

Natural killer cells in cancer immunotherapy

DanRu Wang¹ | LingYun Dou¹ | LiHao Sui¹ | Yiquan Xue^{1,*} | Sheng Xu^{1,2,*}

¹National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University, Shanghai, China

²Shanghai Institute of Stem Cell Research and Clinical Translation, Dongfang Hospital, Shanghai, China

*Correspondence

Yiquan Xue and Sheng Xu, National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University, Shanghai 200433, China.
Email: xue@smmu.edu.cn and xusheng@immunol.org

Funding information

National Natural Science Foundation of China, Grant/Award Numbers: 82071789, 31870910; Peak Disciplines (Type IV) of Institutions of Higher Learning in Shanghai; National Basic Research Program of China, Grant/Award Number: 2015CB964403

Abstract

Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands—the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.

KEY WORDS

CAR-NK, MICA/B, NK cell, NKG2D, tumor immunotherapy, tumor vaccine

1 | INTRODUCTION

The innate immunity is the first barrier of protection against pathogens and cancers and is essential for health maintenance. Natural killer (NK) cells, identified in the 1970s,^{1,2} are innate lymphocytes with cytotoxic functions and can impede tumor growth through the process of immune surveillance without the need for prior immune memory and play an essential role in innate immunity.^{3,4} NK cells could recognize target cells with several activat-

ing and inhibitory receptors.⁵ Under quiescent conditions, NK cell activity is inhibited by its recognition of MHC class I molecules.⁶ The key feature of NK cell is their cytotoxicity against MHC I-deficient tumor cells, which has evolved for immune escaping from cytotoxic CD8+ T cells.⁷ These also suggest that NK cells and CD8+ T cells compensate for each other against tumor cells.^{8,9} However, MHC I expressing tumor cells are also killed by NK cells, through their induced expression of certain ligands for activating NK cell receptors, including NKG2D, NKp46, NKp44, and so

This is an open access article under the terms of the [Creative Commons Attribution](#) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

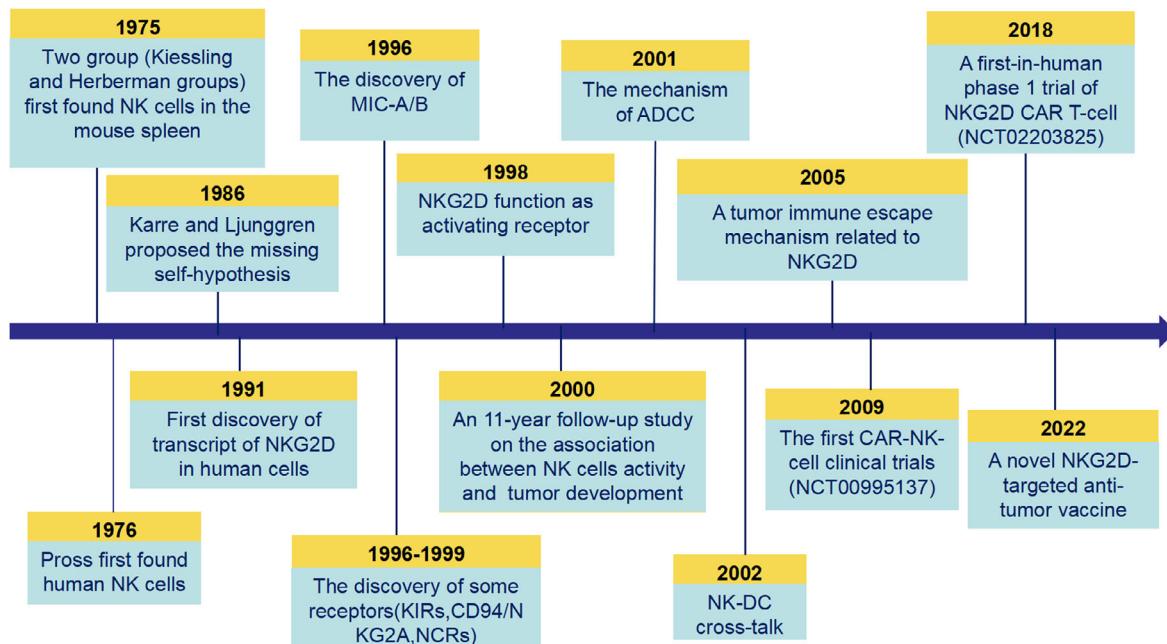
© 2024 The Author(s). *MedComm* published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

on.^{10–12} Among them, NKG2D ligands MICA/B are upregulated in many types of human tumor cells due to cellular stress such as DNA damage and then activate NK cells for immune surveillance.¹³

The capacity of NK cells to recognize and specifically attack cells under stress or infected by pathogens provides potential therapeutic applications in cancer, infection, and autoimmune diseases.^{4,14–16} However, tumors have evolved extremely clever ways to avoid NK cell surveillance, which has resulted in tumor progression and metastases.¹⁷ Downregulation of ligands for activating NK receptors was the most common strategy employed by tumor cells.^{3,18,19} To avoid these tumors' immune escape, sophisticated strategies have also been developed to reestablish the effective NK cell surveillance recently, mainly through monoclonal antibodies (mAbs), small molecules, and even vaccination. Cell-based immunotherapies harnessing the effective NK cell activating receptor NKG2D and NK cell itself have also been developed recently, which have garnered significant interest as an innovative cancer treatment modality. Though there have been reviews on NK cell therapy in tumor,^{4,14,20} these reviews have focused on NK cells, without an emphasis on tumor escaping from NK surveillance and engagement of activating NK receptors.

This review focus on the significant role of the activating NK cell receptor, especially NKG2D and its ligands, on tumor immune escape and NK-based tumor therapies. We first introduce the historic background of NK cell-mediated immune responses, further with the characterization of NK cell receptors and ligands, and their signal transduction. Then, we introduce several immune escaping strategies of tumor cells from NK cells and summarize a range of NK cell-targeted therapeutic approaches such as adoptive NK cell therapy, CAR-NK, and NKG2D CAR-T cells, with an emphasis on innovative vaccines targeting MICA/B that bolster the immune response against pan-cancers. This review would help to improve the knowledge of NK–tumor interaction, promote the realization of NK cell-based immunotherapy, and provide better therapeutic strategies for tumor patients.

2 | THE HISTORY AND MILESTONES OF NK CELL IN CANCER IMMUNOTHERAPY


NK cells, initially identified in the 1970s subsequent to the discovery of T and B cells in the 1950s (Figure 1), were independently recognized by Kiessling and Herberman in 1975 within the mouse spleen.^{1,2} They characterized these cells as a unique biological entity possessing cytolytic capabilities distinct from other known immune cells, specif-

ically targeting malignant cells. Kiessling et al.¹ found NK cell-mediated cytotoxicity against Moloney leukemia virus-induced leukemia cells. Herberman's group observed high reactivity of them from athymic nude mice against syngeneic and allogeneic tumors cells.² First considered as “background noise” in T-cell cytolytic assays, NK cells were characterized as cytotoxic effectors of the innate immune system. Then, in 1976, NK cells were discovered in humans as well by Pross and Baines.²¹ According to their ability to lyse tumor cells without prior stimulation, NK cells were initially described as a population of “naturally occurring killer lymphocytes with specificity for tumor cells” on a functional basis.²² The majority of these “naturally” cytotoxic cells have a typical and homogeneous morphology and they were hence also referred to as large granular lymphocytes.²³

A study published in 2000, with a follow-up duration of 11 years, prospectively monitored the cytotoxic activity of NK cells in a cohort of thousands of individuals, correlating these levels with subsequent tumor development.²⁴ The results indicated that innate immune defenses play a critical role in cancer prevention, as evidenced by the association between high cytotoxic activity in peripheral NK cells and a decreased cancer risk, whereas low activity corresponded to an increased risk.²⁴ Several subsequent retrospective investigations also proved that NK cell frequency, infiltration in solid tumors,²⁵ and function are associated with improved patient survival.^{26–28}

