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Abstract 18 

The pyridine nucleotides, NAD+ and NADH, are coenzymes that provide oxidoreductive power for the 19 

generation of ATP by mitochondria. In skeletal muscle, exercise perturbs the levels of NAD+, NADH and 20 

consequently, the NAD+/NADH ratio, and initial research in this area focused on the contribution of 21 

redox control to ATP production. More recently, numerous signaling pathways that are sensitive to 22 

perturbations in NAD+(H) have come to the fore, as has an appreciation for the potential importance of 23 

compartmentation of NAD+(H) metabolism and its subsequent affects on various signaling pathways. 24 

These pathways, which include the sirtuin (SIRT) proteins, SIRT1 and SIRT3, the poly(ADP-ribose) 25 

polymerase (PARP) proteins, PARP1 and PARP2, and C-terminal binding protein (CtBP), are of 26 

particular interest because they potentially link changes in cellular redox state to both immediate, 27 

metabolic-related changes and transcriptional adaptations to exercise. In this review we discuss what is 28 

known, and not known, about the contribution of NAD+(H) metabolism and these aforementioned 29 

proteins to mitochondrial adaptions to acute and chronic endurance exercise.  30 

31 
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Introduction 32 

Nicotinamide (NAM) adenine dinucleotide (NAD+; initially known as diphosphopyradine nucleotide 33 

[DPN+]), is a ubiquitous cellular coenzyme that was first discovered by Arthur Harden and William 34 

Young, when they identified a heat-labile fraction of cell-free glucose fermentation containing ATP, Mg2+ 35 

and NAD+, which they coined, “cozymase” (78). Our understanding of the role of NAD+ and its reduced 36 

form, NADH, in cellular function and metabolism was subsequently expanded by a “who’s who” of 37 

biochemistry, with researchers such as Hans von Euler-Chelpin, Otto Warburg, Conrad Elvehjem, Arthur 38 

Kornberg, Albert Lehninger and Britton Chance, all making substantial contributions. Four of the 39 

aforementioned researchers were awarded the Nobel Prize, with Harden and von Euler-Chelpin sharing 40 

the Nobel Prize in 1929 for their work on the fermentation of sugar and fermentative enzymes, which 41 

included the identification of the “nucleotide sugar phosphate”, NAD+.  Subsequently, Warbug 42 

demonstrated that NAD+ acted as a carrier of hydrogen and transferred it from one molecule to another, 43 

which was key to understanding the metabolic function of NAD+ (128).  Ultimately, it was work by 44 

Freidkin and Lehninger (55) that showed that NADH was an integral component of ATP production via 45 

oxidative phosphorylation. Thus, for many years the primary cellular function of NAD+ was considered to 46 

be its ability to harness energy from glucose, fatty acids, and amino acids in pathways such as glycolysis, 47 

β-oxidation, and the citric acid cycle. 48 

In recent years, however, the importance of NAD+ as a central signaling molecule and substrate 49 

that can impact numerous fundamental biological processes has come to the fore. Indeed, a remarkable 50 

number of regulatory pathways that utilize NAD+ in signaling reactions have been identified, and these 51 

cover broad aspects of cellular homeostasis including functions in energy metabolism, lifespan regulation, 52 

DNA repair, apoptosis and telomere maintenance (11, 12, 84, 97, 190). Thus, while the tissue 53 

NAD+/NADH ratio was once thought to be ‘simply’ a balance of the redox state, the complexity of NAD+ 54 

metabolism has evolved considerably with the discovery of highly integrated networks of NAD+ 55 

consuming pathways and NAD+ biosynthetic and salvage pathways (11, 12, 84, 97, 128, 144, 190). Part 56 



 4

of the reason for the renaissance of NAD+ has been the discovery of NAD+-consuming enzymes, 57 

particularly, sirtuins (SIRT). SIRT1 is the most well-described of the seven mammalian sirtuins, and 58 

based on its dependence for NAD+ as a substrate (and therefore its sensitivity to perturbations in NAD+), 59 

SIRT1 has been put forth as a key regulator of acute and chronic exercise-mediated mitochondrial 60 

adaptations in skeletal muscle (40, 70, 72, 76, 174, 185, 193). In addition, SIRT3 and poly-ADP-ribose 61 

(PAR) polymerases (PARPs), which also use NAD+ as a substrate, have been proposed as important 62 

regulators of mitochondrial function and/or biogenesis (40, 76, 125, 174, 185, 193). In this review our aim 63 

is to provide an overview of NAD+ metabolism in skeletal muscle and the changes that occur in NAD+, 64 

NADH, and the NAD+/NADH ratio in response to acute and chronic endurance exercise. Our intention is 65 

not to discuss the impact of the redox state and NAD+/NADH ratio on cellular bioenergetics and substrate 66 

utilization, which is covered in highly informative reviews by others (9, 26, 106, 109, 110). Rather, our 67 

goal is to discuss the changes in pyridine nucleotide redox state that occur with exercise in the context of 68 

what we know and do not know about the effects of SIRT1, SIRT3, the PARPs and carboxyl-terminal 69 

binding protein (CtBP), on mitochondrial adaptations to exercise in skeletal muscle. It is of course 70 

difficult to extrapolate the findings from one cell line or tissue type to another, and we acknowledge that 71 

we do not discuss many important studies that have contributed to our understanding of NAD+ 72 

metabolism and SIRT1, SIRT3 and PARP biology in cell lines and tissue types other than skeletal muscle 73 

and muscle cell lines. For a more general and encompassing discussion on NAD+ metabolism and its 74 

potential clinical implications, readers are encouraged to read some excellent and comprehensive reviews 75 

(see, (11, 12, 84, 97, 128, 144, 190)). 76 

 77 

Where in the cell is NAD+?  78 

It is broadly accepted that NAD+ is primarily found in three distinct cellular pools, 1) the 79 

cytosolic, 2) the mitochondrial, and 3) the nuclear pools. A general overview of the compartmentation of 80 

NAD+ and NADH is provided in Figure 1, and provides a point of reference for the ensuing discussion on 81 
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NAD+(H) compartmentation and their movement into the mitochondria and nucleus. Initial studies used 82 

differential centrifugation methods, cell disruption methods, and compounds, to modulate mitochondrial 83 

NAD+(H) metabolism in order to determine NAD+(H) location. More recently, the ‘compartmentation’ of 84 

NAD+, which was originally suggested by Ragland and Hackett (146), has been extrapolated from the 85 

localization of enzymes in the NAD+ consuming, biosynthetic, and salvage pathways, and the use of 86 

innovative molecular biology techniques (11, 12, 84, 97, 144, 190). Thus, Dölle et al. (43) used a novel 87 

