plantaris muscles), cytoplasmic NAD⁺ levels were reduced during exercise (64),
186 whilst in electrically-stimulated (5 Hz) soleus muscle, no change in NAD⁺ levels was found (167).

187 *Human studies.* In human muscle, the effects of exercise on NAD⁺ levels and the NAD/NADH ratio are
188 largely the opposite of those found in animal studies. Muscle NAD⁺ levels were decreased when
189 exercising at 65% and 100% of maximal oxygen uptake (VO₂max), and while increased muscle water
190 accounted for ~73% of this decrease, NAD⁺ levels were still reduced when assessed on a dry weight basis
191 (62). The first studies to quantitatively measure both NAD⁺ and NADH levels in human muscle at rest
192 and during exercise were conducted by Dr. Kent Sahlin and colleagues (80, 93, 154, 155, 160). During
193 maximal exercise and submaximal isometric contractions NADH increased ~140% above resting levels,
194 whereas there was no significant change in NAD⁺ levels (80, 155). In contrast, no change in total muscle
195 NADH concentration was noted throughout exercise at 75% VO₂max (157), whilst NADH and the
196 cytosolic NAD⁺/NADH ratio were decreased during exercise at 50% VO₂max (93). Similar to this, a
197 number of studies found that the cytosolic NAD⁺/NADH ratio is reduced during exercise (66, 141),
198 although the magnitude of reduction is lower after exercise training (141). Exercise intensity appears to be
199 an important contributor to the differences in measured NAD^{+(H)} and NAD⁺/NADH ratio during exercise
200 in animal vs. human studies. For example, NADH decreased (and the cytosolic NAD⁺/NADH ratio was
201 unchanged) from resting values during exercise at 40% VO₂max, but both NAD⁺ and the cytosolic
202 NAD⁺/NADH ratio were increased above resting values at 75% and 100% VO₂max (160). Moreover, a
203 series of *in silico* studies (that distill the NAD⁺ and NADH information from some of the aforementioned
204 papers) predict that whole tissue, cytosolic, and mitochondrial NAD⁺/NADH ratios are reduced during
205 exercise at 60% VO₂max (119), but are increased during exercise at a lower intensity (65 watts) (21, 41).
206 Interestingly, estimation of the mitochondrial redox state during exercise in human muscle using the MIM

207 method, estimated that the free NAD⁺/NADH ratio is significantly increased at 75% and 100% VO₂max
208 (63).

209 *Summary.* There are conflicting results in both animal and human studies as to whether or not
210 exercise increases or decreases NAD⁺, NADH and the NAD⁺/NADH ratio. There are many reasons that
211 may underlie these differences including training state, intensity of contraction, duration of exercise, time
212 point of measurement during exercise, the analytical technique used to measure NAD⁺(H) and the
213 NAD⁺/NADH ratio (e.g., fluorometric, biochemical, MIM method), and the compartment that was
214 measured (whole tissue, mitochondrial or cytosolic). From a more ‘big picture’ perspective, because the
215 majority of change in muscle NADH levels with exercise is presumed to occur within the mitochondrial
216 compartment, a large increase in NADH during exercise would correspond to a decreased redox potential,
217 which could be inhibitory on mitochondrial oxidative enzymes and limit TCA cycle flux (63). The
218 simplest explanation for this would be a ‘backing up’ of the electron transport chain (ETC) due to
219 limitations in the capacity to oxidize NADH. This is supported by the findings that elevated total muscle
220 NADH concentrations decrease to resting levels during recovery from high intensity exercise (80, 155).
221 Alternatively, an increase in the mitochondrial redox potential would be expected to facilitate generation
222 of NADH by increasing the availability of NAD⁺ for pyruvate dehydrogenase and the various
223 dehydrogenase reactions of the TCA cycle and β -oxidation (63). In muscle, measurement and
224 extrapolation of NAD⁺(H) metabolism during exercise is further complicated by the fact that muscle
225 comprises subsarcolemmal and intermyofibrillar mitochondria, which are known to have different
226 capacities for substrate oxidation (32, 108, 184). Whether NAD⁺(H) kinetics during exercise is different
227 within these mitochondrial populations is unknown, and it is likely that fluorometric studies of NAD⁺(H)
228 metabolism with contraction reflect changes in the subsarcolemmal compartment and not the ‘whole’
229 muscle. Considering these results and unresolved questions as a whole, it is clear that a major gap in our
230 understanding of NAD⁺(H) metabolism during exercise is that no study has directly measured the free
231 NAD⁺ and NADH levels or the subcellular localization and compartmentation of NAD⁺(H) metabolism.

232 Such analysis is clearly very technically challenging and will likely require the use of advanced
233 techniques such as HPLC and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry in
234 combination with tissue fractionation methods or two-photon excitation microscopy (139, 162, 182, 188).
235 Ultimately, measuring the free NAD⁺(H) levels is what is most important when it comes to regulation of
236 proteins and pathways responsive to perturbations in NAD⁺(H), such as SIRT1, SIRT3, and PARPs, and
237 subsequent effects on cellular function and metabolism.

238

239 **Shuttling of NADH into the mitochondria.**

240 The inner mitochondrial membrane is impermeable to NAD⁺ and NADH (115, 143), and shuttles are
241 required to transport NADH from the cytosol to the mitochondria (138). This is accomplished via the
242 exchange of metabolites that are reduced in the cytosol and oxidized in the mitochondria (138). In skeletal
243 muscle these are the glycerol-3-phosphate (G3P; or α -glycerophosphate) shuttle and the malate-aspartate
244 (M-A) shuttle (83, 138, 163-165). Considering that exercise training enhances the capacity of muscle to
245 oxidize NADH, the activities of enzymes of the M-A shuttle are higher in trained vs. untrained muscle
246 (29, 83, 163, 165), as well as in oxidative vs. glycolytic muscle (29, 163). Moreover, muscle MDH
247 activity decreases with detraining (29). In contrast, the activity of G3P dehydrogenase, a key enzyme in
248 the G3P shuttle, is not increased by exercise training (163, 165), but is higher in glycolytic vs. oxidative
249 muscle (83, 163). Reducing equivalents may also be transferred to the mitochondria via the lactate shuttle,
250 which is explained in detail elsewhere (18, 60). Briefly, the lactate shuttle hypothesis posits that cytosolic
251 pyruvate is primarily converted to lactate, which is then transported via facilitated diffusion into the
252 mitochondria, where it is converted back to pyruvate by intramitochondrial LDH (18, 19, 60). Therefore,
253 the lactate shuttle, via the LDH reaction, would allow for transfer of NADH from the cytosol to
254 mitochondria in a manner similar to the G3P and M-A shuttles. It should be noted that as debated by
255 others, there is significant controversy over the presence of LDH within pure mitochondria and the
256 existence of a lactate shuttle in skeletal muscle mitochondria (16, 20, 59, 147, 156, 184). In recent years

257 the NADH/cytochrome c (cyto c) electron transport shuttle has also been described, in which the direct
258 transfer of electrons from cytosolic NADH to molecular oxygen inside the mitochondrial matrix is
259 achieved at respiratory contact sites (i.e., where both mitochondrial membranes are in contact) (1, 123).
260 The transfer capacity of the NADH/cyto c is reported to be equivalent to the malate-aspartate shuttle (1,
261 123). However, whether this system is active in skeletal muscle mitochondria, or is regulated by exercise
262 training, is unknown.

263

264 **Mitochondrial adaptations to endurance exercise: Role of SIRT1 and SIRT3**

265 Sirtuins are a family of class III deacetylases that possess NAD⁺-dependent deacetylase and mono-
266 ADP-ribosyltransferase activities (40, 76, 125, 174, 185, 193). Over the past decade there has been an
267 explosion of research on the therapeutic potential of treating various diseases via activation of sirtuins,
268 especially SIRT1, and more recently, SIRT3 (40, 76, 125, 174, 185, 193). In fact, a search on PubMed
269 reveals that in just the past 12 years some 300 reviews have been published on sirtuins alone, with the
270 majority of these focusing on SIRT1. The requirement of NAD⁺ for the deacetylase function of SIRT1
271 and SIRT3 provides a fundamental link between the activity of these proteins and perturbations in
272 NAD⁺(H) status during exercise. Accordingly, our focus here is to discuss the role of SIRT1 and SIRT3 in
273 regulating the effects of acute and chronic exercise on mitochondrial function and biogenesis. A more
274 general overview of sirtuin biology and function can be found elsewhere (40, 76, 125, 174, 185, 193).

275 **SIRT1.** SIRT1 is the most studied of the mammalian sirtuins and is mainly found in the nucleus,
276 although it also has cytosolic targets (40, 76, 174, 185, 193). Of particular importance to the focus of this
277 review was the discovery that SIRT1 deacetylates and positively regulates the activity of PGC1 α , a
278 master regulator of mitochondrial biogenesis (5, 57, 132, 150). Thus, SIRT1 has also been put forth as a
279 principal regulator of mitochondrial biogenesis via its ability to regulate PGC1 α function. Following this,
280 a number of studies have noted that SIRT1 gene (31, 45, 127) or protein (68, 117, 118, 121, 122, 173)
281 levels increase in skeletal muscle in response to acute or chronic exercise, in parallel with upregulation of

mitochondrial content. However, other studies have found either no effect (25, 75) or a decrease (73-75, 104) in SIRT1 protein in skeletal muscle with chronic muscle contraction (via electrical stimulation) or endurance exercise. Complimenting these latter studies, skeletal muscle SIRT1 protein content does not scale with muscle oxidative capacity or PGC1 α abundance (73-75). Moreover, when SIRT1 was overexpressed in skeletal muscle, mitochondrial function and abundance (as measured by electron transport chain [ETC] and mitochondrial transcription factor A [mtTFA] protein abundance, citrate synthase activity), gene expression of mitochondrial proteins, and PGC1 α gene and/or protein expression was not changed (56, 140) or even decreased (74). In C2C12 myotubes, overexpression of SIRT1 increased PGC1 α gene expression and PGC1 α promoter activity (5), although effects on mitochondrial biogenesis and function were not assessed. When SIRT1 protein (15, 22, 56, 57) or deacetylase activity (142) is knocked out in skeletal muscle of mice or C2C12 myotubes there is no reduction in mitochondrial function (e.g., O₂ consumption, proton conductance, activity of electron transport chain [ETC] enzymes or citrate synthase), number (as measured by mtDNA:nDNA ratio, ETC protein abundance), PGC1 α gene and/or protein expression, or the gene expression of mitochondrial proteins. In contrast, PGC1 α gene expression is lower in the TA, gastrocnemius, and soleus of SIRT1-null mice, although whether this reduction impacts PGC1 α protein expression, mitochondrial biogenesis, or mitochondrial function was not assessed (5). Moreover, in studies in C2C12 and mouse primary myotubes, SIRT1 knockdown downregulates mitochondrial and fatty acid oxidation gene expression, fatty acid oxidation, and citrate synthase (CS) activity (22, 57), whilst SIRT1 overexpression increases PGC1 α expression, transcriptional activity, and mitochondrial genes (5, 57). Despite reductions in PGC1 α gene expression, SIRT1 knockdown in C2C12 myotubes does not reduce PGC1 α protein expression (56, 57).

Possible reasons for discrepancies between these different studies have recently been reviewed (70, 72). An obvious reason for many of these differences relates to differences between studying SIRT1 biology *in vitro* using muscle cells (particularly C2C12 muscle myotubes), versus *in vivo* using rodent

306 models and adenovirus techniques. Also, the precise definition of mitochondrial biogenesis and function
307 is different across these studies, with measurement of the gene expression of PGC1 α and mitochondrial
308 genes being a common outcome measure. While measurement of gene expression provides important
309 information, if positive or negative effects on mitochondrial biogenesis/function are to be concluded, it
310 will be helpful in future studies to provide a more complete assessment of mitochondrial
311 biogenesis/function, which may include measurement of mitochondrial protein synthesis and turnover,
312 submaximal and maximal O₂ consumption, ETC enzyme activity and protein abundance, the
313 mtDNA:nDNA ratio, or mitochondrial morphology by electron microscopy.