The discovery of NK cell markers has expanded our understanding of their subsets.²⁹ Based on the differential expression of CD56 and CD16 levels, human NK cells are primarily classified into two subsets: CD56^{dim} CD16⁺ NK cells and CD56^{bright} CD16[−] NK cells, which differ in their homing properties.³⁰ The majority of circulating NK cells are thought to be the CD56^{dim} subset, which is a mature population. In contrast, the CD56^{bright} subset is less developed, mostly immunomodulatory, and primarily found in secondary lymphoid organs.³¹ What is more, these two subsets have differences in their cytotoxic potential and cytokine production. Highly cytotoxic CD56^{dim} NK cells can express the granzymes (GZMA, GZMB) and perforin (PRF1), and immediately destroy target cells without first priming³²; CD56^{bright} NK cells are predominately immunoregulatory cells, which has lower cytotoxicity but produce high levels of cytokines including interferon- γ (IFN- γ), tumor necrosis factor- α (TNF- α), interleukin-10 (IL-10), and IL-13 when exposed to environmental stimuli, such as IL1- β , IL-2, IL-12, IL-15, and IL-18.^{22,33}

In the late 1980s, Karre et al.³⁴ proposed the “missing self” hypothesis, which gave a hint for the molecular characterization of the mechanisms underlying NK-mediated tumor cell death. This theory explains how NK cells recognize abnormal cells by identifying those who lose or

FIGURE 1 The history and milestones of NK cell in cancer immunotherapy. The timeline illustrates the main discoveries concerning NK cells during a timespan of about 50 years.

diminish self-marker. In less than a decade, Moretta's laboratory produced a vast array of mAbs that facilitated the identification and characterization of numerous pivotal receptors, including three non-HLA class I-specific activating receptors (NKP46, NKP44, and NKP30) collectively termed as natural cytotoxicity receptors (NCRs),^{10,11,35} the killer immunoglobulin (Ig)-like receptors (KIRs),³⁶⁻³⁸ and CD94/NKG2A.³⁹ They also demonstrated how NK cells could destroy target cells by combining signals from inhibitory and activating receptors, through recognizing ligands on tumor or virus-infected cells, and detecting alterations in HLA class I expression.⁴⁰⁻⁴² The recognition of stress molecules by NK cells activating receptors leads to the "stress-triggered self" hypothesis of NK cells.⁴³

In 2001, a study found that NK cells quickly activate and degranulate when they identify a target cell covered with a specific antibody, which is called antibody-dependent cellular cytotoxicity (ADCC).⁴⁴ Thus far, it has been fully appreciated that NK cells can directly kill target cells through the release of cytotoxic granules or by engaging death receptors.⁴⁵ Subsequent investigations revealed that NK cells may not only kill the targeted cells but also incite dendritic cells to polarize and activate the adaptive immune response.⁴⁶⁻⁴⁸

NK cell receptors play a significant role in cancer immuno-surveillance, with the activating NK receptor NKG2D being particularly important in recognizing malignant cells.⁴⁹ The discovery of NKG2D, as a characteristic and novel receptor, dates back to the early 1990s.⁵⁰ In 1998, Bauer et al.⁵¹ cloned the NKG2D gene for the first time and

revealed its important function as an activating receptor. Subsequent research showed that NKG2D specifically recognized its ligands, such as the MHC I polypeptide-related molecules A (MIC-A), B (MIC-B), and MHC-I-related molecules UL16 binding proteins (ULBPs).⁵² Furthermore, seminal studies by Spies and colleagues¹³ have revealed the expression of MICA/B on many tumor cell lines and tumor tissues. However, Oppenheim et al.⁵³ reported an escape mechanism from NKG2D-mediated immune responses in 2005, which involves desensitization of the NKG2D pathway via downregulation of NKG2D through repeated stimulation of NKG2D.

Certainly, within the past 10 years, immunotherapy has revolutionized clinical oncology.^{54,55} With the rapid development of chimeric antigen receptor T (CAR-T) cell therapy, NK cell has gained attention as an alternative to T cell in the field of immune cell engineering because of its intrinsic cytotoxicity, high efficacy and controllable adverse effects.⁵⁶ The first CAR-NK-cell clinical trials (NCT00995137) started in 2009, recruited 14 patients under the age of 18 years. CAR-T cells with chimeric activating receptor NKG2D were also reported. In 2018, the autologous CYAD-01, a first-generation NKG2D CAR T-cell product, was initially tested as a single infusion (NCT02203825).⁵⁷ Following this initial trial, a dose escalation trial, THINK (NCT03018405), demonstrated that CYAD-01 showed favorable safety data for cancer patients after at least one therapy⁵⁸ (Table 1).

Recently, NKG2D-targeted vaccines for cancer immunotherapy have witnessed significant

TABLE 1 Clinical trials and products associated with NKG2D.

NCT	Drug name	R&D status	Action mechanism	Indication	Drug type
NCT03466320	CYAD-01	Clinical trial Phase II	NKG2D antagonist Gene transfer T lymphocyte replacement	Myelodysplastic syndrome; myeloproliferative diseases; multiple myeloma; acute myeloid leukemia	CAR-T
NCT04324996	NKG2D- ACE2 CAR-NK cell therapy	Clinical trial Phase II	NKG2D antagonist	Novel coronavirus pneumonia	CAR-NK
NCT05382377	KD-025	Clinical trial Phase I/II	NKG2D antagonist	Glioblastoma; colon cancer; hepatocellular	CAR-T
NCT04550663					
NCT06193902	LEU-011	Clinical trial Phase I/II	NKG2D antagonist Gene transfer T lymphocyte replacement	Solid tumor	CAR-T
NCT04167696	CYAD-02	Clinical trial Phase I	NKG2D antagonist	Myelodysplastic syndrome Recurrent acute myeloid leukemia	CAR-T
NCT03692429	CYAD-101	Clinical trial Phase I	NKG2D antagonist	Rectal cancer Unresectable colorectal cancer	CAR-T
NCT05131763	NKG2D- based CAR T-cells	Clinical trial Phase I	NKG2D antagonist Immunocytotoxicity T lymphocyte replacement	Colon cancer; glioblastoma; liver cancer	CAR-T
NCT04658004	NKG2D CAR-T-cell therapy	Early clinical trial Phase I	NKG2D antagonist Gene transfer T lymphocyte replacement	Acute myeloid leukemia	CAR-T
N/A	LEU-005	Preclinical	NKG2D antagonist Gene transfer T lymphocyte replacement	Solid tumor	CAR-T
N/A	LEU-006	Preclinical	NKG2D antagonist Gene transfer T lymphocyte replacement	Hematologic tumor	CAR-T
NCT01203631	Tesnatinilimab	Clinical trial Phase II	NKG2D antagonist	Alopecia areata; Celiac disease; Crohn's disease; tumor; rheumatoid	Monoclonal antibody
NCT01181050					
NCT04717999	NKG2D CAR-T cell therapy	Preclinical	NKG2D antagonist Gene transfer T lymphocyte replacement	Glioblastoma	CAR-T
NCT05776355	NKG2D	Clinical trial	NKG2D antagonist	Acute myeloid leukemia	CAR-NK
NCT05734898	CAR-NK therapy	Phase I	Gene transfer Natural killer cell replacement		
NCT03370198	CYAD-203	Clinical trial Phase I	NKG2D antagonist	Colorectal liver metastases	CAR-T
NCT03310008					
NCT04270461	NKG2D	Clinical trial	NKG2D antagonist	Metastatic solid tumor	CAR-NK
NCT03415100	CAR-NK cells	Phase I	Natural killer cell replacement		
NCT04623944	NKX-101	Clinical trial Phase I	NKG2D antagonist IL-15R α stimulant	Myelodysplastic syndrome; acute myeloid leukemia	CAR-NK

Data sources: clinical registration website.

advancements. In 2005, Zhou et al.⁵⁹ demonstrated that coexpression of NKG2D ligands in DNA-based cancer vaccines effectively enhances their antitumor efficacy by activating both innate and adaptive immune responses. Dana-Farber Cancer Institute recently has developed a novel antitumor vaccine that activates two main types of immune cells, T cells and NK cells, by targeting MICA/MICB stress molecules.⁶⁰