PAR Assisted Protein Localization AssaY (PARAPLAY) in HeLa S3 cells, in which they targeted the 88 

catalytic domain of PARP1 (which consumes NAD+) to various cellular compartments. The idea behind 89 

this method is that if NAD+ is present in the compartment to which PARP1 is targeted, then PAR will 90 

accumulate and can be detected by immunocytochemistry (43).  Using PARAPLAY, NAD+ was found in 91 

the mitochondria (specifically the matrix but not intermembrane space) and peroxisomes, and surprisingly 92 

to the endoplasmic reticulum (ER) and Gogli complex (43, 112). Cytosolic NAD+ was not detected in this 93 

study, most likely due to the fact that PAR glycohydrolase (PARG), which consumes PAR, is most 94 

abundant in the cytosol.  Little is known about the role of NAD+ and NADH in regulating Golgi complex 95 

and ER function, and certainly its function in skeletal muscle is unknown. Furthermore, surprisingly very 96 

little is known about nuclear NAD+ levels in general, and to our knowledge nuclear NAD+(H) levels have 97 

not been measured in skeletal muscle. Overall, the free cytosolic and nuclear NAD+(H) compartments are 98 

traditionally thought to be in equilibrium, with NAD+(H) being able to freely pass through pore 99 

complexes in the nuclear membrane (46, 98-103, 187, 190). In Cos7 cells the free nuclear NAD+ 100 

concentration is estimated to be ~10-100 μM (53, 188), which is comparable to the estimations for the 101 

cytosol (~150 μM) of muscle (42, 119). Thus, in response to exercise, it would be expected that the 102 

pyridine redox state in the nucleus reflect changes that occur in the cytosol.  The relevance of nuclear 103 

NAD+(H) to adaptations to exercise will be covered when discussing SIRT1, PARPs, and C-terminal 104 

binding protein (CtBP).  105 

 106 
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NAD+ and NADH concentrations in skeletal muscle at rest.  107 

While PARAPLAY provides qualitative insight into the location of NAD+, determining the 108 

precise concentration of NAD+ in various compartments remains challenging. Typically, absolute 109 

concentrations of NAD+ and NADH have been calculated using biochemical and extraction methods, 110 

whilst the metabolite indicator method (MIM) has be used to extrapolate the ‘free’ cytoplasmic and 111 

mitochondrial NAD+/NADH ratio by measuring the concentrations of specific cytoplasmic and 112 

mitochondrial redox couples. The MIM carries a number of assumptions, such as the selected 113 

dehydrogenase reaction being a near-equilibrium reaction and that the reaction occurs in one cellular 114 

compartment, at pH 7.0 (63, 107, 179). In skeletal muscle, the most common application of the MIM is 115 

calculation of the cytosolic free NAD+/NADH ratio, via measurement of lactate and pyruvate levels, 116 

based on the lactate dehydrogenase (LDH) reaction (107, 179). The mitochondrial free NAD+/NADH 117 

ratio, can be determined by measuring the concentrations of glutamate, α-ketoglutarate ,and NH3, and is 118 

based on the glutamate dehydrogenase (GDH) reaction (107, 179), although GDH activity is low in 119 

skeletal muscle (10, 179).  120 

In resting human muscle, total NAD+ and NADH concentrations are estimated to be ~1.5-1.9 and 121 

~0.08-0.20 mmol/kg dry weight (dw) muscle, respectively (62, 80, 93, 154, 155, 159, 160). Based on the 122 

approximate volumes of distributions of mitochondria, the extra-mitochondrial space (i.e., cytosol) and 123 

their mass fractions (i.e., % of cell volume: cytosol = 90% and mitochondria = 10% (50)), Cabrera and 124 

colleagues (42, 119) estimate the total, mitochondrial, and cytosolic compartment concentrations in 125 

skeletal muscle for NAD+ and NADH, respectively, to be approximately- Total: 0.45 and 0.05 mmol/kg 126 

cell wet weight [ww]; Cytosol: 0.15 and 0.00028 mmol/kg cytosolic ww; Mitochondria: 3.15 and 0.5 127 

mmol/kg mitochondrial ww (Note: to convert to dw muscle, multiply by ~4.2 (145)). Thus, the 128 

NAD+/NADH ratio in resting skeletal muscle is estimated to be much higher in the cytosol (~540) as 129 

compared to mitochondria (~6.3), and overall, greater than ~95% of cellular NADH is estimated to be in 130 

the mitochondrial compartment. The nucleus comprises ~1% of muscle cell volume (50), and considering 131 
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that the nuclear-to-cytosolic NAD+(H) levels are considered to be in equilibrium, the nuclear NAD+ and 132 

NADH concentrations would be estimated to be comparable to the aforementioned values for the cytosol. 133 

Although higher than estimates in other cells (NAD+: ~10-100 μM; NADH: ~130 nM (53, 188), 134 

considering the high density of mitochondria and metabolic turnover of skeletal muscle, these 135 

approximations seem reasonable.   136 

Relevant to the redox state and covalent activation of NAD+- or NADH-dependent signaling 137 

proteins is the fact that most cellular NAD+ and NADH is bound to proteins (13, 54, 171, 176, 179, 180). 138 

This makes it quantitatively difficult to determine the free NAD+ and NADH levels (and the free 139 

NAD+/NADH ratio), which ultimately represent the metabolically active forms of these coenzymes. 140 

Measurement of free NAD+(H) levels is further complicated by the fact that NADH binds proteins more 141 

firmly than NAD+ (54, 171, 180). It should be noted, however, that studies in rat hippocampus using time-142 

resolved fluorescence and anisotropy decay suggest the ratio of free-to-bound NADH to be ~0.78 (175).  143 

Whether this is the case in skeletal muscle is unknown. Based on the MIM for LDH, in resting skeletal 144 

muscle the free cytosolic NADH level is estimated to be ~0.5-1.5% of total cytosolic NADH (158).  145 

In skeletal muscle, NAD+ levels are highest in the mitochondria (42, 119), thus by extension one 146 

might infer that oxidative skeletal muscle (with a greater abundance of mitochondria) would have overall 147 

higher NAD+ levels compared to glycolytic muscle. Supporting this notion, in human resting muscle, 148 

NAD+ concentration is positively correlated with the % of slow twitch fibers (62). However, in rat soleus 149 

and extensor digitorum longus (EDL) muscles, no differences in NAD+ levels were noted, although 150 

differences in the degree of reduction of the NAD+ couple were found (i.e., higher NAD+ levels in soleus 151 

vs. EDL mitochondria), which may be indicative of the differing metabolic characteristics of these 152 

muscles (158).  153 

 154 

Changes in NAD+ and NADH concentrations and the NAD+/NADH ratio in muscle during exercise.  155 

 Animal studies. Early studies by Britton Chance and colleagues (27, 28, 33) and others (61, 87, 156 
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88), typically in amphibian muscle, used fluorescence-based methods (128, 129) to demonstrate that 157 

NADH levels decrease (and thus NAD+ levels increase) during muscle contraction. With respect to 158 

mammalian muscle, Jobsis and Stainsby (89) used the same technique to study NADH oxidation in the 159 

gastrocnemius-plantaris and gracilis muscle groups in dogs, and found that low-intensity (5 Hz) and 160 

tetanic contractions increased NAD+ levels. By manipulating the ability of mitochondria to oxidize 161 

NADH, they concluded that the increase in tissue NAD+ primarily occurs inside mitochondria (89). In 162 

contrast to studies that show that NAD+ increase with contraction, Duboc et al. reported an increase in 163 

NADH during tetanic contractions in soleus and EDL muscles of the rat (44).  A limitation of the 164 

fluorometric technique used in these studies is that it does not provide quantitative assessment of NAD+, 165 

NADH, and the NAD+/NADH ratio. Addressing this limitation, Edington and colleagues (48) measured 166 