314 To resolve the incongruent findings regarding SIRT1 protein levels and mitochondrial adaptations
315 to exercise, it has been proposed that SIRT1 activity might be the underlying mediator of these changes.
316 Nuclear SIRT1 activity is positively correlated with oxidative capacity (i.e., CS activity, complex IV
317 abundance) across different muscle types and is also associated with the onset of mitochondrial
318 adaptations to acute exercise, as well as chronic changes in oxidative capacity that occur with exercise
319 training (75). Other studies have also reported an increase in SIRT1 activity (as measured by the SIRT1
320 activity assay or deacetylation of PGC1 α) with acute and chronic muscle contraction (22, 23, 25, 73, 75,
321 104, 117, 118), although no increase was found with voluntary wheel running (despite increased
322 mitochondrial biogenesis) (25). Notably, the SIRT1 activity assay uses a peptide substrate that contains
323 Fluor de Lys, a non-physiological fluorescent moiety, and studies using this assay (25, 73-75, 104), may
324 be complicated by the fact that measured SIRT1 activity is potentially an artifact of the fluorophore itself
325 (17, 90). This assay also measures SIRT1 activity in the presence of maximal NAD⁺, which does not
326 reflect the NAD⁺ levels in the muscle. With this in mind, measurement of the acetylation status of
327 proposed SIRT1 targets (e.g., p53, FOXO, or PGC1 α), SIRT1 binding to the promoters of known gene
328 targets, or measurement of the gene expression of SIRT1 target genes would compliment measures of
329 SIRT1 activity, and provide a more physiological readout of SIRT1 function.

330 It is important to note that SIRT1 activity can be regulated via phosphorylation (56, 69, 91, 161).

331 Recently, Gerhart-Hines (56) demonstrated that SIRT1 was phosphorylated in its catalytic domain by
332 protein kinase A (PKA), which is also activated by endurance exercise. In addition, activation of PKA
333 (via forskolin) increased SIRT1 phosphorylation and activity, including induction of PGC1 α expression
334 in skeletal muscle (56). This occurred despite no increase in NAD $^+$ (56), perhaps suggesting that SIRT1
335 activity (and function) could be regulated independently of NAD $^+$ in skeletal muscle. However, the effects
336 of exercise on SIRT1 phosphorylation in skeletal muscle are unknown.

337 A limitation of the aforementioned studies that investigate SIRT1 and exercise-induced

338 mitochondrial biogenesis is that they are correlative, and do not address whether SIRT1 is required for
339 exercise-induced mitochondrial biogenesis in skeletal muscle. To address this limitation, Philp et al. (142)
340 studied the effects of acute and chronic exercise training on muscle function, PGC1 α acetylation and
341 mitochondrial biogenesis in mice with muscle-specific knockout of SIRT1 deacetylase activity
342 (mKO^{SIRT1}). In muscle from mKO^{SIRT1} mice there was no compensatory upregulation in the gene
343 expression of SIRT2-7 or the protein abundance of SIRT3 and SIRT6 (unpublished observations; S.
344 Schenk, A.T. White and A. Philp). Similar to previous studies in mice (14), no impairment in
345 mitochondrial function or number (e.g., abundance and/or activity of complexes I-IV of the ETC, CS
346 activity, mtDNA:nDNA ratio) in muscle from mKO^{SIRT1} vs. control mice was found, nor was muscle
347 endurance capacity impaired (142). Interestingly, mKO^{SIRT1} and control mice also had comparable
348 reductions in PGC1 α acetylation and induction of exercise-response genes (e.g., mitofusin 2, PDH kinase
349 4, cytochrome c) after acute exercise, and normal mitochondrial adaptations (e.g., abundance and/or
350 activity of complexes I-IV of the ETC, CS activity, mtDNA:nDNA ratio) to wheel running training (142).

351 Thus, studies in mKO^{SIRT1} mice reveal that SIRT1 deacetylase activity is not required for normal function
352 of mitochondria in skeletal muscle, nor is it required for exercise-induced adaptations. Regarding PGC1 α
353 acetylation, the authors found that the acetyltransferase that regulates PGC1 α transcriptional activity,
354 general control of amino acid synthesis 5 (GCN5) (57, 116, 132), is modulated by exercise, such that

355 nuclear localization of GCN5 was reduced and less GCN5 co-immunoprecipitated with PGC1 α after
356 exercise (142). Similarly, whole-body deletion of SRC-3, an upstream activator of GCN5, results in
357 decreased PGC-1 α acetylation and increased mitochondrial biogenesis (36), whilst overexpression of
358 GCN5 reduces mitochondrial gene expression and fatty acid oxidation (57). This study suggests,
359 therefore, that the reduced acetylation of PGC1 α with exercise is not due to increased deacetylation by
360 SIRT1, but rather is a result of reduced acetylation by GCN5 (142). This is an interesting finding, and
361 demonstrates that PGC1 α acetylation is a balance of the activities of the proteins that acetylate and
362 deacetylate it. Currently, the mechanisms by which exercise regulates GCN5 activity, GCN5 translocation
363 from the nucleus, and the GCN5-PGC1 α interaction, are unknown.

364 How SIRT1 gene expression is regulated in response to exercise is also unknown. In liver cells,
365 SIRT1 gene expression is regulated via opposing effects of cyclic AMP response-element-binding protein
366 (CREB) and carbohydrate response-element-binding protein (ChREBP)(134), such that increased CREB
367 binding to the SIRT1 promoter increases SIRT1 transcription, whereas ChREBP binding impairs it.
368 CREB has also been shown to regulate PGC1 α transcription (3, 4). Given that acute exercise activates
369 CREB (49, 142), it is possible that this is responsible, at least in part, for increased SIRT1 gene
370 transcription with exercise. The effects of exercise on ChREBP expression and activation in muscle have
371 not been studied. It is also possible that SIRT1 gene expression is regulated by changes in NADH levels.
372 To this end, SIRT1 gene expression is also regulated by C-terminal binding protein (CtBP) (189), a
373 transcriptional corepressor that has a 100-fold greater affinity for NADH than NAD $^+$ (53, 188). While we
374 discuss CtBP in more detail later in this review, of note here is that changes in NADH levels during or
375 after exercise could reduce the repressive effects of CtBP on SIRT1 gene transcription in skeletal muscle.

376 **SIRT3.** SIRT3 is considered to be a mitochondrial-localized protein (8, 35, 71, 124, 136, 170,
377 172), although there have been some conflicting reports on its localization (166). Relevant to our
378 discussion, in skeletal muscle SIRT3 appears to localize solely to mitochondria (71), and scales with
379 markers of skeletal muscle oxidative capacity (71, 137). Additionally, SIRT3 is decreased in old vs.

380 young sedentary individuals, but is higher in endurance-trained vs. sedentary individuals, regardless of
381 age (111). In line with this, exercise training or chronic electrical stimulation (71, 82, 137), but not acute
382 exercise (71, 82), increases skeletal muscle SIRT3 protein levels, and is specific to those muscles
383 recruited during the exercise intervention. Complimenting these studies, knockdown of SIRT3 in C2C12
384 muscle cells decreases basal and maximal oxygen consumption rates and mitochondrial content, and
385 prevents PGC1 α -induced activation of mitochondrial genes (86, 105). Although knockdown of SIRT3
386 does not reduce the total mitochondria number as measured by the abundance of complexes I, III and V of
387 the ETC (86), it does reduce skeletal muscle fatty acid oxidation by ~50%, due to hyperacetylation of
388 long chain acyl CoA dehydrogenase (LCAD) (81). Alternatively, overexpression of SIRT3 in C2C12
389 myotubes increases mitochondrial DNA content (105). Taken together, these studies suggest that SIRT3
390 plays an important role in regulating skeletal muscle mitochondrial biogenesis, and potentially fatty acid
391 oxidation, in response to long-term exercise training. However, a recent paper by Yang et al. (183) in
392 C2C12 muscle cells and skeletal muscle from SIRT3 null mice counters this perspective. In their paper,
393 the authors demonstrate that SIRT3 acts to reduce mitochondrial protein synthesis (and thus,
394 mitochondrial biogenesis) via its ability to deacetylate mitochondrial ribosomal protein L10 (MRPL10)
395 and negatively regulate the activity of mitochondrial ribosomes. Thus, rather than increase mitochondrial
396 protein synthesis, SIRT3 appears to have the opposite effect in skeletal muscle. The teleological
397 implications of this will be discussed shortly.

398 Increased ATP utilization during exercise is matched through increased mitochondrial ATP
399 production, which occurs via oxidation of mitochondrial NADH produced in metabolic pathways such as
400 glycolysis, the TCA cycle, β -oxidation, and the electron transport chain (ETC). Interestingly, up to one
401 fifth of mitochondrial proteins are acetylated, as are many of the proteins in these metabolic pathways,
402 which has important effects on their function (95, 177, 191). Indeed, SIRT3 appears to be responsible for
403 much of the deacetylation of mitochondrial proteins (124, 136, 170, 172). Of potential interest to ATP
404 generation in skeletal muscle during exercise, SIRT3 deacetylates and activates the TCA cycle and ETC

405 enzymes, including succinate dehydrogenase (SDH) (30), ubiquinol-cytochrome c reductase hinge protein
406 (a component of complex III) (114), malate dehydrogenase (137), NDUFA9 of complex I (2), GDH
407 (124), ATP synthase (114), and isocitrate dehydrogenase 2 (ICDH2) (168). Also, SIRT3 deacetylates and
408 activates the β -oxidation enzyme, LCAD (81). With this information in mind, we propose that a possible
409 role of SIRT3 in skeletal muscle is the acute regulation of enzymes and pathways that generate ATP in
410 response to ATP demand during exercise. This is supported by the fact ATP production in heart, kidney,
411 and liver from SIRT3 null mice is reduced by more than 50% (2), although whether this is the case in
412 skeletal muscle is unknown. In the context of the findings of Yang et al. (183) showing that SIRT3
413 reduces (rather than increases) mitochondrial protein synthesis, as measured by a [35 S]-methionine
414 translation-based assay, this also would make teleological sense. Thus, during exercise it is necessary to
415 generate ATP to maintain force production, so pathways that utilize energy, such as protein synthesis,
416 would be momentarily halted. The actions of SIRT3, therefore, are akin to the effects of AMPK on
417 enhancing energy production and inhibiting pathways that use energy for processes other than to maintain
418 ATP production and muscle work (79, 85), albeit the effects of SIRT3 are specific to the mitochondria. It
419 will be of interest in future studies to determine if mitochondrial biogenesis in response to exercise is
420 impaired in SIRT3 null mice. Also, given that fatty acid oxidation increases during endurance exercise
421 (38), it will be interesting to determine if acute exercise alters substrate utilization in parallel with activation
422 of SIRT3 activity and deacetylation of its downstream targets. Studies using muscle-specific SIRT3 null
423 mice and exercise will no doubt be very informative regarding such questions.