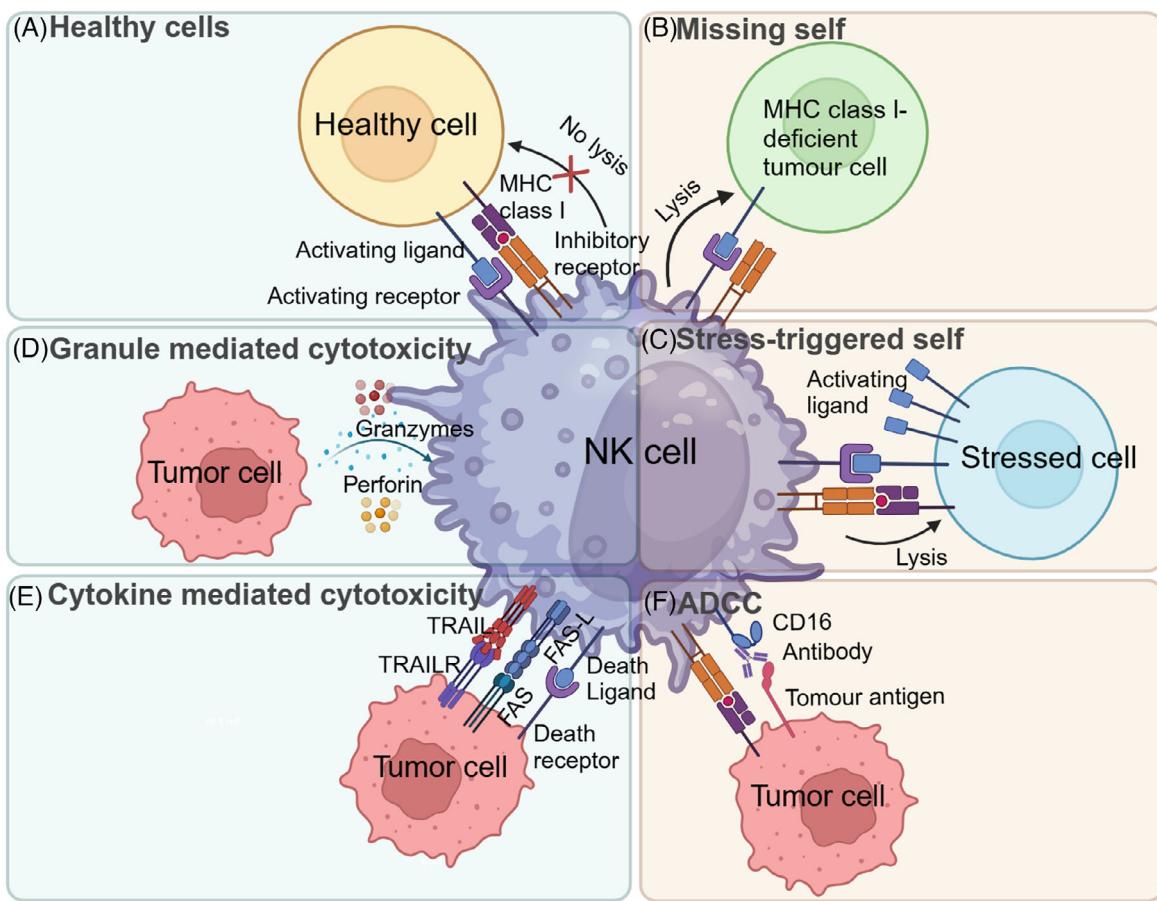
3 | NK CELL ACTIVATION AND FUNCTION

NK cells, regarded as innate immune cells, do not go through somatic rearrangement as adaptive immunological T and B cells to produce highly specific receptors that recognize variable antigens.⁶¹ As the first line of cancer immuno-surveillance and early viral immunity, NK cells kill target cells in an antigen-independent manner.⁶²

The mechanisms for NK cells to distinguish healthy cells from target cells form the basis of their functions. NK cell activation is a complex integration process of signals from a suite of activating and inhibitory receptors (Figure 2A), which determines whether an adjacent cell is targeted for killing or not.^{63,64} The “missing self” hypothesis pointed out that NK cells seem to sense the absence of MHC and eliminate cells with diminished or absent expression of MHC class I molecules while MHC I⁺ cells were resistant to lysis³⁴ (Figure 2B). This theory marked a significant turning point and sparked more ground-breaking findings later about the molecular mechanism of NK cell killing. Besides, it has been found that under abnormal condition target cells not only downregulate self-markers, such as MHC-class I, but also secrete pathogen-coded biomolecule⁶⁵ and upregulate self-produced proteins, which could be recognized by activating receptors on NK cells. Therefore, through their activation receptors, NK cells can kill specific MHC-I adequate cancer cells by detecting stress-triggered self-ligands.⁶⁶ The “stress-triggered self” hypothesis of NK cells involves the recognition of disease-infected or transformed cells through the upregulation of ligands for activating receptors, which are not expressed on normal cells⁴³ (Figure 2C). A separate mechanism for NK cell activation, termed ADCC, is mediated by the CD16 receptor (also known as FCGR3A), which binds the constant region (Fc) of IgG (Figure 2F). CD16 engagement by IgG-opsonized cells (cells with antibodies bound to surface membrane antigens) initiates a signaling cascade and kill the antibody-coated cell.^{67,68}

NK cells kill target cells directly through several main mechanisms. First, NK cells can release perforin, which inserts into the plasma membrane and forms pores leading

to osmotic lysis, and granzymes, which pass through the pores and activate caspases, inducing apoptosis in target cells⁶⁴ (Figure 2D). Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives due to the protection of densely packed lipid membranes.⁶⁹ Beside the directed release of granules, NK cells can also induce endogenous apoptosis of target cells via the binding of membrane TNF family molecules (FasL, TRAIL, and mTNF) to tumor cell membrane ligands⁷⁰ (Figure 2E). Considering ligation of individual activation receptors (except for CD16) is typically inadequate for provoking cytotoxicity or cytokine release in naive NK cells, it is necessary to preactivate NK cells by exposing them to cytokines such as IL-2, IL-12, and type I IFN.⁷¹⁻⁷⁴


Besides their direct cytotoxic capacity, NK cells can affect the function of other immune cells by secreting a variety of cytokines, chemokines and growth factors, such as IFN- γ , IL-13, TNF, FLT3L, C-C motif chemokine ligand 3 (CCL3), lymphotactin (XCL1), and granulocyte-macrophage colony-stimulating factor (GM-CSF).^{64,75} Acting as regulatory cells, NK cells influence various other cell types, such as DCs, T cells, B cells, and macrophages.^{32,76} Upon priming by various soluble factors (for example, IL-15, type I IFN, IL-12, IL-18), NK cells boost the maturation and activation of DCs, macrophages, and T cells, through a combination of cell surface receptors and cytokines.³² For example, after activation, NK cells could prime DCs to release IL-12 and stimulate Th1 responses.⁷⁷ Furthermore, IL-15 trans-presentation by IL-15R α on DCs could also increase NK cells’ capacity to produce IFN- γ and their cytotoxic activity.⁷⁸ Thus, both DCs and NK cells are regulated by each other through important functional connections.⁷⁹

4 | ACTIVATING AND INHIBITORY RECEPTORS OF NK CELLS

The activity of NK cells is regulated by an array of cell-surface receptors that detect the presence of ligands indicative of stress and oncogenic transformation. These receptors can be divided into activating and inhibitory receptors. The balance of activating versus inhibitory signals gives rise to either a tolerance or response to the target cells.⁸⁰

4.1 | Activating receptors

The activating receptors include the characteristic NCR family (NKP46, NKP30, NKP44), C type lectin family receptor (NKG2D, CD94/NKG2C, CD94/NKG2E,

FIGURE 2 NK cell immune function. (A) NK cell tolerance is a complex integration process of signals from a suite of activating and inhibitory receptors. (B) The missing self-hypothesis suggested that NK cells sense the absence of MHC and eliminate cells with diminished or absent expression of MHC class I molecules. (C) The stress-triggered self-hypothesis of NK cells involves the recognition of disease-infected or transformed cells (stressed cells) through the upregulation of activating ligands (such as NKG2D). (D) NK cells can release perforin and granzymes to directly kill target cells. (E) NK cells can induce endogenous apoptosis of target cells via the binding of membrane TNF family molecules (FasL, TRAIL, and mTNF) to tumor cell membrane ligands. (F) Antibody-dependent cell cytotoxicity (ADCC) is exerted by immune cells expressing CD16 receptor against cells coated with antibody, such as virus-infected or transformed cells.