NAD+ biochemically, and estimated the NAD+/NADH ratio using the MIM method (using the 167 

lactate/pyruvate and  β-hydroxybutyrate/acetoacetate ratios). Thus, in untrained and trained rats, cytosolic 168 

and mitochondrial NAD+ concentrations, as well as the NAD+/NADH ratio, were increased by low-169 

intensity muscle contraction of the gastrocnemius-plantaris muscles. As one would expect, the increase in 170 

the mitochondrial NAD+/NADH ratio during the same absolute exercise was lower in trained rats (47, 171 

48). In the soleus and EDL muscles of the rat, twitch or tetanic contractions increased NAD+ levels (as 172 

measured by decreased NADH fluorescence) during contraction (178).  Supporting this notion, studies in 173 

insect and canine muscle using the MIM method (based on the glutamate dehydrogenase [GDH] reaction) 174 

found that the mitochondrial NAD+/NADH ratio is increased during exercise at a variety of exercise 175 

intensities (34, 135, 152, 153, 181). Chronic low-frequency (10 Hz) stimulation of the rat tibialis anterior 176 

muscle also increased NAD+ levels after 15 min of contraction, and the NAD+/NADH ratio was 177 

significantly increased for up to 24 h of stimulation (65). In mice, swimming exercise increased muscle 178 

NAD+ levels (23), and in rats endurance exercise training resulted in a sustained (as samples were 179 

measured 2 days after the last exercise bout) increase in NAD+ levels in gastrocnemius muscle of young 180 

and old rats (104). However, an increase in NAD+ and the NAD+/NADH ratio during exercise is not a 181 
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universal finding. In one study NADH increased and the NAD+/NADH ratio decreased during flight in 182 

insect muscle (77), whilst in mouse muscle no change in NAD+ levels at the end of running exercise was 183 

found, though an increase 3 h after exercise was noted (22). In addition, in electrically-stimulated canine 184 

muscle (gastrocnemius-plantaris muscles), cytoplasmic NAD+ levels were reduced during exercise (64), 185 

whilst in electrically-stimulated (5 Hz) soleus muscle, no change in NAD+ levels was found (167).  186 

Human studies. In human muscle, the effects of exercise on NAD+ levels and the NAD/NADH ratio are 187 

largely the opposite of those found in animal studies. Muscle NAD+ levels were decreased when 188 

exercising at 65% and 100% of maximal oxygen uptake (VO2max), and while increased muscle water 189 

accounted for ~73% of this decrease, NAD+ levels were still reduced when assessed on a dry weight basis 190 

(62).  The first studies to quantitatively measure both NAD+ and NADH levels in human muscle at rest 191 

and during exercise were conducted by Dr. Kent Sahlin and colleagues (80, 93, 154, 155, 160). During 192 

maximal exercise and submaximal isometric contractions NADH increased ~140% above resting levels, 193 

whereas there was no significant change in NAD+ levels (80, 155).  In contrast, no change in total muscle 194 

NADH concentration was noted throughout exercise at 75% VO2max (157), whilst NADH and the 195 

cytosolic NAD+/NADH ratio were decreased during exercise at 50% VO2max (93). Similar to this, a 196 

number of studies found that the cytosolic NAD+/NADH ratio is reduced during exercise (66, 141), 197 

although the magnitude of reduction is lower after exercise training (141). Exercise intensity appears to be 198 

an important contributor to the differences in measured NAD+(H) and NAD+/NADH ratio during exercise 199 

in animal vs. human studies. For example, NADH decreased (and the cytosolic NAD+/NADH ratio was 200 

unchanged) from resting values during exercise at 40% VO2max, but both NAD+ and the cytosolic 201 

NAD+/NADH ratio were increased above resting values at 75% and 100% VO2max (160). Moreover, a 202 

series of in silico studies (that distill the NAD+ and NADH information from some of the aforementioned 203 

papers) predict that whole tissue, cytosolic, and mitochondrial NAD+/NADH ratios are reduced during 204 

exercise at 60% VO2max (119), but are increased during exercise at a lower intensity (65 watts) (21, 41). 205 

Interestingly, estimation of the mitochondrial redox state during exercise in human muscle using the MIM 206 
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method, estimated that the free NAD+/NADH ratio is significantly increased at 75% and 100% VO2max 207 

(63). 208 

Summary. There are conflicting results in both animal and human studies as to whether or not 209 

exercise increases or decreases NAD+, NADH and the NAD+/NADH ratio. There are many reasons that 210 

may underlie these differences including training state, intensity of contraction, duration of exercise, time 211 

point of measurement during exercise, the analytical technique used to measure NAD+(H) and the 212 

NAD+/NADH ratio (e.g., fluorometric, biochemical, MIM method), and the compartment that was 213 

measured (whole tissue, mitochondrial or cytosolic). From a more ‘big picture’ perspective, because the 214 

majority of change in muscle NADH levels with exercise is presumed to occur within the mitochondrial 215 

compartment, a large increase in NADH during exercise would correspond to a decreased redox potential, 216 

which could be inhibitory on mitochondrial oxidative enzymes and limit TCA cycle flux (63). The 217 

simplest explanation for this would be a ‘backing up’ of the electron transport chain (ETC) due to 218 

limitations in the capacity to oxidize NADH. This is supported by the findings that elevated total muscle 219 

NADH concentrations decrease to resting levels during recovery from high intensity exercise (80, 155). 220 

Alternatively, an increase in the mitochondrial redox potential would be expected to facilitate generation 221 

of NADH by increasing the availability of NAD+ for pyruvate dehydrogenase and the various 222 

dehydrogenase reactions of the TCA cycle and β-oxidation (63). In muscle, measurement and 223 

extrapolation of NAD+(H) metabolism during exercise is further complicated by the fact that muscle 224 

comprises subsarcolemmal and intermyofibrillar mitochondria, which are known to have different 225 

capacities for substrate oxidation (32, 108, 184). Whether NAD+(H) kinetics during exercise is different 226 

within these mitochondrial populations is unknown, and it is likely that fluorometric studies of NAD+(H) 227 

metabolism with contraction reflect changes in the subsarcolemmal compartment and not the ‘whole’ 228 

muscle. Considering these results and unresolved questions as a whole, it is clear that a major gap in our 229 

understanding of NAD+(H) metabolism during exercise is that no study has directly measured the free 230 

NAD+ and NADH levels or the subcellular localization and compartmentation of NAD+(H) metabolism. 231 
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Such analysis is clearly very technically challenging and will likely require the use of advanced 232 

techniques such as HPLC and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry in 233 

combination with tissue fractionation methods or two-photon excitation microscopy (139, 162, 182, 188). 234 

Ultimately, measuring the free NAD+(H) levels is what is most important when it comes to regulation of 235 

proteins and pathways responsive to perturbations in NAD+(H), such as SIRT1, SIRT3, and PARPs, and 236 

subsequent effects on cellular function and metabolism. 237 

 238 

Shuttling of NADH into the mitochondria.  239 

The inner mitochondrial membrane is impermeable to NAD+ and NADH (115, 143), and shuttles are 240 

required to transport NADH from the cytosol to the mitochondria (138). This is accomplished via the 241 

exchange of metabolites that are reduced in the cytosol and oxidized in the mitochondria (138). In skeletal 242 

muscle these are the glycerol-3-phosphate (G3P; or α-glycerophosphate) shuttle and the malate-aspartate 243 