424

425 **PARPs and mitochondrial biogenesis in skeletal muscle**

426 The PARPs are major consumers of nuclear NAD $^{+}$, and therefore compete with SIRT1 for NAD $^{+}$
427 in the nucleus (40, 76, 174, 185, 193). Considering this, a series of papers from the laboratory of Johan
428 Auwerx recently investigated the effects of knocking down PARP1 and PARP2 on skeletal muscle
429 mitochondrial biogenesis in C2C12 myotubes and mice. PARP1 null mice had increased levels of NAD $^{+}$,

430 reduced acetylation of SIRT1 substrates such as PGC1 α and FOXO1, and increased mitochondrial
431 biogenesis, as measured by mitochondrial gene expression, mitochondrial morphology, SDH staining and
432 mtDNA content, O₂ consumption (7). Increased muscle SIRT1 activity may in part be due to increased
433 protein content, although SIRT1 activity was increased in HEK293 cells without an increase in SIRT1
434 protein content (7). Complimenting these findings, treatment of mice with PARP-1 inhibitors increased
435 NAD⁺ levels and SIRT1 activity (7). The activity of other non-nuclear sirtuins including SIRT2 and
436 SIRT3, however, were unchanged in PARP1 null tissues (7), suggesting that the upregulation of SIRT1 in
437 the absence of PARP1 may be due to a local change in the NAD⁺ pool in the nuclear compartment.
438 Similar to PARP1, knockdown of PARP2 in C2C12 myocytes increased SIRT1 activity (6). In skeletal
439 muscle this appeared to occur through both an increase in intracellular NAD⁺ levels and modulation of the
440 SIRT1 promoter by PARP2 (6). As expected, SIRT1 activity was increased in PARP1 and PARP2 null
441 mice and these mice also had increases in skeletal muscle mitochondrial biogenesis (e.g., mtDNA,
442 mitochondrial morphology and gene expression, SDH staining) and their muscle demonstrated a more
443 oxidative phenotype (6, 7). Moreover, PARP2 null mice had increased endurance as measured by a
444 treadmill endurance test (6). Whether this was due to improvements in skeletal muscle per se, or was a
445 function of the changes in other tissues, such as the heart, was not determined. Collectively these studies
446 are very interesting, and suggest that inhibition of PARPs could be used to enhance muscle mitochondrial
447 biogenesis by increasing nuclear NAD⁺ levels and increasing SIRT1 activation. If exercise leads to an
448 increase in NAD⁺ in the nuclear compartment, it will be interesting in the future to determine if acute
449 exercise leads to inhibition of PARP1 and PARP2, so as to maximize NAD⁺ levels and SIRT1 activation.
450 Although, it is notable that *in vivo* SIRT1 deacetylase activity is not required for the ability of exercise to
451 enhance mitochondrial biogenesis (142). Thus, studies that cross PARP1/2 null mice with mKO^{SIRT1}
452 mice, or studies with PARP inhibitors in mKO^{SIRT1} mice, will help to definitively determine if PARP
453 inhibition works through SIRT1, *in vivo*.

455 **Contribution of NADH to mitochondrial adaptations to exercise: Possible role of CtBP**

456 As discussed above, CtBP is a transcriptional corepressor that is greater than 100-fold more
457 sensitive to perturbations in cellular NADH vs NAD⁺ levels (53, 188). Considering that the
458 cytosolic/nuclear content of NAD⁺ in muscle is estimated to be ~540-fold higher than NADH (42, 119),
459 conversion of NAD⁺ to NADH, or vice versa, would therefore result in a greater change in the NADH
460 levels. By extension, and as reasoned by others (53, 188, 189), changes in nuclear NADH, rather than
461 NAD⁺, could link perturbations in NAD⁺/NADH ratio to gene transcription. To this end, CtBP regulates
462 mitochondrial morphology and function in MEFs and liver-related cells, via its ability to regulate Bcl-2-
463 associated X protein (Bax) (94). CtBP also represses the transcriptional activity of myocyte enhancer
464 factor 2 (MEF2) (186), a key transcription factor in the regulation of mitochondrial biogenesis (39, 131)
465 that shows increased DNA binding in response to exercise (130). The regulation of MEF2 transcriptional
466 activity, however, is complex, as MEF2 is deacetylated by SIRT1, and deacetylation of MEF2 *in vitro*
467 reduces (not increases) its transcriptional activity (126, 192). So clearly, the interplay of exercise on
468 NAD⁺(H), SIRT1, CtBP and MEF2, and the subsequent transcriptional response, may represents a
469 balance of these activating and inhibitory signals, that likely involves additional levels of regulatory
470 control, such as ubiquitination, sumoylation and phosphorylation (67, 92, 149). Taken together, these
471 studies point to a potentially important role of CtBP, via its sensitivity to changes in NADH, in the
472 modulation of mitochondrial biogenesis in skeletal muscle in response to exercise.

473

474 **Replenishing NAD⁺ levels in skeletal muscle: An important consideration**

475 If an increase in NAD⁺ during exercise leads to an increase in the activity (and thus consumption
476 of NAD⁺) by SIRT1, SIRT3, PARP1 or PARP2, then it would be important for skeletal muscle to
477 replenish NAD⁺ levels in the cytosolic, nuclear and mitochondrial compartments during or after exercise.
478 In mammals, the NAD⁺ biosynthetic and salvage pathways replenish NAD⁺, and the specifics of these
479 pathways are reviewed elsewhere (11, 12, 84, 97, 128, 144, 190); an overview of these pathways is

480 presented in Figure 2. Except for research on NAM phosphoribosyltransferase (NAMPT; also known as
481 pre-B-cell colony-enhancing factor 1 (PBEF1) or visfatin), the contribution of these pathways to
482 replenishment of NAD⁺ in skeletal muscle and in response to exercise is to date, essentially unstudied.

483 NAMPT is located in the nucleus, cytosol and mitochondria (96, 148, 182), and is part of the
484 NAD⁺ biosynthetic pathway that converts NAM to NAM mononucleotide (NMN) (40, 76, 174, 185, 193).
485 This reaction is potentially important for maintaining the activity of SIRT1 and SIRT3, as nicotinamide
486 (which is generated in the deacetylase reaction of sirtuins, including SIRT1 and SIRT3) is a negative
487 regulator of SIRT1 and SIRT3 (11, 12, 84, 97, 128, 144, 169, 190). Indeed, in HEK293 cells, NAMPT
488 plays an important role in protecting against cell death in response to genotoxic stress by maintaining
489 mitochondrial NAD⁺ levels and SIRT3 activation (182). However, in plasma from humans and mice
490 NAM concentrations (which range from 0.3 to 5 μ M) are lower than the reported IC₅₀ for SIRT1
491 inhibition, but is in the range of the K_M for NAMPT (24, 148, 151). Thus, whether or not NAM levels in
492 muscle reach a level sufficient to inhibit SIRT1/SIRT3 is unknown. This aside, in rodents, endurance
493 exercise increases NAMPT gene and/or protein expression in parallel with increased tissue NAD⁺ levels
494 (23, 104). Similarly, in humans, NAMPT protein abundance is higher in trained vs. untrained individuals,
495 and is increased by exercise training, although whether this increased NAD⁺ levels was not measured
496 (37). Thus, in the context of increased SIRT1/SIRT3 activity during and after exercise, a coordinated
497 increase in NAMPT activity may act to maintain SIRT1/SIRT3 activity by consuming NAM, and also
498 replenishing NAD⁺ (discussed below). The concentration of NAM in skeletal muscle is unknown.
499 Therefore, it will be interesting in future studies to determine whether NAMPT activity is increasing
500 specifically in the mitochondrial, nuclear and/or cytosolic compartments with exercise, and whether this
501 coincides with changes in NAM levels. Altogether, such measurements will provide important
502 information regarding the precise contribution of NAMPT to NAD⁺ metabolism and the regulation of
503 SIRT1 and SIRT3 activity in skeletal muscle in response to exercise.

504 To generate NAD⁺, NMN generated by the NAMPT reaction is converted by NMN
505 adenylyltransferas (NMNAT) to NAD⁺. NMNAT can also convert nicotinic acid (NA) mononucleotide
506 (NAMN) to NA adenine dinucleotide (NAAD), which is subsequently converted to NAD⁺, by NAD⁺
507 synthase. There are three isoforms of NMNAT: NMNAT1 and NMNAT2 are localized in the cytosol and
508 nucleus, and NMNAT3 appears to be exclusively in mitochondria (113, 133). At the mRNA level,
509 NMNAT1 is highly expressed in skeletal muscle (51, 52, 113), NMNAT2 is expressed at low levels,
510 whilst NMNAT3 is very low or absent (113). The protein levels and activity of these proteins in skeletal
511 muscle are unknown. The presence of NMNAT1 and to a lower extent, NMNAT2, in skeletal muscle
512 suggests that they may play an important role in replenishing nuclear and cytosolic NAD⁺ levels, and it
513 will be interesting to see if exercise coordinately increases NAMPT and NMNAT1/2 levels, in order to
514 maintain the overall cytosolic/nuclear NAD⁺ pools. Regarding replenishment of mitochondrial NAD⁺, the
515 inner mitochondrial membrane is impermeable to NAD⁺ and NADH (115, 143), which poses a potential
516 problem for maintaining the mitochondrial NAD⁺ level, particularly if NAD⁺ consumption by SIRT3 is
517 increased during exercise. Only recently was it demonstrated in HeLa S3 cells that NMNAT3 is the only
518 known enzyme of NAD⁺ synthesis in mitochondria (133). Whilst NMNAT3 gene expression is very low
519 in skeletal muscle, it will be of interest in future studies to determine if NMNAT3 activity in skeletal
520 muscle correlates with mitochondrial density or if exercise increases the activity or abundance of
521 NMNAT3, even independent of an increase in mitochondrial abundance. Alternatively, perhaps a
522 different or an additional mitochondrial NAD⁺ salvage or biosynthetic pathway is present in skeletal
523 muscle mitochondria.

524

525 **Concluding remarks: There are still many unanswered questions**

526 It has been more than 100 years since the discovery of the pyridine nucleotides, NAD⁺ and
527 NADH. While for much of this time NAD^{+(H)} was considered to primarily participate in metabolic
528 reactions that led to generation of ATP through their ability to act as substrates for enzymes or as covalent

529 modifiers of enzyme function, these coenzymes are potentially key mediators of the adaptive response to
530 exercise. Indeed, changes in NAD⁺(H) levels in concert with known NAD⁺(H) sensing enzymes provides
531 a logical link between exercise-induced metabolic stress and subsequent mitochondrial adaptations.
532 Specifically, the effects of SIRT1, PARP1/2, and CtBP appear to manifest through their ability to directly
533 or indirectly modulate the transcriptional response to exercise; they likely do not contribute to an
534 immediate increase in ATP production during acute exercise (Figure 3). Very little, however, is known
535 about NAD⁺(H) dynamics in the nucleus of skeletal muscle, and how this affects the transcriptionally-
536 based adaptations central to endurance exercise training. Regarding SIRT3, we propose that it acts as an
537 acute regulator of mitochondrial ATP production via its ability to regulate the enzymatic activity of
538 various TCA and ETC enzymes (and possible as yet to be discovered targets). An additional component
539 of this acute regulation is proposed to include a reduction in mitochondrial protein synthesis during
540 exercise (Figure 3). It is possible that during exercise, SIRT1 plays a similar role in regulating cellular
541 protein synthesis in the cytosol via its ability to negatively regulate mammalian target of rapamycin
542 (mTOR) and/or its interaction with tuberosclerosis complex 2 (TCS2) (58). Whether this regulation
543 occurs in muscle or during exercise is not known. In addition, little is known regarding the coordination
544 of NAD⁺ consuming and regeneration pathways in skeletal muscle and whether these two opposing events
545 are regulated by common mechanisms. Furthermore, our understanding of the compartmentation of
546 NAD⁺(H) metabolism, and quantitative changes in NAD⁺, NADH, and the NAD⁺/NADH ratio in
547 subcellular compartments in skeletal muscle at rest and in response to exercise is poor. While technically
548 challenging to measure, such investigation will be highly informative with respect to understanding the
549 activation or inhibition of both NAD⁺(H)-responsive proteins. For example, while NAD⁺ can clearly
550 activate sirtuins, NADH can act as a competitive inhibitor of SIRT1 (120). However, the relative binding
551 affinity of NAD⁺ for SIRT1, is ~1000-fold greater than NADH, and overall, the ability of NADH to
552 inhibit SIRT1 activity is proposed to be minimal in an *in vivo* setting (169). Thus, determining the precise
553 contribution of changes in NAD⁺, NADH, and the NAD⁺/NADH ratio will be important. In the end it is

554 likely that a combination of changes in free NAD⁺ and NADH levels and the NAD⁺/NADH ratio within
555 specific subcellular compartments is important. Thus, as research on NAD⁺(H) metabolism continues into
556 its second century, there are still many important research questions to be resolved regarding their effect
557 on the adaptive response to exercise in skeletal muscle. Ultimately, such research holds great promise for
558 improving our fundamental understanding of skeletal muscle function in response to exercise, which has
559 obvious and important implications for human health and treatment of skeletal muscle-related diseases.