CD94/NKG2F), and KIRs.^{5,75,81} Furthermore, the Fc receptor CD16, which recognizes the Fc part of IgG antibodies, can initiate ADCC.⁸²

NCRs, type I transmembrane molecules belonging to the Ig-like family, include three receptors: NKp30 (also known as NCR3 and CD337), NKp44 (also known as NCR2 and CD336), and NKp46 (also known as NCR1 and CD335).^{10,11,35,83} They are essential for inducing NK cell cytotoxic function against tumors. Their transmembrane domains feature a positively charged amino acid, facilitating their interaction with the transmembrane regions of adaptor proteins TCR- ζ and/or Fc ϵ RI- γ (for NKp30 and NKp46) or Activating Receptor-associated Protein (KARAP)/DAP-12 (for NKp44).⁸⁴ A wide variety of NCR ligands have been reported, including BAT3/BAG6,⁸⁵ MLL5,⁸⁶ and PCNA.⁸⁷

The C-type lectins are a superfamily of more than 1000 proteins that are defined by having at least one charac-

teristic C-type lectin-like domains (CTLs). They have been subdivided into 17 subgroups on the basis of their phylogeny and domain organization.⁸⁸ Many of them can recognize self (endogenous) and nonself (exogenous) ligands and are involved in a diverse range of physiological functions. Through the binding of MHC class I molecules, C-type lectins help NK cells recognize cellular transformation and prevent the attack of healthy cells.⁸⁹ The NKG2 receptor family, as an important member of this family, includes seven members referred to as NKG2-A, -B, -C, -D, -E, -F, and -H, with A/B and E/H being splice variants of the same genes.^{50,90,91} All the molecules encoded by NKG2 gene are expressed on the cell membrane and belong to the type II transmembrane receptor, whose sequence is similar to that of C-type lectin. These receptors have the effect of inhibiting or activating NK cells. NKG2-C and potentially -E, -F, -H are the activating family members, which are characterized by the presence of a charged amino

acid residue in the transmembrane domain mediating interaction with DAP-12, an adapter molecule containing an immunoreceptor tyrosine-based activation motif (ITAM).^{92,93} NKG2D, regarded as the best-characterized activating receptor on NK cells, will be discussed in detail below. In contrast, inhibitory NKG2 proteins (NKG2-A and -B) carry immunoreceptor tyrosine-based inhibition motifs (ITIMs)^{93,94} and have been found to recognize the same ligand, the nonclassical HLA class I molecule HLA-E.^{39,95}

KIRs have evolved from the Ig-superfamily and consist of type 1 transmembrane glycoproteins with two or three Ig-like domains^{96,97} and possess either a short or long cytoplasmic tail. Composed of 14 polymorphic receptors, they are divided into six activating (2DS1–2DS5 and 3DS1), seven inhibitory (2DL1–2DL3, 2DL5 and 3DL1–3DL3), and one (2DL4) that has both activating and inhibitory properties.⁹⁸ KIRs recognize polymorphic HLA-A, B, and C molecules. The function of activating KIRs in the immune response is partially understood.⁹⁹ Different from inhibitory KIRs, activating KIRs lack ITIM motifs in their cytoplasmic tail and have a transmembrane domain carrying a charged amino acid residue that mediates the association with the ITAM-bearing molecule KARAP/DAP12.¹⁰⁰

4.2 | Inhibitory receptors

Two distinct classes of HLA-class I-specific inhibitory receptors are expressed by human NK cells: members of C type lectin family receptor (the CD94/NKG2A) and the inhibitory KIR, mainly including KIR2DL1, KIR2DL2/L3, and KIR3DL1.^{5,36,101,102} Both types of inhibitory receptors contain ITIM motifs in their cytoplasmic tail to transduce inhibitory signals.

Inhibitory KIRs, characterized by 2 or 3 Ig-like extracellular domains and a long cytoplasmic tail (KIR2DL, KIR3DL), recognize allotypic determinants shared by distinct groups of HLA class I molecules (KIR-ligands, KIR-L).¹⁰³ Inhibitory signaling by KIRs is mediated through ITIM, recruiting phosphatases such as SHP-1. These phosphatases act on proximal kinase signaling pathways involving Vav1 and the adaptor protein Crk.^{104–106}

The C-type lectin family member NKG2A is associated with CD94 and can bind to the class-Ib molecule HLA-E. It was observed that the expression of NKG2A in NK cells and its ligand HLA-E in intratumor HCC tissues was increased.¹⁰⁷ NKG2A-expressing tumor-infiltrating natural killer (TINK) cells show signs of fatigued cells and are linked to a poor prognosis.¹⁰⁷ Unlike KIRs, neither NKG2A nor HLA-E are polymorphic, which might facilitate the generation of therapeutic agents that block their interaction.¹⁰⁸

In addition to the HLA-class I-specific inhibitory receptors that mentioned above, additional inhibitory check-

points, such as PD-1, TIGIT, CD96, TIM-3, and so on have also been identified in NK cells and are responsible for preserving immune cell homeostasis.¹⁰⁹ There is growing evidence that NK cells also express PD-1, PD-1-related ICI therapy could also stimulate the antitumor effector actions of NK cell.^{110,111} TIGIT is overexpressed on tired TINK and tumor-infiltrating T cells in different malignancies in peritumoral lymphocytes, always together with PD-1 and TIM-3, and is related to NK cell suppression and functional exhaustion.¹¹² In addition to restoring effective tumor immunity and NK cell rejuvenation, TIGIT blockade also improved the effectiveness of ICI treatment against PD-L1.¹¹³ CD96 restricts NK cell effector functions via binding to CD155 expressed on tumor cells.¹¹⁴ Patients with hepatocellular cancer who exhibit decreased disease-free survival have malfunctioning (exhausted) TINK cells with elevated CD96 expression; nevertheless, NK cell-mediated effector capabilities are restored when CD96 is blocked.¹¹⁵

4.3 | Characteristics of NKG2D and its ligands in tumor

4.3.1 | Features of NKG2D

The natural killer group 2, member D (NKG2D), a highly conserved C-type lectin-like membrane glycoprotein, is a specific cell-surface receptor, which is only remotely related to the other NKG2 family members and constitutes a separate class of lectin-like receptors. It can directly bind to a variety of ligand molecular families expressed on the surface of target cells without antigen presentation, thereby activating or costimulating immune effectors,¹¹⁶ and then releasing perforin and granzymes to mediate the killing effect.¹¹⁷

It is mainly expressed on lymphocytes of the NK cells. It is also found on human naive CD8+T cells, but only express on activated mouse CD8+T cells.^{43,118} In general, CD4+T cells do not express NKG2D even after activation. Expression of NKG2D on NK cells and CD8+ T cells can be modulated by cytokines. In humans, IL-2, IL-7, IL-12, and IL-15 could upregulate NKG2D expression, whereas TGF- β , IFN- β 1, and IL-21 downmodulate NKG2D.¹² Studies have demonstrated that activating signals mediated by the NKG2D/NKG2DL pathway can override the signals induced by the inhibitory receptors, thereby allowing NKG2D to act as a “master switch” for activating NK cells.¹¹⁹ However, in CD8+ T cells, NKG2D acts as a costimulatory receptor to authenticate the recognition of a stressed target and enhance TCR signaling and T-cell function.^{43,51,120,121} What is more, NKG2D has potential role in CD8+ T-cell memory formation, cancer immunity,

and autoimmunity.¹²² NKG2D can be expressed on the membrane surface of almost all $\gamma\delta$ T cells.¹²³ It interacts with its ligands and then modulate the cytotoxic capacity of $\gamma\delta$ T cells.¹²⁴⁻¹²⁶

The importance of NKG2D in immune surveillance of tumors is highlighted by the observation that NKG2D-deficient mice are more susceptible to the development of oncogene-induced tumors,¹²⁷ and tumors expressing endogenous NKG2D ligands or transfected with NKG2D ligands are sensitive to NKG2D-dependent NK cell-mediated cytotoxicity *in vivo* and *in vitro*.¹²⁸ Besides, the NKG2D pathway can modulate tumorigenesis and tumor progression, which is particularly significant for inhibiting tumor cell metastasis.