(M-A) shuttle (83, 138, 163-165). Considering that exercise training enhances the capacity of muscle to 244 

oxidize NADH, the activities of enzymes of the M-A shuttle are higher in trained vs. untrained muscle 245 

(29, 83, 163, 165), as well as in oxidative vs. glycolytic muscle (29, 163). Moreover, muscle MDH 246 

activity decreases with detraining (29). In contrast, the activity of G3P dehydrogenase, a key enzyme in 247 

the G3P shuttle, is not increased by exercise training (163, 165), but is higher in glycolytic vs. oxidative 248 

muscle (83, 163). Reducing equivalents may also be transferred to the mitochondria via the lactate shuttle, 249 

which is explained in detail elsewhere (18, 60). Briefly, the lactate shuttle hypothesis posits that cytosolic 250 

pyruvate is primarily converted to lactate, which is then transported via facilitated diffusion into the 251 

mitochondria, where it is converted back to pyruvate by intramitochondrial LDH (18, 19, 60). Therefore, 252 

the lactate shuttle, via the LDH reaction, would allow for transfer of NADH from the cytosol to 253 

mitochondria in a manner similar to the G3P and M-A shuttles. It should be noted that as debated by 254 

others, there is significant controversy over the presence of LDH within pure mitochondria and the 255 

existence of a lactate shuttle in skeletal muscle mitochondria (16, 20, 59, 147, 156, 184). In recent years 256 
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the NADH/cytochrome c (cyto c) electron transport shuttle has also been described, in which the direct 257 

transfer of electrons from cytosolic NADH to molecular oxygen inside the mitochondrial matrix is 258 

achieved at respiratory contact sites (i.e., where both mitochondrial membranes are in contact) (1, 123). 259 

The transfer capacity of the NADH/cyto c is reported to be equivalent to the malate-aspartate shuttle (1, 260 

123). However, whether this system is active in skeletal muscle mitochondria, or is regulated by exercise 261 

training, is unknown.   262 

 263 

Mitochondrial adaptations to endurance exercise: Role of SIRT1 and SIRT3  264 

Sirtuins are a family of class III deacetylases that possess NAD+-dependent deacetylase and mono-265 

ADP-ribosyltransferase activities (40, 76, 125, 174, 185, 193). Over the past decade there has been an 266 

explosion of research on the therapeutic potential of treating various diseases via activation of sirtuins, 267 

especially SIRT1, and more recently, SIRT3 (40, 76, 125, 174, 185, 193). In fact, a search on PubMed 268 

reveals that in just the past 12 years some 300 reviews have been published on sirtuins alone, with the 269 

majority of these focusing on SIRT1. The requirement of NAD+ for the deacetylase function of SIRT1 270 

and SIRT3 provides a fundamental link between the activity of these proteins and perturbations in 271 

NAD+(H) status during exercise. Accordingly, our focus here is to discuss the role of SIRT1 and SIRT3 in 272 

regulating the effects of acute and chronic exercise on mitochondrial function and biogenesis. A more 273 

general overview of sirtuin biology and function can be found elsewhere (40, 76, 125, 174, 185, 193).   274 

SIRT1. SIRT1 is the most studied of the mammalian sirtuins and is mainly found in the nucleus, 275 

although it also has cytosolic targets (40, 76, 174, 185, 193). Of particular importance to the focus of this 276 

review was the discovery that SIRT1 deacetylates and positively regulates the activity of PGC1α, a 277 

master regulator of mitochondrial biogenesis (5, 57, 132, 150).  Thus, SIRT1 has also been put forth as a 278 

principal regulator of mitochondrial biogenesis via its ability to regulate PGC1α function.  Following this, 279 

a number of studies have noted that SIRT1 gene (31, 45, 127) or protein (68, 117, 118, 121, 122, 173) 280 

levels increase in skeletal muscle in response to acute or chronic exercise, in parallel with upregulation of 281 
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mitochondrial content.  However, other studies have found either no effect (25, 75) or a decrease (73-75, 282 

104) in SIRT1 protein in skeletal muscle with chronic muscle contraction (via electrical stimulation) or 283 

endurance exercise. Complimenting these latter studies, skeletal muscle SIRT1 protein content does not 284 

scale with muscle oxidative capacity or PGC1α abundance (73-75). Moreover, when SIRT1 was 285 

overexpressed in skeletal muscle, mitochondrial function and abundance (as measured by electron 286 

transport chain [ETC] and mitochondrial transcription factor A [mtTFA] protein abundance, citrate 287 

synthase activity), gene expression of mitochondrial proteins, and PGC1α gene and/or protein expression 288 

was not changed (56, 140) or even decreased (74). In C2C12 myotubes, overexpression of SIRT1 289 

increased PGC1α gene expression and PGC1α promoter activity (5), although effects on mitochondrial 290 

biogenesis and function were not assessed. When SIRT1 protein (15, 22, 56, 57) or deacetylase activity 291 

(142) is knocked out in skeletal muscle of mice or C2C12 myotubes there is no reduction in mitochondrial 292 

function (e.g., O2 consumption, proton conductance, activity of electron transport chain [ETC] enzymes or 293 

citrate synthase), number (as measured by mtDNA:nDNA ratio, ETC protein abundance), PGC1α gene 294 

and/or protein expression, or the gene expression of mitochondrial proteins.  In contrast, PGC1α gene 295 

expression is lower in the TA, gastrocnemius, and soleus of SIRT1-null mice, although whether this 296 

reduction impacts PGC1α protein expression, mitochondrial biogenesis, or mitochondrial function was 297 

not assessed (5). Moreover, in studies in C2C12 and mouse primary myotubes, SIRT1 knockdown 298 

downregulates mitochondrial and fatty acid oxidation gene expression, fatty acid oxidation, and citrate 299 

synthase (CS) activity (22, 57), whilst SIRT1 overexpression increases PGC1α expression, transcriptional 300 

activity, and mitochondrial genes (5, 57).  Despite reductions in PGC1α gene expression, SIRT1 301 

knockdown in C2C12 myotubes does not reduce PGC1α protein expression (56, 57).  302 

Possible reasons for discrepancies between these different studies have recently been reviewed 303 

(70, 72).  An obvious reason for many of these differences relates to differences between studying SIRT1 304 

biology in vitro using muscle cells (particularly C2C12 muscle myotubes), versus in vivo using rodent 305 



 14

models and adenovirus techniques. Also, the precise definition of mitochondrial biogenesis and function 306 

is different across these studies, with measurement of the gene expression of PGC1α and mitochondrial 307 

genes being a common outcome measure. While measurement of gene expression provides important 308 

information, if positive or negative effects on mitochondrial biogenesis/function are to be concluded, it 309 

will be helpful in future studies to provide a more complete assessment of mitochondrial 310 

biogenesis/function, which may include measurement of mitochondrial protein synthesis and turnover, 311 

submaximal and maximal O2 consumption, ETC enzyme activity and protein abundance, the 312 

mtDNA:nDNA ratio, or mitochondrial morphology by electron microscopy.   313 

To resolve the incongruent findings regarding SIRT1 protein levels and mitochondrial adaptations 314 

to exercise, it has been proposed that SIRT1 activity might be the underlying mediator of these changes. 315 