560

561 **Acknowledgements**

562 The authors are thankful to Dr. Andrew Philp for helpful discussion and input on the manuscript. This
563 research was supported in part by grants from the National Institutes of Health (R24 HD050837, P30
564 AR058878-02, T32 AR060712), including a Pilot and Feasibility Grant from the UCSD/UCLA Diabetes
565 and Endocrinology Research Center (P30 DK063491).

566

567

568

569 **Figure Legends**

570 **Figure 1. Compartmentation of NAD⁺ and NADH in skeletal muscle.** NAD⁺ and NADH move freely
571 across pores in the nuclear membrane, and as such the cytosolic and nuclear compartment concentrations
572 of NAD⁺ and NADH are thought to be comparable. In the cytosol, NADH is generated by glycolysis.
573 Because mitochondria are impermeable to NADH, the transfer of these reducing equivalents occurs via a
574 variety of shuttles including the glycerol-3-phosphate shuttle, malate-aspartate shuttle, lactate shuttle, and
575 the NADH/cytochrome c electron transport shuttle, as described in the text. Depending on the shuttle
576 NADH is produced. The cytosolic/nuclear NAD⁺ pool is replenished when NADH is converted back to
577 NAD⁺ in the reactions of the aforementioned shuttles, including the conversion of pyruvate to lactate.
578 NAD⁺ levels in the nuclear, cytosolic, and mitochondrial compartments are also replenished via specific
579 *de novo* and salvage pathways that are discussed in the text and overviewed in Figure 2. Within the
580 mitochondria, NADH is oxidized to NAD⁺ in the electron transport chain (ETC).

581

582 **Figure 2. Replenishment of NAD⁺ through the biosynthesis (*de novo*) and salvage pathways.** Given
583 there are many NAD⁺-consuming enzymes, it is essential that NAD⁺ be replenished in order to maintain
584 compartmental NAD⁺ levels. This occurs through the salvage and biosynthetic pathways. Except for
585 NAMPT, the role of these pathways in NAD⁺ replenishment in skeletal muscle, and in response to
586 exercise, are essentially unknown. Molecules generated in each pathway are in orange. Enzymes are in
587 blue. NA, nicotinic acid; NAM, nicotinamide; NAMN, NA mononucleotide; NMN, NAM
588 mononucleotide; NMNAT, NMN adenylyltransferase; NAAD, NA adenine dinucleotide; NAD⁺, NAM
589 adenine dinucleotide; NAPT, NA phosphoribosyltransferase; NAMPT, NAM phosphoribosyltransferase;
590 NR, nicotinamide riboside.

591

592 **Figure 3. Proposed mechanism for exercise-induced mitochondrial biogenesis via NAD⁺/NADH
593 metabolism.** Increased ATP demand during exercise leads to an increase in the free cytosolic/nuclear and

594 mitochondrial NAD⁺ level and NAD⁺/NADH ratio, which provides increased substrate for the NAD⁺-
595 consuming enzymes (in purple), SIRT1, SIRT3, PARP1 and PARP2. Exercise also reduces the
596 availability of NADH, the predominant covalent activator of CtBP. It is hypothesized that during exercise,
597 increased ATP production is facilitated by SIRT3-mediated deacetylation of a series of enzymes in the
598 TCA, β -oxidation and ETC. In parallel, SIRT3 acutely reduces mitochondrial protein synthesis, which
599 maximizes the availability of reducing equivalents for ATP production. Whether SIRT3 is required for
600 induction of mitochondrial biogenesis after exercise remains to be determined. In response to exercise
601 SIRT1 is also activated by increased cytosolic/nuclear NAD⁺ levels, and while it likely can contribute to
602 mitochondrial biogenesis through PGC1 α -dependent and -independent mechanisms, it is not required for
603 exercise-mediated deacetylation of PGC1 α . Rather, acute exercise appears to reduce the inhibitory effect
604 of the acetyltransferase, GCN5, on PGC1 α , via mechanism that is still to be determined. PARP1 and
605 PARP2 are able to directly or indirectly modulate SIRT1 activity (and mitochondrial biogenesis) by
606 competing for NAD⁺, although the effects of exercise on the activity of these enzymes is unknown. Also,
607 whether SIRT1 is required for the ability of PARP inhibition to induce mitochondrial biogenesis in
608 skeletal muscle, *in vivo*, is not known. The transcriptional corepressor CtBP, is activated by NADH, and it
609 is hypothesized that during or after exercise that reductions in the cytosolic/nuclear NADH level reduces
610 the repressive effects of CtBP on transcriptional modulators of mitochondrial biogenesis. Ultimately,
611 increased activity of enzymes of the ETC, TCA cycle and β -oxidation, and/or increased mitochondrial
612 number (i.e., biogenesis) leads to an enhanced capacity of the mitochondria and muscle to generate ATP.

613 Legend: Dotted lines indicate that a hypothesized contribution of the pathway, or that the data to date
614 provides an incomplete perspective. PARP, poly [ADP-ribose] polymerase; NAD⁺, nicotinamide adenine
615 nucleotide (oxidized); NADH, nicotinamide adenine nucleotide (reduced); SIRT1, sirtuin 1; SIRT3,
616 sirtuin 3; GCN5, general control of amino acid synthesis; PGC1 α , peroxisome proliferator-activated
617 receptor gamma coactivator 1-alpha; CtBP, C-terminal binding protein.

618

619 **References**

620 1. **Abbrescia DI, Piana GL, and Lofrumento NE.** Malate-aspartate shuttle and exogenous
621 NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent
622 transfer systems. *Arch Biochem Biophys* 2012.

623 2. **Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, and Finkel T.** A role for
624 the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. *Proc Natl Acad Sci U S A*
625 105: 14447-14452, 2008.

626 3. **Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, and Yan Z.**
627 Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK
628 pathway. *J Biol Chem* 280: 19587-19593, 2005.

629 4. **Akimoto T, Sorg BS, and Yan Z.** Real-time imaging of peroxisome proliferator-activated receptor-
630 gamma coactivator-1alpha promoter activity in skeletal muscles of living mice. *Am J Physiol Cell
631 Physiol* 287: C790-796, 2004.

632 5. **Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, and Villarroya F.** SIRT1 controls the
633 transcription of the peroxisome proliferator-activated receptor-gamma Co-activator-1alpha (PGC-
634 1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with
635 MyoD. *J Biol Chem* 284: 21872-21880, 2009.

636 6. **Bai P, Canto C, Brunyanszki A, Huber A, Szanto M, Cen Y, Yamamoto H, Houten SM, Kiss
637 B, Oudart H, Gergely P, Menissier-de Murcia J, Schreiber V, Sauve AA, and Auwerx J.**
638 PARP-2 regulates SIRT1 expression and whole-body energy expenditure. *Cell Metab* 13: 450-460,
639 2011.

640 7. **Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B,
641 Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, and Auwerx
642 J.** PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. *Cell Metab* 13:
643 461-468, 2011.

644 8. **Bao J, Lu Z, Joseph JJ, Carabenciov D, Dimond CC, Pang L, Samsel L, McCoy JP, Jr.,
645 Leclerc J, Nguyen P, Gius D, and Sack MN.** Characterization of the murine SIRT3 mitochondrial
646 localization sequence and comparison of mitochondrial enrichment and deacetylase activity of long
647 and short SIRT3 isoforms. *J Cell Biochem* 110: 238-247, 2010.

648 9. **Beard DA, Wu F, Cabrera ME, and Dash RK.** Modeling of cellular metabolism and
649 microcirculatory transport. *Microcirculation* 15: 777-793, 2008.

650 10. **Beis A, Zammit VA, and Newsholme EA.** Activities of 3-hydroxybutyrate dehydrogenase, 3-
651 oxoacid CoA-transferase and acetoacetyl-CoA thiolase in relation to ketone-body utilisation in
652 muscles from vertebrates and invertebrates. *Eur J Biochem* 104: 209-215, 1980.

653 11. **Belenky P, Bogan KL, and Brenner C.** NAD⁺ metabolism in health and disease. *Trends Biochem
654 Sci* 32: 12-19, 2007.

655 12. **Berger F, Ramirez-Hernandez MH, and Ziegler M.** The new life of a centenarian: signalling
656 functions of NAD(P). *Trends Biochem Sci* 29: 111-118, 2004.

657 13. **Blinova K, Carroll S, Bose S, Smirnov AV, Harvey JJ, Knutson JR, and Balaban RS.**
658 Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH
659 interactions. *Biochemistry (Mosc)* 44: 2585-2594, 2005.

660 14. **Boily G, He XH, Pearce B, Jardine K, and McBurney MW.** SirT1-null mice develop tumors at
661 normal rates but are poorly protected by resveratrol. *Oncogene* 28: 2882-2893, 2009.

662 15. **Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba
663 S, Jardine K, Xuan J, Evans M, Harper ME, and McBurney MW.** SirT1 regulates energy
664 metabolism and response to caloric restriction in mice. *PLoS ONE* 3: e1759, 2008.

665 16. **Bonen A, Hatta H, Holloway GP, Spriet LL, and Yoshida Y.** Reply to Brooks and Hashimoto,
666 "Investigation of the lactate shuttle in skeletal muscle mitochondria". *J Physiol* 584: 707-708, 2007.

667 17. **Borra MT, Smith BC, and Denu JM.** Mechanism of human SIRT1 activation by resveratrol. *J
668 Biol Chem* 280: 17187-17195, 2005.

669 18. **Brooks GA**. Cell-cell and intracellular lactate shuttles. *J Physiol* 587: 5591-5600, 2009.

670 19. **Brooks GA, Dubouchaud H, Brown M, Sicurello JP, and Butz CE**. Role of mitochondrial lactate

671 dehydrogenase and lactate oxidation in the intracellular lactate shuttle. *Proc Natl Acad Sci U S A* 96:

672 1129-1134, 1999.

673 20. **Brooks GA, and Hashimoto T**. Investigation of the lactate shuttle in skeletal muscle mitochondria.

674 *J Physiol* 584: 705-706;author reply 707-708, 2007.

675 21. **Cabrera ME, Saidel GM, and Kalhan SC**. Modeling metabolic dynamics. From cellular processes

676 to organ and whole body responses. *Prog Biophys Mol Biol* 69: 539-557, 1998.

677 22. **Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver**

678 **P, and Auwerx J**. AMPK regulates energy expenditure by modulating NAD⁺ metabolism and

679 SIRT1 activity. *Nature* 458: 1056-1060, 2009.

680 23. **Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, and Auwerx**

681 **J**. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal

682 muscle. *Cell Metab* 11: 213-219, 2010.