4.3.2 | NKG2D ligands

There are two main types of NKG2D ligands in human, MICA/B and ULBP1-6. MICA/B were the proteins encoded by the MHC class I-chain related genes A and B (MICA and MICB), also called PERB11.1 and PERB11.2, respectively.¹⁰⁹ Other six ULBPs have a homology with MICA and MICB that is below 25%, also known as retinoic acid early transcripts (RAET).^{12,118} However, there is no MICA/B in mouse cells, and retinoic acid early inducible-1 (Rae-1) family of proteins, H60, and murine ULBP-like transcript 1 (MULT1), which are similar to the MIC protein, serve as NKG2D ligands in mice.¹²⁹

The human MIC genes are located within the MHC class I region of chromosome 6,¹³⁰ among of them, the MICA and MICB are highly polymorphic^{131,132} and are expressed in a codominant manner.¹³³ Currently, it is believed that MICA and MICB can be transcribed in 7 members of MIC gene (MICA-MICG), while the four genes of MICC, MICD, MICE, and MICG are all pseudogenes.¹³⁴ The MICA and MICB proteins encoded by most alleles have similar domain structure to that of classical HLA class I chains, including three extracellular domains ($\alpha 1-\alpha 3$), a transmembrane domain and a cytoplasmic domain.¹³⁰ However, unlike their classical HLA class I counterparts, MIC neither binds $\beta 2$ microglobulin¹³ nor exhibits conventional class I peptide binding.^{13,135}

NKG2D ligands are poorly expressed on normal cells but can be induced by cellular stress, including heat shock, viral and bacterial infections, and malignant transformation.^{13,136-138} Therefore, they could potentially serve as “danger signals” to alert the immune system the existence of these abnormal cells.^{121,138,139} In healthy individuals, the distribution of MIC was limited to gastrointestinal epithelial cells, endothelial cells and fibroblasts, but the expression levels are low and rare in many cases.¹⁰⁹ They are upregulated when cells undergo malignant trans-

formation or when they are exposed to other forms of stress such as oxidative stress and viral infection.^{32,140} MICA/B are widely expressed on the surface of tumor cells, including lung, breast, gastric, kidney, ovarian, prostate, colon carcinomas, and melanomas.^{51,141}

Increased MICA/B expression in tumor is regulated by the activation of the DNA damage response (DDR) initiated by ATM (ataxia telangiectasia, mutated) or ATR (ATM- and Rad3-related) protein kinases.^{142,143} As the tumor cells have the characteristics of genomic instability and mutagenicity, DDR would be triggered and directly phosphorylate Chk1, Chk2, and so on. The Chk1 would activate transcriptional regulators including the p53 tumor suppressor, p73 and p63, which stimulate the expression of NKG2D ligands.^{143,144} Thus, the pharmacological or genetic inhibition of ATR, ATM, or Chk1 could suppress the downstream mediators of these pathways, and then prevent the upregulation of the NKG2D ligands.¹⁴⁵ In clinic, some adjuvant treatment options such as chemotherapy, radiation therapy, hormone therapy, and/or immunotherapy can induce or enhance MICA and MICB expression through genomic damage pathways.¹⁴⁶

MICA/B and sMICA/B, which represent the biological behavior centered on cancer cells and the state of tumor immune surveillance, may have predictive value for cancer patients. Regarding MICA/B expression as identified by immunohistochemistry, a higher level of MICA/B expression was linked to a longer survival in gastrointestinal malignancies. But when all cancer types were taken into account, there was no statistically significant difference seen for the MICA/B expression level.¹⁴⁷ In addition to the membrane-bound form, a soluble isoform of MICA/B (sMICA/B) exists in the serum. In comparison with MICA/B, soluble MICA/B is a more accurate prognostic predictor.¹⁴⁷ There is a negative correlation between sMICA/B levels and patient prognosis, and higher levels predict poorer outcomes.

The type I membrane glycoprotein UL16, which is only expressed in HCMV-infected cells and not in viral particles, is encoded by the human cytomegalovirus (HCMV).¹⁴⁸ Cosman et al.¹²⁹ discovered and named two ULBPs, ULBP1 and ULBP2, using UL16-FC fusion proteins. ULBP is a class of human cell surface molecules. There have been four ULBP molecules found thus far, which are ULBP1, ULBP2, ULBP3, and ULBP4. According to assessments of amino acid sequences, ULBPs and MICA are 23–26% similar. They also feature $\alpha 1$ and $\alpha 2$ domains, just like MHC-I molecules, but they lack $\alpha 3$ domains,¹²⁹ do not bind $\beta 2$ microglobulin, and do not have peptides.¹³² ULBP1, ULBP2, and ULBP3 are GPI-linked membrane proteins, while ULBP4 is a transmembrane protein.¹⁴⁹⁻¹⁵¹ Murine ULBP-like transcript 1 (MULT1) was also discovered in 2002. Although it has a large

intracellular domain, its sequence bears a strong resemblance to ULBP3.¹⁵²

In contrast to MIC, ULBP is expressed more broadly in a range of normal tissues as well as malignancies. Numerous normal organs, including the heart, lung, testis, bone marrow, and thymus, have been demonstrated to express ULBP mRNAs.¹²⁹ Crucially, HCMV-infected cells can generate ULBP1, ULBP2, and ULBP3.^{153,154} Consequently, ULBP is crucial to the process of viral infection and the escape of the HCMV from immune surveillance.¹⁵³

David Cosman and Marek Kubin found that tumor cells that were resistant to NK cells could be effectively lysed when transfected with ULBPs, and that the pathway was dependent on NKG2D.^{129,149} All of this suggests that ULBPs may have roles in the immune system's defense against viruses and cancer. NK cell production of cytokines and chemokines is stimulated by ULBPs, and NK cell cytotoxicity is conferred onto NK cell-resistant target cells that express ULBPs.¹⁵⁵ What is more, according to earlier studies, free soluble ULBPs (sULBPs) can activate NKG2D, causing NK cells to release cytokines such IFN- γ , TNF- α , and MIP-1 β .¹⁵⁶

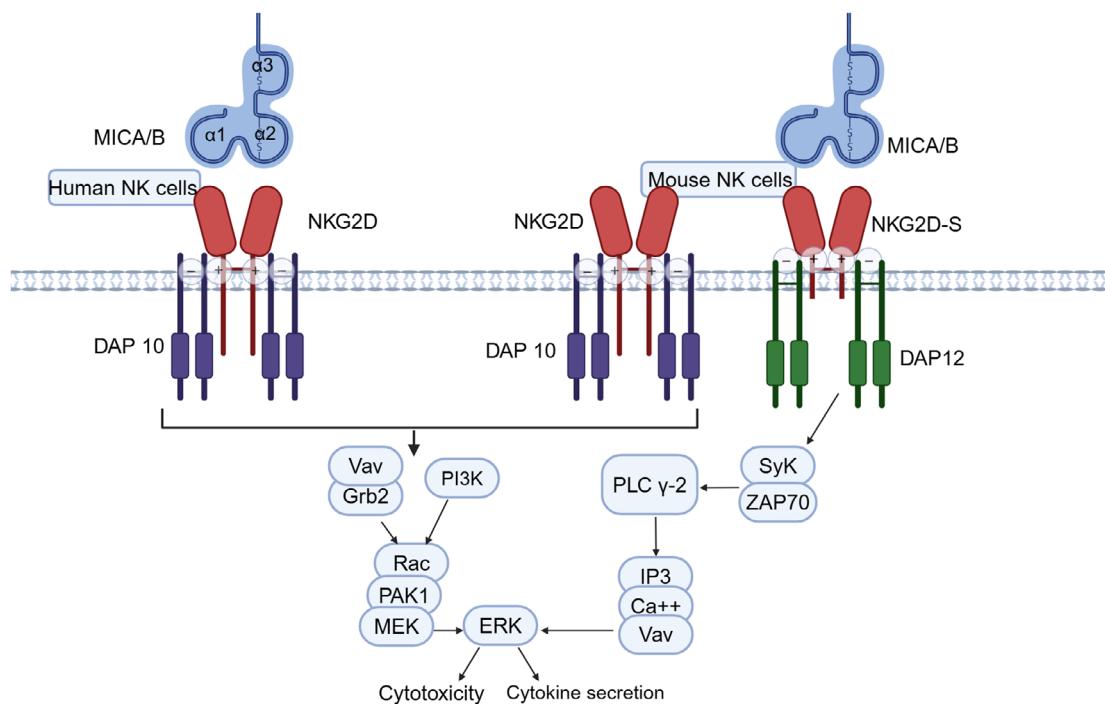
4.3.3 | Signal transduction through NKG2D