Nuclear SIRT1 activity is positively correlated with oxidative capacity (i.e., CS activity, complex IV 316 

abundance) across different muscle types and is also associated with the onset of mitochondrial 317 

adaptations to acute exercise, as well as chronic changes in oxidative capacity that occur with exercise 318 

training (75).  Other studies have also reported an increase in SIRT1 activity (as measured by the SIRT1 319 

activity assay or deacetylation of PGC1α) with acute and chronic muscle contraction (22, 23, 25, 73, 75, 320 

104, 117, 118), although no increase was found with voluntary wheel running (despite increased 321 

mitochondrial biogenesis) (25).  Notably, the SIRT1 activity assay uses a peptide substrate that contains 322 

Fluor de Lys, a non-physiological fluorescent moiety, and studies using this assay (25, 73-75, 104), may 323 

be complicated by the fact that measured SIRT1 activity is potentially an artifact of the fluorophore itself 324 

(17, 90). This assay also measures SIRT1 activity in the presence of maximal NAD+, which does not 325 

reflect the NAD+ levels in the muscle. With this in mind, measurement of the acetylation status of 326 

proposed SIRT1 targets (e.g., p53, FOXO, or PGC1α), SIRT1 binding to the promoters of known gene 327 

targets, or measurement of the gene expression of SIRT1 target genes would compliment measures of 328 

SIRT1 activity, and provide a more physiological readout of SIRT1 function.   329 



 15

It is important to note that SIRT1 activity can be regulated via phosphorylation (56, 69, 91, 161). 330 

Recently, Gerhart-Hines (56) demonstrated that SIRT1 was phosphorylated in its catalytic domain by 331 

protein kinase A (PKA), which is also activated by endurance exercise. In addition, activation of PKA 332 

(via forskolin) increased SIRT1 phosphorylation and activity, including induction of PGC1α expression 333 

in skeletal muscle (56). This occurred despite no increase in NAD+ (56), perhaps suggesting that SIRT1 334 

activity (and function) could be regulated independently of NAD+ in skeletal muscle. However, the effects 335 

of exercise on SIRT1 phosphorylation in skeletal muscle are unknown.  336 

A limitation of the aforementioned studies that investigate SIRT1 and exercise-induced 337 

mitochondrial biogenesis is that they are correlative, and do not address whether SIRT1 is required for 338 

exercise-induced mitochondrial biogenesis in skeletal muscle. To address this limitation, Philp et al. (142) 339 

studied the effects of acute and chronic exercise training on muscle function, PGC1α acetylation and 340 

mitochondrial biogenesis in mice with muscle-specific knockout of SIRT1 deacetylase activity 341 

(mKOSIRT1). In muscle from mKOSIRT1 mice there was no compensatory upregulation in the gene 342 

expression of SIRT2-7 or the protein abundance of SIRT3 and SIRT6 (unpublished observations; S. 343 

Schenk, A.T. White and A. Philp). Similar to previous studies in mice (14), no impairment in 344 

mitochondrial function or number (e.g., abundance and/or activity of complexes I-IV of the ETC, CS 345 

activity, mtDNA:nDNA ratio) in muscle from mKOSIRT1 vs. control mice was found, nor was muscle 346 

endurance capacity impaired (142). Interestingly, mKOSIRT1 and control mice also had comparable 347 

reductions in PGC1α acetylation and induction of exercise-response genes (e.g., mitofusin 2, PDH kinase 348 

4, cytochrome c) after acute exercise, and normal mitochondrial adaptations (e.g., abundance and/or 349 

activity of complexes I-IV of the ETC, CS activity, mtDNA:nDNA ratio) to wheel running training (142).  350 

Thus, studies in mKOSIRT1 mice reveal that SIRT1 deacetylase activity is not required for normal function 351 

of mitochondria in skeletal muscle, nor is it required for exercise-induced adaptations. Regarding PGC1α 352 

acetylation, the authors found that the acetyltransferase that regulates PGC1α transcriptional activity, 353 

general control of amino acid synthesis 5 (GCN5) (57, 116, 132), is modulated by exercise, such that 354 
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nuclear localization of GCN5 was reduced and less GCN5 co-immunoprecipitated with PGC1α after 355 

exercise (142).  Similarly, whole-body deletion of SRC-3, an upstream activator of GCN5, results in 356 

decreased PGC-1α acetylation and increased mitochondrial biogenesis (36), whilst overexpression of 357 

GCN5 reduces mitochondrial gene expression and fatty acid oxidation (57). This study suggests, 358 

therefore, that the reduced acetylation of PGC1α with exercise is not due to increased deacetylation by 359 

SIRT1, but rather is a result of reduced acetylation by GCN5 (142). This is an interesting finding, and 360 

demonstrates that PGC1α acetylation is a balance of the activities of the proteins that acetylate and 361 

deacetylate it. Currently, the mechanisms by which exercise regulates GCN5 activity, GCN5 translocation 362 

from the nucleus, and the GCN5-PGC1α interaction, are unknown.  363 

How SIRT1 gene expression is regulated in response to exercise is also unknown. In liver cells, 364 

SIRT1 gene expression is regulated via opposing effects of cyclic AMP response-element-binding protein 365 

(CREB) and carbohydrate response-element-binding protein (ChREBP)(134), such that increased CREB 366 

binding to the SIRT1 promoter increases SIRT1 transcription, whereas ChREBP binding impairs it.  367 

CREB has also been shown to regulate PGC1α transcription (3, 4). Given that acute exercise activates 368 

CREB (49, 142), it is possible that this is responsible, at least in part, for increased SIRT1 gene 369 

transcription with exercise. The effects of exercise on ChREBP expression and activation in muscle have 370 

not been studied. It is also possible that SIRT1 gene expression is regulated by changes in NADH levels. 371 

To this end, SIRT1 gene expression is also regulated by C-terminal binding protein (CtBP) (189), a 372 

transcriptional corepressor that has a 100-fold greater affinity for NADH than NAD+ (53, 188). While we 373 

discuss CtBP in more detail later in this review, of note here is that changes in NADH levels during or 374 

after exercise could reduce the repressive effects of CtBP on SIRT1 gene transcription in skeletal muscle.  375 

SIRT3. SIRT3 is considered to be a mitochondrial-localized protein (8, 35, 71, 124, 136, 170, 376 

172), although there have been some conflicting reports on its localization (166).  Relevant to our 377 

discussion, in skeletal muscle SIRT3 appears to localize solely to mitochondria (71), and scales with 378 

markers of skeletal muscle oxidative capacity (71, 137).  Additionally, SIRT3 is decreased in old vs. 379 
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young sedentary individuals, but is higher in endurance-trained vs. sedentary individuals, regardless of 380 

age (111).  In line with this, exercise training or chronic electrical stimulation (71, 82, 137), but not acute 381 

exercise (71, 82), increases skeletal muscle SIRT3 protein levels, and is specific to those muscles 382 

recruited during the exercise intervention. Complimenting these studies, knockdown of SIRT3 in C2C12 383 

muscle cells decreases basal and maximal oxygen consumption rates and mitochondrial content, and 384 

prevents PGC1α-induced activation of mitochondrial genes (86, 105). Although knockdown of SIRT3 385 

does not reduce the total mitochondria number as measured by the abundance of complexes I, III and V of 386 

the ETC (86), it does reduce skeletal muscle fatty acid oxidation by ~50%, due to hyperacetylation of 387 

long chain acyl CoA dehydrogenase (LCAD) (81). Alternatively, overexpression of SIRT3 in C2C12 388 

myotubes increases mitochondrial DNA content (105). Taken together, these studies suggest that SIRT3 389 

plays an important role in regulating skeletal muscle mitochondrial biogenesis, and potentially fatty acid 390 

oxidation, in response to long-term exercise training. However, a recent paper by Yang et al. (183) in 391 