683 24. **Catz P, Shinn W, Kapetanovic IM, Kim H, Kim M, Jacobson EL, Jacobson MK, and Green**

684 **CE**. Simultaneous determination of myristyl nicotinate, nicotinic acid, and nicotinamide in rabbit

685 plasma by liquid chromatography-tandem mass spectrometry using methyl ethyl ketone as a

686 deproteinization solvent. *J Chromatogr B Analyt Technol Biomed Life Sci* 829: 123-135, 2005.

687 25. **Chabi B, Adhiketty PJ, O'Leary MF, Menzies KJ, and Hood DA**. Relationship between Sirt1

688 expression and mitochondrial proteins during conditions of chronic muscle use and disuse. *J Appl*

689 *Physiol* 107: 1730-1735, 2009.

690 26. **Chance B**. Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked

691 functions of mitochondria. *Circ Res* 38: I31-38, 1976.

692 27. **Chance B, and Connelly CM**. A method for the estimation of the increase in concentration of

693 adenosine diphosphate in muscle sarcosomes following a contraction. *Nature* 179: 1235-1237, 1957.

694 28. **Chance B, and Jobsis F**. Changes in Fluorescence in a Frog Sartorius Muscle Following a Twitch.

695 *Nature* 184: 195-196, 1959.

696 29. **Chi MM, Hintz CS, Coyle EF, Martin WH, 3rd, Ivy JL, Nemeth PM, Holloszy JO, and Lowry**

697 **OH**. Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. *Am*

698 *J Physiol* 244: C276-287, 1983.

699 30. **Cimen H, Han MJ, Yang Y, Tong Q, Koc H, and Koc EC**. Regulation of succinate

700 dehydrogenase activity by SIRT3 in mammalian mitochondria. *Biochemistry (Mosc)* 49: 304-311,

701 2010.

702 31. **Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukpovicova B, Deutsch WA, Smith SR,**

703 **and Ravussin E**. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.

704 *PLoS Med* 4: e76, 2007.

705 32. **Cogswell AM, Stevens RJ, and Hood DA**. Properties of skeletal muscle mitochondria isolated

706 from subsarcolemmal and intermyofibrillar regions. *Am J Physiol* 264: C383-389, 1993.

707 33. **Connelly CM, and Chance B**. *Fed Proc* 13: 29, 1954.

708 34. **Connell RJ, Gayeski TE, and Honig CR**. Lactate accumulation in fully aerobic, working, dog

709 gracilis muscle. *Am J Physiol* 246: H120-128, 1984.

710 35. **Cooper HM, and Spelbrink JN**. The human SIRT3 protein deacetylase is exclusively

711 mitochondrial. *Biochem J* 411: 279-285, 2008.

712 36. **Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, Schoonjans K, Puigserver P,**

713 **O'Malley BW, and Auwerx J**. The genetic ablation of SRC-3 protects against obesity and

714 improves insulin sensitivity by reducing the acetylation of PGC-1 $\{\alpha\}$. *Proc Natl Acad Sci U S A*

715 105: 17187-17192, 2008.

716 37. **Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H, Church TS, Jubrias**

717 **SA, Conley KE, and Smith SR**. Skeletal muscle NAMPT is induced by exercise in humans. *Am J*

718 *Physiol Endocrinol Metab* 298: E117-126, 2010.

719 38. **Coyle EF.** Substrate utilization during exercise in active people. *Am J Clin Nutr* 61: 968S-979S, 720 1995.

721 39. **Czubryt MP, McAnally J, Fishman GI, and Olson EN.** Regulation of peroxisome proliferator- 722 activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 723 and HDAC5. *Proc Natl Acad Sci U S A* 100: 1711-1716, 2003.

724 40. **Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, and Auwerx J.** Sirtuins: the 725 'magnificent seven', function, metabolism and longevity. *Ann Med* 39: 335-345, 2007.

726 41. **Dash RK, Dibella JA, 2nd, and Cabrera ME.** A computational model of skeletal muscle 727 metabolism linking cellular adaptations induced by altered loading states to metabolic responses 728 during exercise. *Biomed Eng Online* 6: 14, 2007.

729 42. **Dash RK, Li Y, Kim J, Beard DA, Saidel GM, and Cabrera ME.** Metabolic dynamics in skeletal 730 muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies 731 using a multi-scale, top-down integrated model. *PLoS ONE* 3: e3168, 2008.

732 43. **Dolle C, Niere M, Lohndal E, and Ziegler M.** Visualization of subcellular NAD pools and intra- 733 organellar protein localization by poly-ADP-ribose formation. *Cell Mol Life Sci* 67: 433-443, 2010.

734 44. **Duboc D, Muffat-Joly M, Renault G, Degeorges M, Toussaint M, and Pocidalo JJ.** In situ 735 NADH laser fluorimetry of rat fast- and slow-twitch muscles during tetanus. *J Appl Physiol* 64: 736 2692-2695, 1988.

737 45. **Dumke CL, Mark Davis J, Angela Murphy E, Nieman DC, Carmichael MD, Quindry JC, 738 Travis Triplett N, Utter AC, Gross Gowin SJ, Henson DA, McAnulty SR, and McAnulty LS.** Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis. *Eur J Appl 739 Physiol* 107: 419-427, 2009.

740 46. **Easlon E, Tsang F, Skinner C, Wang C, and Lin SJ.** The malate-aspartate NADH shuttle 741 components are novel metabolic longevity regulators required for calorie restriction-mediated life 742 span extension in yeast. *Genes Dev* 22: 931-944, 2008.

743 47. **Edington DW.** Pyridine nucleotide oxidized to reduced ratio as a regulator of muscular 744 performance. *Experientia* 26: 601-602, 1970.

745 48. **Edington DW, and McCafferty WB.** Mitochondrial size distribution analysis in the soleus muscle 746 of trained and aged rats. *Experientia* 29: 692-693, 1973.

747 49. **Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield FM, Barron N, McCaffrey N, 748 Moyna NM, Zierath JR, and O'Gorman DJ.** Exercise intensity-dependent regulation of 749 peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with 750 differential activation of upstream signalling kinases in human skeletal muscle. *J Physiol* 588: 1779- 751 1790, 2010.

752 50. **Eisenberg BR.** Quantitative ultrastructure of mammalian skeletal muscle. In: *Handbook of 753 Physiology, Section 10: Skeletal Muscle*, edited by Peachey LD, Adrian RH, and Geiger SR. 754 Baltimore: Lippincott Williams and Wilkins, 1983, p. 73-112.

755 51. **Emanuelli M, Carnevali F, Saccucci F, Pierella F, Amici A, Raffaelli N, and Magni G.** 756 Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and 757 enzymatic properties of human NMN adenyllyltransferase. *J Biol Chem* 276: 406-412, 2001.

758 52. **Fernando FS, Conforti L, Tosi S, Smith AD, and Coleman MP.** Human homologue of a gene 759 mutated in the slow Wallerian degeneration (C57BL/Wld(s)) mouse. *Gene* 284: 23-29, 2002.

760 53. **Fjeld CC, Birdsong WT, and Goodman RH.** Differential binding of NAD⁺ and NADH allows the 761 transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. *Proc 762 Natl Acad Sci U S A* 100: 9202-9207, 2003.

763 54. **Frieden C.** Coenzyme binding, observed by fluorescence enhancement, apparently unrelated to the 764 enzymic activity of glutamic dehydrogenase. *Biochim Biophys Acta* 47: 428-430, 1961.

765 55. **Friedkin M, and Lehninger AL.** Esterification of inorganic phosphate coupled to electron 766 transport between dihydrodiphosphopyridine nucleotide and oxygen. *J Biol Chem* 178: 611-644, 767 1949.

768

769 56. **Gerhart-Hines Z, Dominy JE, Jr., Blattler SM, Jedrychowski MP, Banks AS, Lim JH, Chim**

770 H, Gygi SP, and Puigserver P. The cAMP/PKA Pathway Rapidly Activates SIRT1 to Promote

771 Fatty Acid Oxidation Independently of Changes in NAD⁽⁺⁾. *Mol Cell* 44: 851-863, 2011.

772 57. **Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, and**

773 **Puigserver P.** Metabolic control of muscle mitochondrial function and fatty acid oxidation through

774 SIRT1/PGC-1alpha. *EMBO J* 26: 1913-1923, 2007.

775 58. **Ghosh HS, McBurney M, and Robbins PD.** SIRT1 negatively regulates the mammalian target of

776 rapamycin. *PLoS ONE* 5: e9199, 2010.

777 59. **Gladden LB.** Is there an intracellular lactate shuttle in skeletal muscle? *J Physiol* 582: 899, 2007.

778 60. **Gladden LB.** Lactate metabolism: a new paradigm for the third millennium. *J Physiol* 558: 5-30,

779 2004.

780 61. **Godfraind-de Becker A.** Heat production and fluorescence changes of toad sartorius muscle during

781 aerobic recovery after a short tetanus. *J Physiol* 223: 719-734, 1972.

782 62. **Graham T, Sjogaard G, Lollgen H, and Saltin B.** NAD in muscle of man at rest and during

783 exercise. *Pflugers Arch* 376: 35-39, 1978.

784 63. **Graham TE, and Saltin B.** Estimation of the mitochondrial redox state in human skeletal muscle

785 during exercise. *J Appl Physiol* 66: 561-566, 1989.

786 64. **Graham TE, Sinclair DG, and Chapler CK.** Metabolic intermediates and lactate diffusion in

787 active dog skeletal muscle. *Am J Physiol* 231: 766-771, 1976.

788 65. **Green HJ, Dusterhoft S, Dux L, and Pette D.** Metabolite patterns related to exhaustion, recovery

789 and transformation of chronically stimulated rabbit fast-twitch muscle. *Pflugers Arch* 420: 359-366,

790 1992.

791 66. **Green HJ, Jones S, Ball-Burnett M, Farrance B, and Ranney D.** Adaptations in muscle

792 metabolism to prolonged voluntary exercise and training. *J Appl Physiol* 78: 138-145, 1995.

793 67. **Gregoire S, Tremblay AM, Xiao L, Yang Q, Ma K, Nie J, Mao Z, Wu Z, Giguere V, and Yang**

794 **XJ.** Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. *J*

795 *Biol Chem* 281: 4423-4433, 2006.

796 68. **Guerra B, Guadalupe-Grau A, Fuentes T, Ponce-Gonzalez JG, Morales-Alamo D, Olmedillas**

797 **H, Guillen-Salgado J, Santana A, and Calbet JA.** SIRT1, AMP-activated protein kinase

798 phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of

799 glucose ingestion. *Eur J Appl Physiol* 109: 731-743, 2010.

800 69. **Guo X, Williams JG, Schug TT, and Li X.** DYRK1A and DYRK3 promote cell survival through

801 phosphorylation and activation of SIRT1. *J Biol Chem* 285: 13223-13232, 2010.

802 70. **Gurd BJ.** Deacetylation of PGC-1alpha by SIRT1: importance for skeletal muscle function and

803 exercise-induced mitochondrial biogenesis. *Appl Physiol Nutr Metab* 36: 589-597, 2011.

804 71. **Gurd BJ, Holloway GP, Yoshida Y, and Bonen A.** In mammalian muscle, SIRT3 is present in

805 mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an

806 adenosine monophosphate-activated protein kinase-independent manner. *Metabolism* 2011.

807 72. **Gurd BJ, Little JP, and Perry CG.** Does SIRT1 determine exercise-induced skeletal muscle

808 mitochondrial biogenesis: differences between in vitro and in vivo experiments? *J Appl Physiol*

809 2011.

810 73. **Gurd BJ, Perry CG, Heigenhauser GJ, Spriet LL, and Bonen A.** High-intensity interval training

811 increases SIRT1 activity in human skeletal muscle. *Appl Physiol Nutr Metab* 35: 350-357, 2010.