NKG2D is a homologous dimer composed of two disulfide bonded transmembrane proteins with a very short intracellular domain and no signal transduction properties.⁵⁰ In mouse and human cells, stable surface expression of NKG2D requires a complex formation of NKG2D dimer with a Tyr-X-X-Met (YXXM) adaptor signaling molecule DAP10.¹²⁸ The NKG2D-DAP10 receptor complex is expressed on the cell surface as a hexamer, with 2 NKG2D and 4 DAP10 molecules (Figure 3). Each subunit of NKG2D noncovalently associated with two DAP10 disulfide-bonded homodimers. This association occurs by interactions between their transmembrane domains through a salt bridge formed by opposing charged residues.^{157,158} Upon ligand engagement of NKG2D, DAP 10 is phosphorylated by src-family kinases, which permits the recruitment of the p85 phosphoinositide-3 kinase (PI3) subunit and the signaling intermediate Grb2-Vav 1 to fully activate NK cell cytotoxic pathways.¹⁵⁹

Specifically, activated mouse NK cells also express a splice variant NKG2D-S, which is 13 aa shorter than normal NKG2D and signals through either DAP10 or the ITAM-containing adaptor molecule DAP12,^{160,161} which, after phosphorylation, recruits and activates ZAP70 and Syk.¹⁶² Therefore, in activated mouse NK cells, NKG2D-dependent activation uses both the PI3K and the Syk/ZAP70 pathway through DAP10 and DAP12,

respectively, while in human NK cells only the PI3K kinase pathway through DAP10 is engaged (Figure 3).

5 | MECHANISMS OF TUMOR IMMUNE ESCAPE FROM NK CELL


5.1 | Downregulation of ligands for activating NK cell receptors

NK cells express a variety of activating receptors, such as NKG2D, NKp44, NKp46, and NKp30,^{5,75,81} which initiate NK cell killing when engaged by their ligands on tumor cells. These ligands are typically stress-induced proteins or molecules that are upregulated on infected or transformed cells. Tumor cells can downregulate or lose expression of these ligands and prevent the engagement of activating receptors on NK cells, leading to reduced NK cell activation and impaired tumor cell killing.

As the most studied activating receptor of NK cells, NKG2D plays a key role in tumor escaping from NK cells. Thus, we take the NKG2D for example,^{51,120,121} and introduce various mechanisms that tumor cells could escape from NKG2D recognition.

5.1.1 | Proteolytic shedding of MICA/B

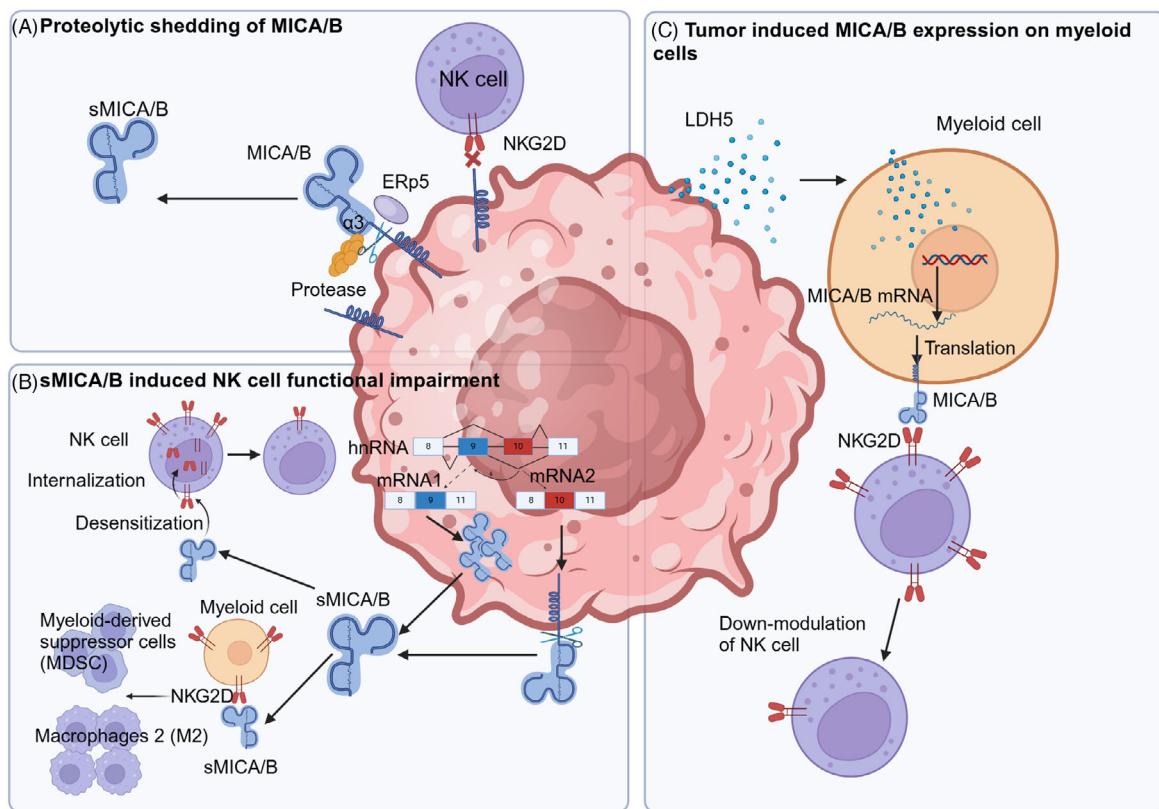
The ectodomains of MICA/B consist of three C-type Ig-like domains termed α -1, α -2, and α -3 domains.¹⁶³ The α -1 and α -2 domains are relatively distant from the cellular membrane and serve as NKG2D binding sites, whereas the membrane-proximal α -3 domain is responsible for the proteolytic cleavage.¹⁶³ The linear stalk in-between the α -3 domain and the transmembrane domain have putative proteolytic cleavage sites.¹⁶⁴ MICA/B shedding is a multistep process that initiated by ERp5 and subsequently sliced by metalloproteases (MPs) (Figure 4A). The disulfide isomerase ERp5 removes the disulfide bond between the amino acid residues 202 and 259 in α -3 domain.¹⁶⁵ The removal of this disulfide bond likely unfolds the α -3 domain and exposes the proteolytic cleavage site. Then, MPs, including MMP14, ADAM10, and ADAM17,^{166,167} cut MICA/B somewhere in the stalk close to the α -3 domain, and release the entire extracellular portion of MICA/B.³ It is suggested that these MPs were activated by cytokine pathways. TGF- β 1 negatively affects the expression of these NKG2DL on tumor cell surface by promoting the expression of MMPs, which leads to the MICA abscission. The shedding of MICA/B could also form soluble MICA/B, which function to desensitization of NK cells (detailed in Section 5.3).