C2C12 muscle cells and skeletal muscle from SIRT3 null mice counters this perspective. In their paper, 392 

the authors demonstrate that SIRT3 acts to reduce mitochondrial protein synthesis (and thus, 393 

mitochondrial biogenesis) via its ability to deacetylate mitochondrial ribosomal protein L10 (MRPL10) 394 

and negatively regulate the activity of mitochondrial ribosomes. Thus, rather than increase mitochondrial 395 

protein synthesis, SIRT3 appears to have the opposite effect in skeletal muscle. The teleological 396 

implications of this will be discussed shortly.  397 

Increased ATP utilization during exercise is matched through increased mitochondrial ATP 398 

production, which occurs via oxidation of mitochondrial NADH produced in metabolic pathways such as 399 

glycolysis, the TCA cycle,  β-oxidation, and the electron transport chain (ETC).  Interestingly, up to one 400 

fifth of mitochondrial proteins are acetylated, as are many of the proteins in these metabolic pathways, 401 

which has important effects on their function (95, 177, 191). Indeed, SIRT3 appears to be responsible for 402 

much of the deacetylation of mitochondrial proteins (124, 136, 170, 172). Of potential interest to ATP 403 

generation in skeletal muscle during exercise, SIRT3 deacetylates and activates the TCA cycle and ETC 404 
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enzymes, including succinate dehydrogenase (SDH) (30), ubiquinol-cytochrome c reductase hinge protein 405 

(a component of complex III) (114), malate dehydrogenase (137), NDUFA9 of complex I (2), GDH 406 

(124), ATP synthase (114), and isocitrate dehydrogenase 2 (ICDH2) (168). Also, SIRT3 deacetylates and 407 

activates the  β-oxidation enzyme, LCAD (81).  With this information in mind, we propose that a possible 408 

role of SIRT3 in skeletal muscle is the acute regulation of enzymes and pathways that generate ATP in 409 

response to ATP demand during exercise. This is supported by the fact ATP production in heart, kidney, 410 

and liver from SIRT3 null mice is reduced by more than 50% (2), although whether this is the case in 411 

skeletal muscle is unknown. In the context of the findings of Yang et al. (183) showing that SIRT3 412 

reduces (rather than increases) mitochondrial protein synthesis, as measured by a [35S]-methionine 413 

translation-based assay, this also would make teleological sense. Thus, during exercise it is necessary to 414 

generate ATP to maintain force production, so pathways that utilize energy, such as protein synthesis, 415 

would be momentarily halted.  The actions of SIRT3, therefore, are akin to the effects of AMPK on 416 

enhancing energy production and inhibiting pathways that use energy for processes other than to maintain 417 

ATP production and muscle work (79, 85), albeit the effects of SIRT3 are specific to the mitochondria. It 418 

will be of interest in future studies to determine if mitochondrial biogenesis in response to exercise is 419 

impaired in SIRT3 null mice. Also, given that fatty acid oxidation increases during endurance exercise 420 

(38), it will interesting to determine if acute exercise alters substrate utilization in parallel with activation 421 

of SIRT3 activity and deacetylation of its downstream targets. Studies using muscle-specific SIRT3 null 422 

mice and exercise will no doubt be very informative regarding such questions. 423 

 424 

PARPs and mitochondrial biogenesis in skeletal muscle 425 

The PARPs are major consumers of nuclear NAD+, and therefore compete with SIRT1 for NAD+ 426 

in the nucleus (40, 76, 174, 185, 193). Considering this, a series of papers from the laboratory of Johan 427 

Auwerx recently investigated the effects of knocking down PARP1 and PARP2 on skeletal muscle 428 

mitochondrial biogenesis in C2C12 myotubes and mice. PARP1 null mice had increased levels of NAD+, 429 
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reduced acetylation of SIRT1 substrates such as PGC1α and FOXO1, and increased mitochondrial 430 

biogenesis, as measured by mitochondrial gene expression, mitochondrial morphology, SDH staining and 431 

mtDNA content, O2 consumption (7).  Increased muscle SIRT1 activity may in part be due to increased 432 

protein content, although SIRT1 activity was increased in HEK293 cells without an increase in SIRT1 433 

protein content (7). Complimenting these findings, treatment of mice with PARP-1 inhibitors increased 434 

NAD+ levels and SIRT1 activity (7). The activity of other non-nuclear sirtuins including SIRT2 and 435 

SIRT3, however, were unchanged in PARP1 null tissues (7), suggesting that the upregulation of SIRT1 in 436 

the absence of PARP1 may be due to a local change in the NAD+ pool in the nuclear compartment.  437 

Similar to PARP1, knockdown of PARP2 in C2C12 myocytes increased SIRT1 activity (6). In skeletal 438 

muscle this appeared to occur through both an increase in intracellular NAD+ levels and modulation of the 439 

SIRT1 promoter by PARP2 (6). As expected, SIRT1 activity was increased in PARP1 and PARP2 null 440 

mice and these mice also had increases in skeletal muscle mitochondrial biogenesis (e.g., mtDNA, 441 

mitochondrial morphology and gene expression, SDH staining) and their muscle demonstrated a more 442 

oxidative phenotype (6, 7).  Moreover, PARP2 null mice had increased endurance as measured by a 443 

treadmill endurance test (6). Whether this was due to improvements in skeletal muscle per se, or was a 444 

function of the changes in other tissues, such as the heart, was not determined. Collectively these studies 445 

are very interesting, and suggest that inhibition of PARPs could be used to enhance muscle mitochondrial 446 

biogenesis by increasing nuclear NAD+ levels and increasing SIRT1 activation.  If exercise leads to an 447 

increase in NAD+ in the nuclear compartment, it will be interesting in the future to determine if acute 448 

exercise leads to inhibition of PARP1 and PARP2, so as to maximize NAD+ levels and SIRT1 activation. 449 

Although, it is notable that in vivo SIRT1 deacetylase activity is not required for the ability of exercise to 450 

enhance mitochondrial biogenesis (142). Thus, studies that cross PARP1/2 null mice with mKOSIRT1 451 

mice, or studies with PARP inhibitors in mKOSIRT1 mice, will help to definitively determine if PARP 452 

inhibition works through SIRT1, in vivo.   453 

 454 
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Contribution of NADH to mitochondrial adaptations to exercise: Possible role of CtBP  455 

 As discussed above, CtBP is a transcriptional corepressor that is greater than 100-fold more 456 

sensitive to perturbations in cellular NADH vs NAD+ levels (53, 188). Considering that the 457 

cytosolic/nuclear content of NAD+ in muscle is estimated to be ~540-fold higher than NADH (42, 119), 458 

conversion of NAD+ to NADH, or vice versa, would therefore result in a greater change in the NADH 459 

levels. By extension, and as reasoned by others (53, 188, 189), changes in nuclear NADH, rather than 460 