812 74. **Gurd BJ, Yoshida Y, Lally J, Holloway GP, and Bonen A.** The deacetylase enzyme SIRT1 is not

813 associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces

814 mitochondrial biogenesis. *J Physiol* 587: 1817-1828, 2009.

815 75. **Gurd BJ, Yoshida Y, McFarlan JT, Holloway GP, Moyes CD, Heigenhauser GJ, Spriet L, and**

816 **Bonen A.** Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat

817 and human skeletal muscle. *Am J Physiol Regul Integr Comp Physiol* 301: R67-75, 2011.

818 76. **Haigis MC, and Sinclair DA.** Mammalian sirtuins: biological insights and disease relevance. *Annu Rev Pathol* 5: 253-295, 2010.

819 77. **Hansford RG.** The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration. *Biochem J* 146: 537-547, 1975.

820 78. **Harden A, and Young WJ.** The Alcoholic Ferment of Yeast-Juice. *Proc R Soc Lond B Biol Sci* 78: 369-375, 1906

821 79. **Hardie DG.** Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism. *Proc Nutr Soc* 70: 92-99, 2011.

822 80. **Henriksson J, Katz A, and Sahlin K.** Redox state changes in human skeletal muscle after isometric contraction. *J Physiol* 380: 441-451, 1986.

823 81. **Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, Li Y, Saha AK, Ruderman NB, Bain JR, Newgard CB, Farese RV, Jr., Alt FW, Kahn CR, and Verdin E.** SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. *Nature* 464: 121-125, 2010.

824 82. **Hokari F, Kawasaki E, Sakai A, Koshinaka K, Sakuma K, and Kawanaka K.** Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. *J Appl Physiol* 109: 332-340, 2010.

825 83. **Holloszy JO.** Adaptation of skeletal muscle to endurance exercise. *Med Sci Sports* 7: 155-164, 1975.

826 84. **Houtkooper RH, Canto C, Wanders RJ, and Auwerx J.** The secret life of NAD⁺: an old metabolite controlling new metabolic signaling pathways. *Endocr Rev* 31: 194-223, 2010.

827 85. **Jensen TE, Wojtaszewski JF, and Richter EA.** AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient? *Acta Physiol (Oxf)* 196: 155-174, 2009.

828 86. **Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, and Kahn CR.** Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. *Proc Natl Acad Sci U S A* 108: 14608-14613, 2011.

829 87. **Jobsis FF.** Spectrophotometric studies on intact muscle. II. Recovery from contractile activity. *J Gen Physiol* 46: 929-969, 1963.

830 88. **Jobsis FF, and Duffield JC.** Oxidative and glycolytic recovery metabolism in muscle. *J Gen Physiol* 50: 1009-1047, 1967.

831 89. **Jobsis FF, and Stainsby WN.** Oxidation of NADH during contractions of circulated mammalian skeletal muscle. *Respir Physiol* 4: 292-300, 1968.

832 90. **Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, Bedalov A, and Kennedy BK.** Substrate-specific activation of sirtuins by resveratrol. *J Biol Chem* 280: 17038-17045, 2005.

833 91. **Kang H, Jung JW, Kim MK, and Chung JH.** CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. *PLoS ONE* 4: e6611, 2009.

834 92. **Kang J, Gocke CB, and Yu H.** Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. *BMC Biochem* 7: 5, 2006.

835 93. **Katz A, and Sahlin K.** Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise. *Acta Physiol Scand* 131: 119-127, 1987.

836 94. **Kim JH, and Youn HD.** C-terminal binding protein maintains mitochondrial activities. *Cell Death Differ* 16: 584-592, 2009.

837 95. **Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, and Zhao Y.** Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. *Mol Cell* 23: 607-618, 2006.

868 96. **Kitani T, Okuno S, and Fujisawa H.** Growth phase-dependent changes in the subcellular
869 localization of pre-B-cell colony-enhancing factor. *FEBS Lett* 544: 74-78, 2003.

870 97. **Koch-Nolte F, Fischer S, Haag F, and Ziegler M.** Compartmentation of NAD⁺-dependent
871 signalling. *FEBS Lett* 585: 1651-1656, 2011.

872 98. **Kohen E, Kohen C, and Thorell B.** A comparative study of pyridine nucleotide metabolism in
873 yeast and mammalian cells by microfluorimetry-microelectrophoresis. *Histochemie* 12: 95-106,
874 1968.

875 99. **Kohen E, Kohen C, and Thorell B.** Kinetics of NAD reduction in the nucleus and the cytoplasm.
876 *Histochemie* 16: 170-185, 1968.

877 100. **Kohen E, Kohen C, and Thorell B.** Metabolic response of nuclear and cytoplasmic pyridine
878 nucleotides. *Histochemie* 12: 107-119, 1968.

879 101. **Kohen E, Siebert G, and Kohen C.** Metabolism of reduced pyridine nucleotides in ascites cell
880 nuclei. *Histochemie* 3: 477-483, 1964.

881 102. **Kohen E, Siebert G, and Kohen C.** Transfer of metabolites across the nuclear membrane. A
882 microfluorometric study. *Hoppe Seylers Z Physiol Chem* 352: 927-937, 1971.

883 103. **Kohen E, Thorell B, Kohen C, and Salmon JM.** Studies on metabolic events in localized
884 compartments of the living cell by rapid microspectrofluorometry. *Adv Biol Med Phys* 15: 271-297,
885 1974.

886 104. **Koltai E, Szabo Z, Atalay M, Boldogh I, Naito H, Goto S, Nyakas C, and Radak Z.** Exercise
887 alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. *Mech Ageing Dev*
888 131: 21-28, 2010.

889 105. **Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, and Chang Y.** Sirtuin 3, a new
890 target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial
891 biogenesis. *PLoS ONE* 5: e11707, 2010.

892 106. **Korzeniewski B.** Computer-aided studies on the regulation of oxidative phosphorylation during
893 work transitions. *Prog Biophys Mol Biol* 107: 274-285, 2011.

894 107. **Krebs HA.** The redox state of nicotinamide adenine dinucleotide in the cytoplasm and mitochondria
895 of rat liver. *Adv Enzyme Regul* 5: 409-434, 1967.

896 108. **Krieger DA, Tate CA, McMillin-Wood J, and Booth FW.** Populations of rat skeletal muscle
897 mitochondria after exercise and immobilization. *J Appl Physiol* 48: 23-28, 1980.

898 109. **Kushmerick MJ.** Energetics of muscle contraction. In: *Handbook of Physiology, Section 10: Skeletal Muscle*, edited by Peachey LD, Adrian RH, and Geiger SR. Baltimore: Lippincott Williams and Wilkins, 1983, p. 189-236.

900 110. **Kushmerick MJ.** Energy balance in muscle activity: simulations of ATPase coupled to oxidative
901 phosphorylation and to creatine kinase. *Comp Biochem Physiol B Biochem Mol Biol* 120: 109-123,
902 1998.

903 111. **Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, McConnell JP, and Nair KS.** Endurance exercise as a countermeasure for aging. *Diabetes* 57: 2933-2942, 2008.

905 112. **Lau C, Dolle C, Gossman TI, Agledal L, Niere M, and Ziegler M.** Isoform-specific targeting
907 and interaction domains in human nicotinamide mononucleotide adenylyltransferases. *J Biol Chem*
908 285: 18868-18876, 2010.

909 113. **Lau C, Niere M, and Ziegler M.** The NMN/NaMN adenylyltransferase (NMNAT) protein family.
910 *Front Biosci* 14: 410-431, 2009.

911 114. **Law IK, Liu L, Xu A, Lam KS, Vanhoutte PM, Che CM, Leung PT, and Wang Y.** Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the
912 anti-aging and metabolic effects of sirtuins. *Proteomics* 9: 2444-2456, 2009.

913 115. **Lehnninger AL.** Phosphorylation coupled to oxidation of dihydroporphopyridine nucleotide. *J
914 Biol Chem* 190: 345-359, 1951.

916 116. **Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, and Puigserver P.** GCN5
917 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-
918 1alpha. *Cell Metab* 3: 429-438, 2006.

919 117. **Li L, Muhlfeld C, Niemann B, Pan R, Li R, Hilfiker-Kleiner D, Chen Y, and Rohrbach S.** Mitochondrial biogenesis and PGC-1alpha deacetylation by chronic treadmill exercise: differential
920 response in cardiac and skeletal muscle. *Basic Res Cardiol* 106: 1221-1234, 2011.

921 118. **Li L, Pan R, Li R, Niemann B, Aurich AC, Chen Y, and Rohrbach S.** Mitochondrial biogenesis
922 and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation by physical activity: intact adipocytokine signaling is required. *Diabetes* 60: 157-167,
923 2011.

924 119. **Li Y, Dash RK, Kim J, Saidel GM, and Cabrera ME.** Role of NADH/NAD⁺ transport activity
925 and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies. *Am J
926 Physiol Cell Physiol* 296: C25-46, 2009.

927 120. **Lin SJ, Ford E, Haigis M, Liszt G, and Guarente L.** Calorie restriction extends yeast life span by
928 lowering the level of NADH. *Genes Dev* 18: 12-16, 2004.

929 121. **Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, and Gibala MJ.** A practical model of low-
930 volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle:
931 potential mechanisms. *J Physiol* 588: 1011-1022, 2010.

932 122. **Ljubicic V, Joseph AM, Adhiketty PJ, Huang JH, Saleem A, Uggioni G, and Hood DA.** Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle. *Aging
933 (Albany NY)* 1: 818-830, 2009.

934 123. **Lofrumento NE, Marzulli D, Cafagno L, La Piana G, and Cipriani T.** Oxidation and reduction
935 of exogenous cytochrome c by the activity of the respiratory chain. *Arch Biochem Biophys* 288: 293-
936 301, 1991.

937 124. **Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J,
938 Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT,
939 Haigis M, Guarente LP, Farese RV, Jr., Weissman S, Verdin E, and Schwer B.** Mammalian
940 Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. *Mol Cell Biol* 27: 8807-
941 8814, 2007.

942 125. **Lombard DB, Tishkoff DX, and Bao J.** Mitochondrial sirtuins in the regulation of mitochondrial
943 activity and metabolic adaptation. *Handb Exp Pharmacol* 206: 163-188, 2011.

944 126. **Ma K, Chan JK, Zhu G, and Wu Z.** Myocyte enhancer factor 2 acetylation by p300 enhances its
945 DNA binding activity, transcriptional activity, and myogenic differentiation. *Mol Cell Biol* 25:
946 3575-3582, 2005.

947 127. **Marfe G, Tafani M, Pucci B, Di Stefano C, Indelicato M, Andreoli A, Russo MA, Sinibaldi-
948 Salimei P, and Manzi V.** The effect of marathon on mRNA expression of anti-apoptotic and pro-
949 apoptotic proteins and sirtuins family in male recreational long-distance runners. *BMC Physiol* 10:
950 7, 2010.

951 128. **Mayevsky A, and Chance B.** Oxidation-reduction states of NADH in vivo: from animals to clinical
952 use. *Mitochondrion* 7: 330-339, 2007.

953 129. **Mayevsky A, and Rogatsky GG.** Mitochondrial function in vivo evaluated by NADH
954 fluorescence: from animal models to human studies. *Am J Physiol Cell Physiol* 292: C615-640,
955 2007.

956 130. **McGee SL, Sparling D, Olson AL, and Hargreaves M.** Exercise increases MEF2- and GEF
957 DNA-binding activity in human skeletal muscle. *FASEB J* 20: 348-349, 2006.

958 131. **Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA, and Olson EN.** Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor.
959 *Nat Med* 8: 1303-1309, 2002.

960 132. **Nemoto S, Fergusson MM, and Finkel T.** SIRT1 functionally interacts with the metabolic
961 regulator and transcriptional coactivator PGC-1{alpha}. *J Biol Chem* 280: 16456-16460, 2005.