FIGURE 3 MICA/B-NKG2D signaling in NK cells. MICA/B on tumor cells can be recognized by NKG2D. NKG2D functions by binding to DAP10 and DAP12 through a salt bridge formed by opposing charged residues in their transmembrane domain. The cytoplasmic domain of DAP10 has a YxxM motif, which recruits the p85 PI3K subunit and Grb2. Besides, an NKG2D isoform generated by alternative splicing can also associate with DAP12 in activated mouse NK cells. DAP12 has an ITAM in its cytoplasmic domain, which recruits and activates the Syk and ZAP70 protein tyrosine kinases. These two signaling pathways ultimately lead to cytokine production and cytotoxicity of NK cells.

5.1.2 | Inhibiting MICA/B transcription and translation

Numerous ways by which tumor cells suppress the transcriptional expression of the MICB ligand have been discovered. microRNAs (miRNAs) are able to posttranscriptionally control the expression of ligands. Furthermore, genetic changes such as epigenetic modifications can also block the expression of the ligand.

MiR-10b, a metastasis-associated miRNA, has been found to directly bind to the 3' untranslated (UTR) region of MICB, leading to its downregulation, then diminish NKG2D recognition.¹⁶⁸ Additionally, nine novel miRNAs (miR-320c, miR-320a, miR-320b, miR-320c, miR-320d, miR-542-3p, miR-641, miR-661, and miR-940) have been identified as posttranscriptional regulators of MICB expression through both the 3'-UTR and 5'-UTR.¹⁶⁹ This process may involve epigenetic modifications, as suggested by the upregulation of miR-127, a potential tumor suppressor, by chromatin-modifying drugs.¹⁷⁰ Furthermore, the role of aberrant DNA hypermethylation in the regulation of miRNA expression in cancer has been explored, indicating a potential mechanism for the downregulation of MICB.¹⁷¹


MiR-10b, a metastasis-associated miRNA, has been found to directly bind to the 3'-UTR region of MICB,

leading to its downregulation, then diminish NKG2D recognition.¹⁶⁸ Additionally, nine novel miRNAs (miR-320c, miR-320a, miR-320b, miR-320c, miR-320d, miR-542-3p, miR-641, miR-661, and miR-940) have been identified as posttranscriptional regulators of MICB expression through both the 3'-UTR and 5'-UTR.¹⁶⁹ This process may involve epigenetic modifications, as suggested by the upregulation of miR-127, a potential tumor suppressor, by chromatin-modifying drugs.¹⁷⁰ Furthermore, the role of aberrant DNA hypermethylation in the regulation of miRNA expression in cancer has been explored, indicating a potential mechanism for the downregulation of MICB.¹⁷¹

5.2 | Overexpression of ligands for inhibiting NK cell receptors

In addition to avoid from activating NK receptors, tumor cells can upregulate the expression of inhibitory ligands, such as HLA-G (ligand for KIR), HLA-E (ligand for NKG2A/CD94), or PD-L1, which engage inhibitory receptors on NK cells, resulting in the inhibition of NK cell cytotoxicity.¹⁷²

HLA-G, a nonclassical human leukocyte antigen, may be a predictive marker for certain malignancies due to its association with suppressed immune response and

FIGURE 4 Mechanisms of tumor immune escape associated with MICA/B. (A) Proteolytic shedding of MICA/B. Shedding of surface MICA/B by protease makes NK cells unable to recognize tumor cells. MICA/B shedding is initiated by binding of disulfide isomerase ERp5. Upon the unfolding by ERp5, metalloproteases (MMP14, ADAM10, ADAM17, etc.) cut MICA/B somewhere in the stalk, thus releasing the entire extracellular portion of MICA/B. (B) sMICA/B induced NK cell functional impairment. Large amounts of sMICA/B in the tumor microenvironment desensitizes NK cells and promotes suppressive myeloid cells. sMICA/B could be generated through alternative splicing or shedding of membrane MICA/B. These sMICA/B binds to NKG2D on the surface of NK cells, desensitizing NK cells by NKG2D internalization. It can further promote the expansion of MDSC and skew M2 macrophages generation by directly act on NKG2D expressed on these myeloid cells. (C) Tumor induced MICA/B expression on myeloid cells. The release of LDH5 by tumor cells induce the expression of MICA/B on the surface of myeloid cells, which causes the downmodulation of NKG2D on NK cells, preventing their recognition of NKG2D ligand-bearing tumors.

malignant transformation.¹⁷³ Immune evasion and tumor progression is further facilitated by HLA-G overexpression in various tumors and its interaction with KIRs on immune cells.^{174,175} This overexpression is influenced by epigenetic mechanisms (DNA methylation and histone modifications),^{176,177} and tumor microenvironmental factors,^{178–180} particularly hypoxia, which stabilizes the hypoxia-inducible factor 1 (HIF-1 α) and other factors, leading to increased HLA-G expression.¹⁸¹ Accordingly, a particular hypoxia responsive element (HRE) in exon 2 are required for HLA-G overexpression in glioma cells.¹⁸² Stabilized HIF-1 α translocates into the nucleus under hypoxic circumstances, where it binds to HIF-1 β . HIF1 α / β then activates transcription through recognizing HREs.¹⁸³ Furthermore, the response may be amplified by a polymorphism HRE at -966 bp in the 5'UT region.¹⁸² These results demonstrate the potential of HLA-G as a therapeutic target for cancer.

Numerous variables influence the upregulation of HLA-E. HCMV has been shown to increase HLA-E surface expression, possibly as a means of immune evasion.¹⁸⁴ Marín et al.¹⁷² further showed that the availability of free β 2-microglobulin in tumor cells, especially those with HLA-class Ia downregulation, is correlated with HLA-E expression. This implies that HLA-E may play a part in tumor immune escape.¹⁷² Hofer et al.¹⁸⁵ demonstrated that hypoxia can increase the expression of erythroid 5-aminolevulinate synthase, a heme biosynthesis-related enzyme that may have an indirect effect on the expression of HLA-E.¹⁸⁵ All of these findings point to the complexity of HLA-E upregulation as a process that is impacted by cellular stress, tumor cell properties, and viral infection.

The upregulation of PD-L1 in tumor cells is a complex process involving various mechanisms. Concha-Benavente et al.¹⁸⁶ highlight the role of JAK/STAT signaling pathways, IFN- γ , and specific receptors like the epidermal

growth factor receptor (EGFR) in inducing the expression of PD-L1. NF- κ B, a master transcription factor of inflammation and immunity, is emerging as a key positive regulator of PD-L1 expression in cancer.¹⁸⁷ NF- κ B directly induces PD-L1 gene transcription by binding to its promoter, and it can also regulate PD-L1 posttranscriptionally through indirect pathways. Scientists also discovered that truncating the PD-L1 3'UTR can alleviate the PD-L1 suppression caused by miRNA, resulting in its overexpression.¹⁸⁸ What is more, epigenetic modifications, such as DNA methylation and histone modifications are also involved in regulating PD-L1 expression.¹⁸⁹

5.3 | Production of immunosuppressive factors

Immunosuppressive tumor microenvironment is created by the secretion of immunosuppressive substances by tumor cells, such as TGF- β , IL-10, indoleamine 2,3-dioxygenase (IDO), PGE2, or adenosine. These elements may directly hinder the function of NK cells or recruit immune-suppressive cells that block NK cell activity, such as regulatory T cells (Tregs) or myeloid-derived suppressor cells (MDSCs).^{190,191}

TGF- β 1 is a secretory immune-suppressive characteristic shared by Treg and TAM cells in the tumor microenvironment,¹⁹² which causes the downregulation of NKG2D on NK cells and CD8+ T cells in the tumor microenvironment.^{193,194} When NK cells are activated, TGF- β 1 limits the production of IFN- γ , suppresses cytotoxic activity, hinders the release of cytotoxic granules, and lowers the expression of activating receptors that are cytotoxic.^{195–198} IL-10 encourages the development of Tregs, and has similar immunosuppressive effects on NK cells.^{190,191}