NAD+, could link perturbations in NAD+/NADH ratio to gene transcription. To this end, CtBP regulates 461 

mitochondrial morphology and function in MEFs and liver-related cells, via its ability to regulate Bcl-2-462 

associated X protein (Bax) (94). CtBP also represses the transcriptional activity of myocyte enhancer 463 

factor 2 (MEF2) (186), a key transcription factor in the regulation of mitochondrial biogenesis (39, 131) 464 

that shows increased DNA binding in response to exercise (130). The regulation of MEF2 transcriptional 465 

activity, however, is complex, as MEF2 is deacetylated by SIRT1, and deacetylation of MEF2 in vitro 466 

reduces (not increases) its transcriptional activity (126, 192). So clearly, the interplay of exercise on 467 

NAD+(H), SIRT1, CtBP and MEF2, and the subsequent transcriptional response, may represents a 468 

balance of these activating and inhibitory signals, that likely involves additional levels of regulatory 469 

control, such as ubiquitination, sumoylation and phosphorylation (67, 92, 149). Taken together, these 470 

studies point to a potentially important role of CtBP, via its sensitivity to changes in NADH, in the 471 

modulation of mitochondrial biogenesis in skeletal muscle in response to exercise.  472 

 473 

Replenishing NAD+ levels in skeletal muscle: An important consideration 474 

 If an increase in NAD+ during exercise leads to an increase in the activity (and thus consumption 475 

of NAD+) by SIRT1, SIRT3, PARP1 or PARP2, then it would be important for skeletal muscle to 476 

replenish NAD+ levels in the cytosolic, nuclear and mitochondrial compartments during or after exercise. 477 

In mammals, the NAD+ biosynthetic and salvage pathways replenish NAD+, and the specifics of these 478 

pathways are reviewed elsewhere (11, 12, 84, 97, 128, 144, 190); an overview of these pathways is 479 
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presented in Figure 2. Except for research on NAM phosphoribosyltransferase (NAMPT; also known as 480 

pre-B-cell colony-enhancing factor 1 (PBEF1) or visfatin), the contribution of these pathways to 481 

replenishment of NAD+ in skeletal muscle and in response to exercise is to date, essentially unstudied.   482 

NAMPT is located in the nucleus, cytosol and mitochondria (96, 148, 182), and is part of the 483 

NAD+ biosynthetic pathway that converts NAM to NAM mononucleotide (NMN) (40, 76, 174, 185, 193). 484 

This reaction is potentially important for maintaining the activity of SIRT1 and SIRT3, as nicotinamide 485 

(which is generated in the deacetylase reaction of sirtuins, including SIRT1 and SIRT3) is a negative 486 

regulator of SIRT1 and SIRT3 (11, 12, 84, 97, 128, 144, 169, 190). Indeed, in HEK293 cells, NAMPT 487 

plays an important role in protecting against cell death in response to genotoxic stress by maintaining 488 

mitochondrial NAD+ levels and SIRT3 activation (182). However, in plasma from humans and mice 489 

NAM concentrations (which range from 0.3 to 5 μM) are lower than the reported IC50 for SIRT1 490 

inhibition, but is in the range of the KM for NAMPT (24, 148, 151). Thus, whether or not NAM levels in 491 

muscle reach a level sufficient to inhibit SIRT1/SIRT3 is unknown. This aside, in rodents, endurance 492 

exercise increases NAMPT gene and/or protein expression in parallel with increased tissue NAD+ levels 493 

(23, 104). Similarly, in humans, NAMPT protein abundance is higher in trained vs. untrained individuals, 494 

and is increased by exercise training, although whether this increased NAD+ levels was not measured 495 

(37). Thus, in the context of increased SIRT1/SIRT3 activity during and after exercise, a coordinated 496 

increase in NAMPT activity may act to maintain SIRT1/SIRT3 activity by consuming NAM, and also 497 

replenishing NAD+ (discussed below). The concentration of NAM in skeletal muscle is unknown. 498 

Therefore, it will be interesting in future studies to determine whether NAMPT activity is increasing 499 

specifically in the mitochondrial, nuclear and/or cytosolic compartments with exercise, and whether this 500 

coincides with changes in NAM levels. Altogether, such measurements will provide important 501 

information regarding the precise contribution of NAMPT to NAD+ metabolism and the regulation of 502 

SIRT1 and SIRT3 activity in skeletal muscle in response to exercise.  503 
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To generate NAD+, NMN generated by the NAMPT reaction is converted by NMN 504 

adenylyltransferas (NMNAT) to NAD+.  NMNAT can also convert nicotinic acid (NA) mononucleotide 505 

(NAMN) to NA adenine dinucleotide (NAAD), which is subsequently converted to NAD+, by NAD+ 506 

synthase.  There are three isoforms of NMNAT: NMNAT1 and NMNAT2 are localized in the cytosol and 507 

nucleus, and NMNAT3 appears to be exclusively in mitochondria (113, 133). At the mRNA level, 508 

NMNAT1 is highly expressed in skeletal muscle (51, 52, 113), NMNAT2 is expressed at low levels, 509 

whilst NMNAT3 is very low or absent (113). The protein levels and activity of these proteins in skeletal 510 

muscle are unknown.  The presence of NMNAT1 and to a lower extent, NMNAT2, in skeletal muscle 511 

suggests that they may play an important role in replenishing nuclear and cytosolic NAD+ levels, and it 512 

will be interesting to see if exercise coordinately increases NAMPT and NMNAT1/2 levels, in order to 513 

maintain the overall cytosolic/nuclear NAD+ pools. Regarding replenishment of mitochondrial NAD+, the 514 

inner mitochondrial membrane is impermeable to NAD+ and NADH (115, 143), which poses a potential 515 

problem for maintaining the mitochondrial NAD+ level, particularly if NAD+ consumption by SIRT3 is 516 

increased during exercise. Only recently was it demonstrated in HeLa S3 cells that NMNAT3 is the only 517 

known enzyme of NAD+ synthesis in mitochondria (133). Whilst NMNAT3 gene expression is very low 518 

in skeletal muscle, it will be of interest in future studies to determine if NMNAT3 activity in skeletal 519 

muscle correlates with mitochondrial density or if exercise increases the activity or abundance of 520 

NMNAT3, even independent of an increase in mitochondrial abundance. Alternatively, perhaps a 521 

different or an additional mitochondrial NAD+ salvage or biosynthetic pathway is present in skeletal 522 

muscle mitochondria.  523 

 524 

Concluding remarks: There are still many unanswered questions 525 

It has been more than 100 years since the discovery of the pyridine nucleotides, NAD+ and 526 

NADH. While for much of this time NAD+(H) was considered to primarily participate in metabolic 527 

reactions that led to generation of ATP through their ability to act as substrates for enzymes or as covalent 528 
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modifiers of enzyme function, these coenzymes are potentially key mediators of the adaptive response to 529 

exercise. Indeed, changes in NAD+(H) levels in concert with known NAD+(H) sensing enzymes provides 530 

a logical link between exercise-induced metabolic stress and subsequent mitochondrial adaptations. 531 