962

963

964

965

966 133. **Nikiforov A, Dolle C, Niere M, and Ziegler M.** Pathways and subcellular compartmentation of
967 NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD
968 generation. *J Biol Chem* 286: 21767-21778, 2011.

969 134. **Noriega LG, Feige JN, Canto C, Yamamoto H, Yu J, Herman MA, Mataki C, Kahn BB, and
970 Auwerx J.** CREB and ChREBP oppositely regulate SIRT1 expression in response to energy
971 availability. *EMBO Rep* 12: 1069-1076, 2011.

972 135. **Olgin J, Connell RJ, and Chance B.** Mitochondrial redox changes during rest-work transition in
973 dog gracilis muscle. *Adv Exp Med Biol* 200: 545-554, 1986.

974 136. **Onyango P, Celic I, McCaffery JM, Boeke JD, and Feinberg AP.** SIRT3, a human SIR2
975 homologue, is an NAD-dependent deacetylase localized to mitochondria. *Proc Natl Acad Sci U S A*
976 99: 13653-13658, 2002.

977 137. **Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward JL, 3rd, Goodyear LJ, and
978 Tong Q.** Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal
979 muscle. *Aging (Albany NY)* 1: 771-783, 2009.

980 138. **Palmieri F.** The mitochondrial transporter family (SLC25): physiological and pathological
981 implications. *Pflugers Arch* 447: 689-709, 2004.

982 139. **Patterson GH, Knobel SM, Arkhammar P, Thastrup O, and Piston DW.** Separation of the
983 glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells.
984 *Proc Natl Acad Sci U S A* 97: 5203-5207, 2000.

985 140. **Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, and Tschoop MH.** Sirt1 protects against
986 high-fat diet-induced metabolic damage. *Proc Natl Acad Sci U S A* 105: 9793-9798, 2008.

987 141. **Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ, and Grant SM.** Progressive effect
988 of endurance training on metabolic adaptations in working skeletal muscle. *Am J Physiol* 270: E265-
989 272, 1996.

990 142. **Philp A, Chen A, Lan D, Meyer GA, Murphy AN, Knapp AE, Olfert IM, McCurdy CE,
991 Marcotte GR, Hogan MC, Baar K, and Schenk S.** Sirtuin 1 (SIRT1) Deacetylase Activity Is Not
992 Required for Mitochondrial Biogenesis or Peroxisome Proliferator-activated Receptor- $\{\gamma\}$
993 Coactivator-1 $\{\alpha\}$ (PGC-1 $\{\alpha\}$) Deacetylation following Endurance Exercise. *J Biol Chem*
994 286: 30561-30570, 2011.

995 143. **Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F, Romano G, Moneti G,
996 Moroni F, and Chiarugi A.** Inhibition of nicotinamide phosphoribosyltransferase: cellular
997 bioenergetics reveals a mitochondrial insensitive NAD pool. *J Biol Chem* 285: 34106-34114, 2010.

998 144. **Pollak N, Dolle C, and Ziegler M.** The power to reduce: pyridine nucleotides--small molecules
999 with a multitude of functions. *Biochem J* 402: 205-218, 2007.

1000 145. **Putman CT, Jones NL, Hultman E, Hollidge-Horvat MG, Bonen A, McConachie DR, and
1001 Heigenhauser GJ.** Effects of short-term submaximal training in humans on muscle metabolism in
1002 exercise. *Am J Physiol* 275: E132-139, 1998.

1003 146. **Ragland TE, and Hackett DP.** Compartmentation of Nicotinamide Dinucleotide Dehydrogenases
1004 and Transhydrogenases in Nonphotosynthetic Plant Tissues. *Arch Biochem Biophys* 108: 479-489,
1005 1964.

1006 147. **Rasmussen HN, van Hall G, and Rasmussen UF.** Lactate dehydrogenase is not a mitochondrial
1007 enzyme in human and mouse vastus lateralis muscle. *J Physiol* 541: 575-580, 2002.

1008 148. **Revollo JR, Grimm AA, and Imai S.** The NAD biosynthesis pathway mediated by nicotinamide
1009 phosphoribosyltransferase regulates Sir2 activity in mammalian cells. *J Biol Chem* 279: 50754-
1010 50763, 2004.

1011 149. **Riquelme C, Barthel KK, and Liu X.** SUMO-1 modification of MEF2A regulates its
1012 transcriptional activity. *J Cell Mol Med* 10: 132-144, 2006.

1013 150. **Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, and Puigserver P.** Nutrient control of
1014 glucose homeostasis through a complex of PGC-1alpha and SIRT1. *Nature* 434: 113-118, 2005.

1015 151. **Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, and Andris F.** Pre-B-cell colony-
1016 enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide
1017 phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. *Eur J Immunol* 32:
1018 3225-3234, 2002.

1019 152. **Rowan AN, and Newsholme EA.** Changes in the contents of adenine nucleotides and intermediates
1020 of glycolysis and the citric acid cycle in flight muscle of the locust upon flight and their relationship
1021 to the control of the cycle. *Biochem J* 178: 209-216, 1979.

1022 153. **Sacktor B, and Wormser-Shavit E.** Regulation of metabolism in working muscle in vivo. I.
1023 Concentrations of some glycolytic, tricarboxylic acid cycle, and amino acid intermediates in insect
1024 flight muscle during flight. *J Biol Chem* 241: 624-631, 1966.

1025 154. **Sahlin K.** NADH and NADPH in human skeletal muscle at rest and during ischaemia. *Clin Physiol*
1026 3: 477-485, 1983.

1027 155. **Sahlin K.** NADH in human skeletal muscle during short-term intense exercise. *Pflugers Arch* 403:
1028 193-196, 1985.

1029 156. **Sahlin K, Fernstrom M, Svensson M, and Tonkonogi M.** No evidence of an intracellular lactate
1030 shuttle in rat skeletal muscle. *J Physiol* 541: 569-574, 2002.

1031 157. **Sahlin K, Gorski J, and Edstrom L.** Influence of ATP turnover and metabolite changes on IMP
1032 formation and glycolysis in rat skeletal muscle. *Am J Physiol* 259: C409-412, 1990.

1033 158. **Sahlin K, and Katz A.** The content of NADH in rat skeletal muscle at rest and after cyanide
1034 poisoning. *Biochem J* 239: 245-248, 1986.

1035 159. **Sahlin K, Katz A, and Broberg S.** Tricarboxylic acid cycle intermediates in human muscle during
1036 prolonged exercise. *Am J Physiol* 259: C834-841, 1990.

1037 160. **Sahlin K, Katz A, and Henriksson J.** Redox state and lactate accumulation in human skeletal
1038 muscle during dynamic exercise. *Biochem J* 245: 551-556, 1987.

1039 161. **Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W, and
1040 Scoble H.** Phosphorylation regulates SIRT1 function. *PLoS ONE* 3: e4020, 2008.

1041 162. **Sauve AA, and Schramm VL.** Sir2 regulation by nicotinamide results from switching between
1042 base exchange and deacetylation chemistry. *Biochemistry (Mosc)* 42: 9249-9256, 2003.

1043 163. **Schantz PG, and Henriksson J.** Enzyme levels of the NADH shuttle systems: measurements in
1044 isolated muscle fibres from humans of differing physical activity. *Acta Physiol Scand* 129: 505-515,
1045 1987.

1046 164. **Schantz PG, and Kallman M.** NADH shuttle enzymes and cytochrome b5 reductase in human
1047 skeletal muscle: effect of strength training. *J Appl Physiol* 67: 123-127, 1989.

1048 165. **Schantz PG, Sjoberg B, and Svedenhag J.** Malate-aspartate and alpha-glycerophosphate shuttle
1049 enzyme levels in human skeletal muscle: methodological considerations and effect of endurance
1050 training. *Acta Physiol Scand* 128: 397-407, 1986.

1051 166. **Scher MB, Vaquero A, and Reinberg D.** SirT3 is a nuclear NAD⁺-dependent histone deacetylase
1052 that translocates to the mitochondria upon cellular stress. *Genes Dev* 21: 920-928, 2007.

1053 167. **Schiott Thorud HM, Lunde PK, Nicolaysen G, Nicolaysen A, Helge JW, Nilsson GE, and
1054 Sejersted OM.** Muscle dysfunction during exercise of a single skeletal muscle in rats with
1055 congestive heart failure is not associated with reduced muscle blood supply. *Acta Physiol Scand*
1056 181: 173-181, 2004.

1057 168. **Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, and Steegborn C.** Substrates
1058 and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. *J Mol Biol* 382:
1059 790-801, 2008.

1060 169. **Schmidt MT, Smith BC, Jackson MD, and Denu JM.** Coenzyme specificity of Sir2 protein
1061 deacetylases: implications for physiological regulation. *J Biol Chem* 279: 40122-40129, 2004.

1062 170. **Schwer B, North BJ, Frye RA, Ott M, and Verdin E.** The human silent information regulator
1063 (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent
1064 deacetylase. *J Cell Biol* 158: 647-657, 2002.

1065 171. **Schwert GW, and Takenaka Y.** Lactic dehydrogenase. III. Mechanism of the reaction. *J Biol*
1066 *Chem* 223: 157-170, 1956.

1067 172. **Shi T, Wang F, Stieren E, and Tong Q.** SIRT3, a mitochondrial sirtuin deacetylase, regulates
1068 mitochondrial function and thermogenesis in brown adipocytes. *J Biol Chem* 280: 13560-13567,
1069 2005.

1070 173. **Suwa M, Nakano H, Radak Z, and Kumagai S.** Endurance exercise increases the SIRT1 and
1071 peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat
1072 skeletal muscle. *Metabolism* 57: 986-998, 2008.

1073 174. **Toiber D, Sebastian C, and Mostoslavsky R.** Characterization of nuclear sirtuins: molecular
1074 mechanisms and physiological relevance. *Handb Exp Pharmacol* 189-224, 2011.

1075 175. **Vishwasrao HD, Heikal AA, Kasischke KA, and Webb WW.** Conformational dependence of
1076 intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. *J Biol Chem*
1077 280: 25119-25126, 2005.

1078 176. **Wakita M, Nishimura G, and Tamura M.** Some characteristics of the fluorescence lifetime of
1079 reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in
1080 situ. *J Biochem* 118: 1151-1160, 1995.

1081 177. **Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB,**
1082 **Zeng R, Xiong Y, Guan KL, Zhao S, and Zhao GP.** Acetylation of metabolic enzymes
1083 coordinates carbon source utilization and metabolic flux. *Science* 327: 1004-1007, 2010.

1084 178. **Wendt IR, and Chapman JB.** Fluorometric studies of recovery metabolism of rat fast- and slow-
1085 twitch muscles. *Am J Physiol* 230: 1644-1649, 1976.

1086 179. **Williamson DH, Lund P, and Krebs HA.** The redox state of free nicotinamide-adenine
1087 dinucleotide in the cytoplasm and mitochondria of rat liver. *Biochem J* 103: 514-527, 1967.

1088 180. **Winer AD, Schwert GW, and Millar DB.** Lactic dehydrogenase. VI. Fluorimetric measurements
1089 of the complex of enzyme and reduced diphosphopyridine nucleotide. *J Biol Chem* 234: 1149-1154,
1090 1959.

1091 181. **Wolfe BR, Graham TE, and Barclay JK.** Hyperoxia, mitochondrial redox state, and lactate
1092 metabolism of in situ canine muscle. *Am J Physiol* 253: C263-268, 1987.

1093 182. **Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC,**
1094 **Bohr VA, Rosenzweig A, de Cabo R, Sauve AA, and Sinclair DA.** Nutrient-sensitive
1095 mitochondrial NAD⁺ levels dictate cell survival. *Cell* 130: 1095-1107, 2007.