Specifically, the effects of SIRT1, PARP1/2, and CtBP appear to manifest through their ability to directly 532 

or indirectly modulate the transcriptional response to exercise; they likely do not contribute to an 533 

immediate increase in ATP production during acute exercise (Figure 3). Very little, however, is known 534 

about NAD+(H) dynamics in the nucleus of skeletal muscle, and how this affects the transcriptionally-535 

based adaptations central to endurance exercise training. Regarding SIRT3, we propose that it acts as an 536 

acute regulator of mitochondrial ATP production via its ability to regulate the enzymatic activity of 537 

various TCA and ETC enzymes (and possible as yet to be discovered targets). An additional component 538 

of this acute regulation is proposed to include a reduction in mitochondrial protein synthesis during 539 

exercise (Figure 3). It is possible that during exercise, SIRT1 plays a similar role in regulating cellular 540 

protein synthesis in the cytosol via its ability to negatively regulate mammalian target of rapamycin 541 

(mTOR) and/or its interaction with tuberosclerosis complex 2 (TCS2) (58). Whether this regulation 542 

occurs in muscle or during exercise is not known. In addition, little is known regarding the coordination 543 

of NAD+ consuming and regeneration pathways in skeletal muscle and whether these two opposing events 544 

are regulated by common mechanisms. Furthermore, our understanding of the compartmentation of 545 

NAD+(H) metabolism, and quantitative changes in NAD+, NADH, and the NAD+/NADH ratio in 546 

subcellular compartments in skeletal muscle at rest and in response to exercise is poor. While technically 547 

challenging to measure, such investigation will be highly informative with respect to understanding the 548 

activation or inhibition of both NAD+(H)-responsive proteins. For example, while NAD+ can clearly 549 

activate sirtuins, NADH can act as a competitive inhibitor of SIRT1 (120). However, the relative binding 550 

affinity of NAD+ for SIRT1, is ~1000-fold greater than NADH, and overall, the ability of NADH to 551 

inhibit SIRT1 activity is proposed to be minimal in an in vivo setting (169). Thus, determining the precise 552 

contribution of changes in NAD+, NADH, and the NAD+/NADH ratio will be important. In the end it is 553 
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likely that a combination of changes in free NAD+ and NADH levels and the NAD+/NADH ratio within 554 

specific subcellular compartments is important. Thus, as research on NAD+(H) metabolism continues into 555 

its second century, there are still many important research questions to be resolved regarding their effect 556 

on the adaptive response to exercise in skeletal muscle. Ultimately, such research holds great promise for 557 

improving our fundamental understanding of skeletal muscle function in response to exercise, which has 558 

obvious and important implications for human health and treatment of skeletal muscle-related diseases.  559 

  560 
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Figure Legends 569 

Figure 1. Compartmentation of NAD+ and NADH in skeletal muscle. NAD+ and NADH move freely 570 

across pores in the nuclear membrane, and as such the cytosolic and nuclear compartment concentrations 571 

of NAD+ and NADH are thought to be comparable. In the cytosol, NADH is generated by glycolysis. 572 

Because mitochondria are impermeable to NADH, the transfer of these reducing equivalents occurs via a 573 

variety of shuttles including the glycerol-3-phosphate shuttle, malate-aspartate shuttle, lactate shuttle, and 574 

the NADH/cytochrome c electron transport shuttle, as described in the text. Depending on the shuttle 575 

NADH is produced. The cytosolic/nuclear NAD+ pool is replenished when NADH is converted back to 576 

NAD+ in the reactions of the aforementioned shuttles, including the conversion of pyruvate to lactate. 577 

NAD+ levels in the nuclear, cytosolic, and mitochondrial compartments are also replenished via specific 578 

de novo and salvage pathways that are discussed in the text and overviewed in Figure 2.  Within the 579 

mitochondria, NADH is oxidized to NAD+ in the electron transport chain (ETC). 580 

 581 

Figure 2. Replenishment of NAD+ through the biosynthesis (de novo) and salvage pathways. Given 582 

there are many NAD+-consuming enzymes, it is essential that NAD+ be replenished in order to maintain 583 

compartmental NAD+ levels. This occurs through the salvage and biosynthetic pathways. Except for 584 

NAMPT, the role of these pathways in NAD+ replenishment in skeletal muscle, and in response to 585 

exercise, are essentially unknown. Molecules generated in each pathway are in orange. Enzymes are in 586 

blue. NA, nicotinic acid; NAM, nicotinamide; NAMN, NA mononucleotide; NMN, NAM 587 

mononucleotide; NMNAT, NMN adenylyltransferase; NAAD, NA adenine dinucleotide; NAD+, NAM 588 

adenine dinucleotide; NAPT, NA phosphoribosyltransferase; NAMPT, NAM phosphoribosyltransferase; 589 

NR, nicotinamide riboside. 590 

 591 

Figure 3.  Proposed mechanism for exercise-induced mitochondrial biogenesis via NAD+/NADH 592 

metabolism.  Increased ATP demand during exercise leads to an increase in the free cytosolic/nuclear and 593 
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mitochondrial NAD+ level and NAD+/NADH ratio, which provides increased substrate for the NAD+-594 

consuming enzymes (in purple), SIRT1, SIRT3, PARP1 and PARP2. Exercise also reduces the 595 

availability of NADH, the predominant covalent activator of CtBP. It is hypothesized that during exercise, 596 

increased ATP production is facilitated by SIRT3-mediated deacetylation of a series of enzymes in the 597 

TCA, β-oxidation and ETC. In parallel, SIRT3 acutely reduces mitochondrial protein synthesis, which 598 

maximizes the availability of reducing equivalents for ATP production. Whether SIRT3 is required for 599 

induction of mitochondrial biogenesis after exercise remains to be determined. In response to exercise 600 

SIRT1 is also activated by increased cytosolic/nuclear NAD+ levels, and while it likely can contribute to 601 

mitochondrial biogenesis through PGC1α-dependent and -independent mechanisms, it is not required for 602 

exercise-mediated deacetylation of PGC1α. Rather, acute exercise appears to reduce the inhibitory effect 603 

of the acetyltransferase, GCN5, on PGC1α, via mechanism that is still to be determined. PARP1 and 604 

PARP2 are able to directly or indirectly modulate SIRT1 activity (and mitochondrial biogenesis) by 605 

competing for NAD+, although the effects of exercise on the activity of these enzymes is unknown. Also, 606 

whether SIRT1 is required for the ability of PARP inhibition to induce mitochondrial biogenesis in 607 

skeletal muscle, in vivo, is not known. The transcriptional corepressor CtBP, is activated by NADH, and it 608 

is hypothesized that during or after exercise that reductions in the cytosolic/nuclear NADH level reduces 609 

the repressive effects of CtBP on transcriptional modulators of mitochondrial biogenesis. Ultimately, 610 

increased activity of enzymes of the ETC, TCA cycle and β-oxidation, and/or increased mitochondrial 611 

number (i.e., biogenesis) leads to an enhanced capacity of the mitochondria and muscle to generate ATP. 612 

Legend: Dotted lines indicate that a hypothesized contribution of the pathway, or that the data to date 613 

provides an incomplete perspective. PARP, poly [ADP-ribose] polymerase; NAD+, nicotinamide adenine 614 

nucleotide (oxidized); NADH, nicotinamide adenine nucleotide (reduced); SIRT1, sirtuin 1; SIRT3, 615 

sirtuin 3; GCN5, general control of amino acid synthesis; PGC1α, peroxisome proliferator-activated 616 

receptor gamma coactivator 1-alpha; CtBP, C-terminal binding protein. 617 

  618 
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