1096 183. **Yang Y, Cimen H, Han MJ, Shi T, Deng JH, Koc H, Palacios OM, Montier L, Bai Y, Tong Q,**
1097 **and Koc EC.** NAD⁺-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by
1098 deacetylation of the ribosomal protein MRPL10. *J Biol Chem* 285: 7417-7429, 2010.

1099 184. **Yoshida Y, Holloway GP, Ljubicic V, Hatta H, Spriet LL, Hood DA, and Bonen A.** Negligible
1100 direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and
1101 white rat skeletal muscle. *J Physiol* 582: 1317-1335, 2007.

1102 185. **Yu J, and Auwerx J.** The role of sirtuins in the control of metabolic homeostasis. *Ann N Y Acad Sci*
1103 1173 Suppl 1: E10-19, 2009.

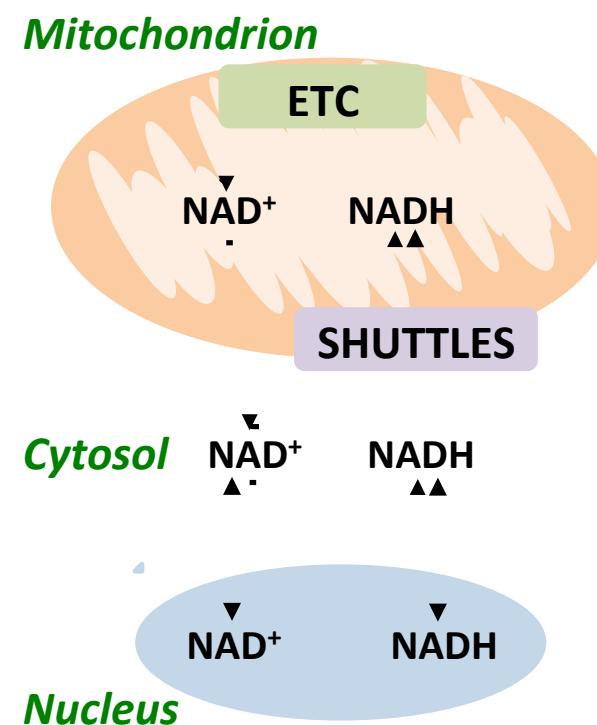
1104 186. **Zhang CL, McKinsey TA, Lu JR, and Olson EN.** Association of COOH-terminal-binding protein
1105 (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional
1106 repression of the MEF2 transcription factor. *J Biol Chem* 276: 35-39, 2001.

1107 187. **Zhang HH, Halbleib M, Ahmad F, Manganiello VC, and Greenberg AS.** Tumor necrosis factor-
1108 alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular
1109 signal-related kinase and elevation of intracellular cAMP. *Diabetes* 51: 2929-2935, 2002.

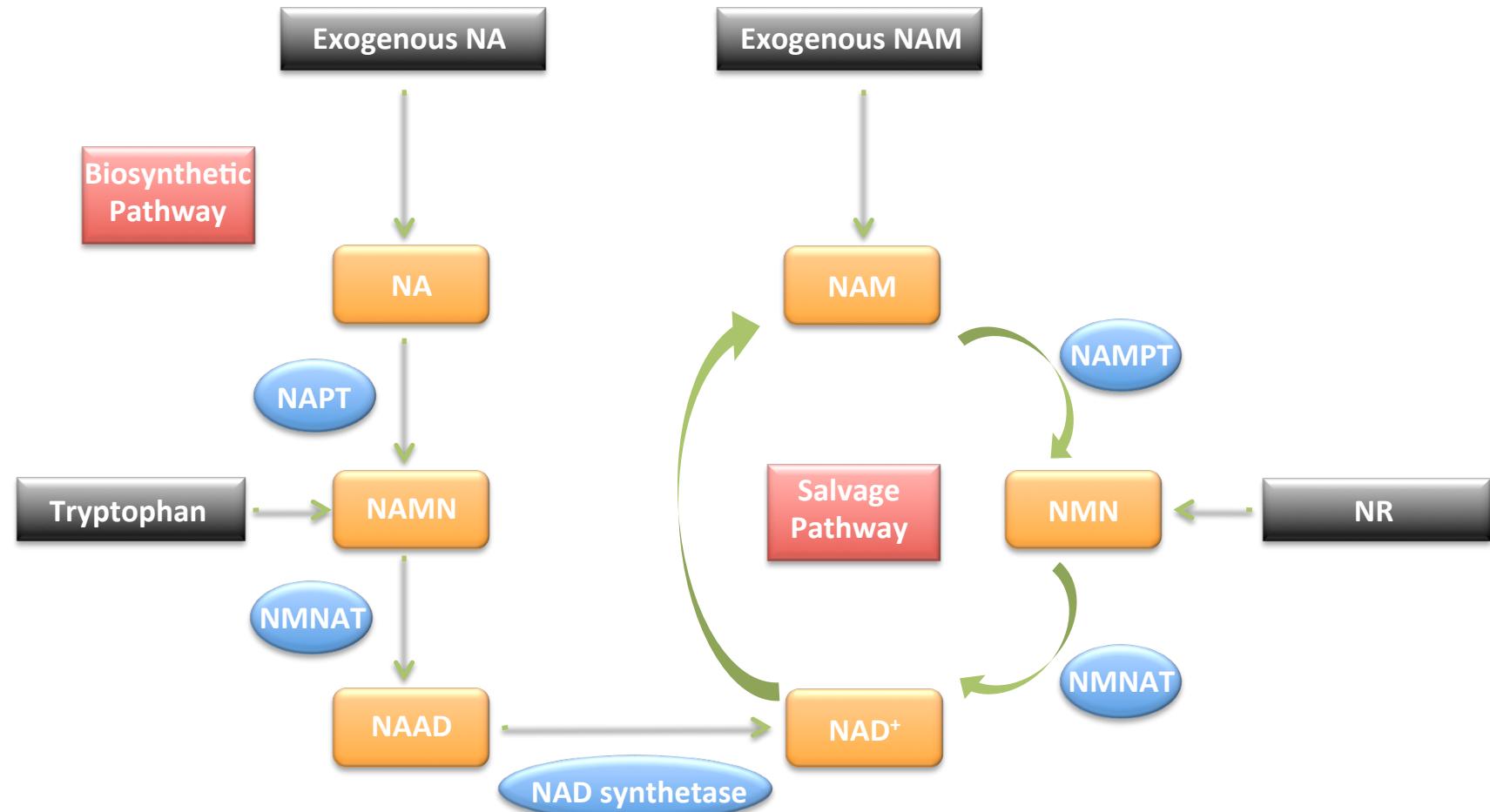
1110 188. **Zhang Q, Piston DW, and Goodman RH.** Regulation of corepressor function by nuclear NADH.
1111 *Science* 295: 1895-1897, 2002.

1112 189. **Zhang Q, Wang SY, Fleuriel C, Leprince D, Rocheleau JV, Piston DW, and Goodman RH.**
1113 Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. *Proc Natl Acad*
1114 *Sci USA* 104: 829-833, 2007.

1115 190. **Zhang T, and Kraus WL.** SIRT1-dependent regulation of chromatin and transcription: linking
1116 NAD⁺ metabolism and signaling to the control of cellular functions. *Biochim Biophys Acta* 1804:
1117 1666-1675, 2010.


1118 191. **Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An
1119 W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, and Guan KL.** Regulation of cellular metabolism by protein lysine acetylation. *Science* 327: 1000-1004, 2010.

1120 192. **Zhao X, Sternsdorf T, Bolger TA, Evans RM, and Yao TP.** Regulation of MEF2 by histone
1121 deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. *Mol Cell Biol* 25: 8456-8464,
1122 2005.


1123 193. **Zhong L, and Mostoslavsky R.** Fine tuning our cellular factories: sirtuins in mitochondrial biology.
1124 *Cell Metab* 13: 621-626, 2011.

1125
1126
1127
1128

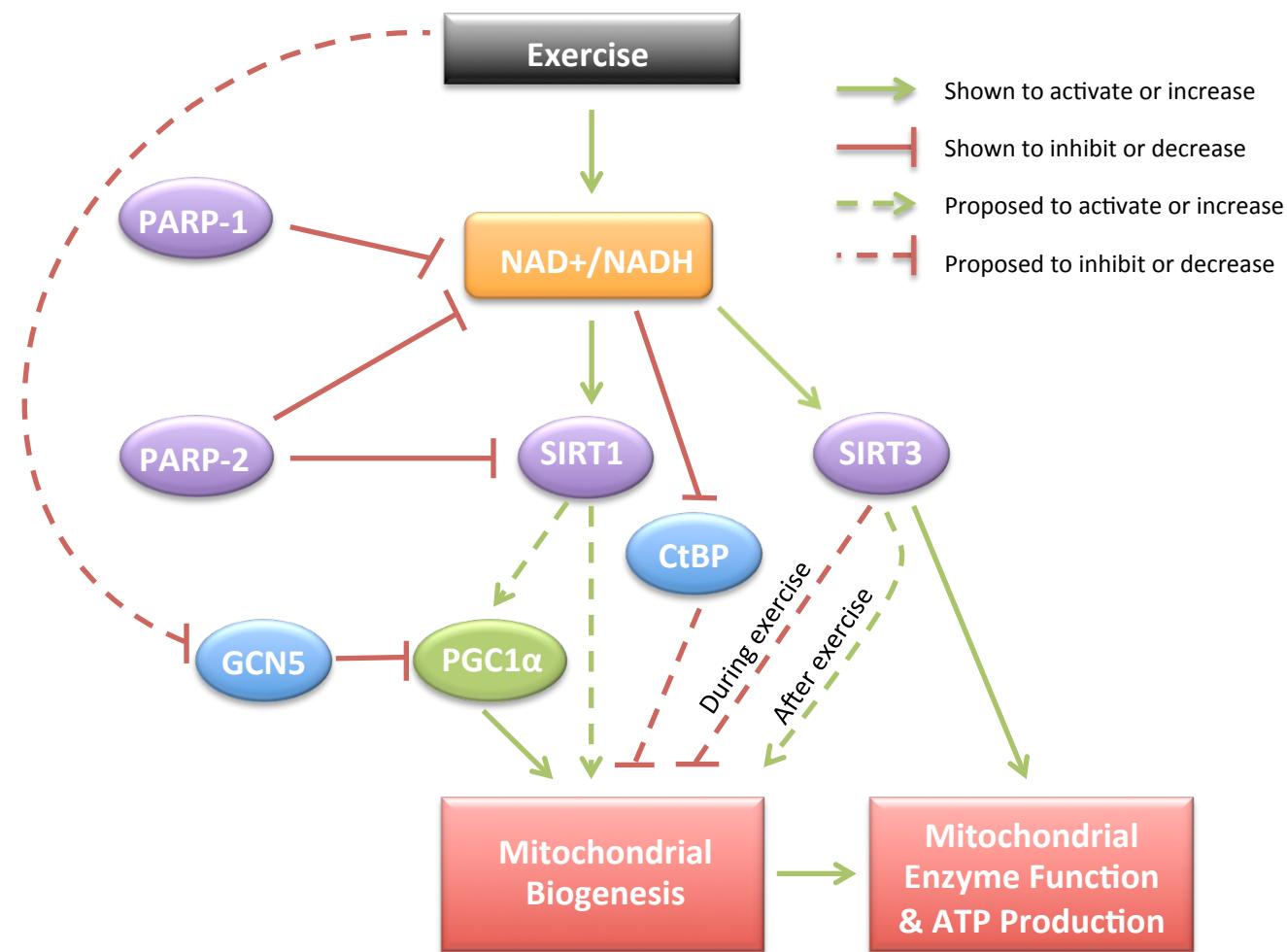

Figure 1

Figure 2

Figure 3