PGE2 and L-kynurenine (the tryptophan catabolite generated from the IDO-1) also have immunomodulatory properties. The expression and function of various activating NK receptors, including NKp46, NKp44, and NKG2D, are significantly impacted by both factors.^{199,200} Specifically, DC that express IDO have a profoundly suppressive effect on the immune system by influencing the growth and effector capabilities of NK cells as well as triggering the transformation of CD4+ T cells into Treg.²⁰¹ Both adenosine (an endogenous purine nucleoside that is highly produced by tumors expressing CD39 and CD73) and macrophage migration inhibitory factor (also known as glycosylation-inhibiting factor)²⁰² have been shown to inhibit cytotoxicity and cytokine production in human NK cells. The former is primarily due to the engagement of the adenosine receptor 2A (AdoR2A) on NK cells, which is coupled to adenylyl cyclase via Gs protein.^{203,204}

Soluble NKG2D ligands have been detected in the serum of patients with multiple types of cancer.²⁰⁵ Soluble MICA/B could be generated through shedding of membrane MICA/B by certain proteases. Furthermore, the soluble NKG2D ligands could also be generated by alternative splicing of certain MIC genes, resulting in the generation of transcripts lacking a transmembrane and cytoplasmic domain that finally produce a soluble MICA/B protein.¹²⁸ These soluble NKG2D ligands (sMICA and sMICB) can bind to NKG2D, lead to downmodulation of NKG2D and subsequent functional impairment of NKG2D-dependent activation, and finally facilitate tumor progression^{206–211} (Figure 4B). Other studies also reveal that sMICA/B can also facilitate MDSCs differentiation and expansion through directly activates NKG2D on myeloid cells.²¹² In addition, sMICA/B further skews macrophages to the suppressive alternative phenotype through activation of STAT3.²¹² Thus, through suppression antitumor immunity and exacerbating tumor suppressing cells, sMICA/B promotes tumor progression. Clinical data demonstrated that higher serum soluble MICA of melanoma patients indicate less benefits following immunotherapy with T-cell checkpoint blockade, indicating that MICA/B shedding is a new therapeutic target in cancer immunology.²¹³

Beside tumor cells, MICA/B could be expressed on immune cells in the TME. Lactose dehydrogenase (LDH) 5 released from tumor cells can induce expression of NKG2D ligands on the surface of monocytes.¹²⁷ Expression of NKG2D ligands by myeloid cells causes the downmodulation of NKG2D on NK cells, preventing their recognition of NKG2D ligand-bearing tumors, and finally impairs their ability to attack and eliminate tumors, facilitates tumor immune escape (Figure 4C). In clinic, monocytes are found to express NKG2D ligands in patients with several types of cancer including glioblastoma, breast cancer, prostate cancer, and hepatocellular carcinomas,¹²⁷ suggesting it may represent a common mechanism of immune evasion. Blocking LDH5 to preserve the lethality of NK cells may improve the survival of cancer patients.

Due to the suppressive milieu these immunosuppressive substances produce, NK cells' ability to perform effector functions is compromised, which allows tumor cells to evade detection and destruction. In order to restore NK cell function and boost antitumor immune responses, strategies for countering the effects of these immunosuppressive substances are being investigated.

5.4 | Resistance to NK cell-mediated killing

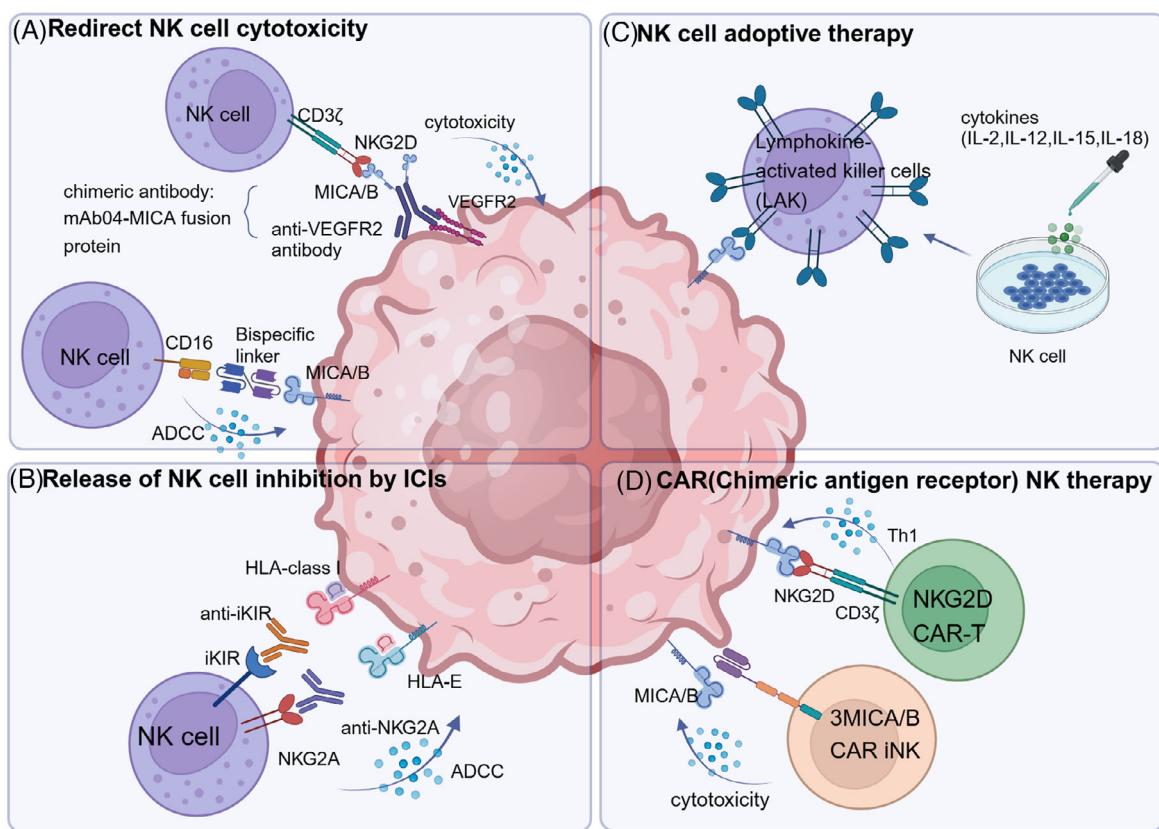
Tumor cells can even avoid NK cell effector activity following target cell recognition.²¹⁴ All forms of cancer

have different mechanisms that impart apoptotic resistance, impacting both the intrinsic (via mitochondria) and extrinsic (through death receptors) pathways.²¹⁵ The primary mechanisms of resistance to NK cell-related apoptosis include genetic background and modified expression patterns of pro- and antiapoptotic proteins.

Throughout the course of cancer development, tumor cells experience a wide range of genetic and epigenetic changes that impact the genes regulating apoptotic signaling pathways at various levels.²¹⁶ One typical method of inhibiting tumor cell death is to disrupt caspase activity, usually by genetic alterations.²¹⁴ For example, human malignancies have significant levels of caspase-8 mutations.²¹⁷ Molecules that inhibit the apoptotic cascade may exhibit aberrant activity in tumor cells, rendering them resistant to planned cell death. Furthermore, resistance to NK cell-mediated apoptosis is caused by tumor cells' downregulation or inhibition of proapoptotic proteins. Colon and stomach tumors with microsatellite instability have been shown to harbor frameshift mutations that inactivate the proapoptotic protein Bax.²¹⁸

The engagement of death receptors, which transduce the death signal to intracellular components of the route, is necessary for the activation of the extrinsic apoptotic cascade. As a result, when these receptors are inactivated, apoptosis is dysregulated, which is a tactic connected to the development of tumors. In a range of solid tumors and hematological malignancies, high expression of antiapoptotic proteins such as c-FLIP, which impedes TRAIL-mediated apoptosis, has been linked to apoptosis resistance and a poor prognosis.^{219–221} In a PRF1-deficient mouse model, c-FLIP overexpression prevented tumor cells from being lysed by NK cells *in vivo*, emphasizing the significance of this protein's function in malignancy.²²²

Furthermore, tumor cells have developed unique tactics to obstruct the activity of granzymes and/or perforin, which allows for immune escape.²¹⁴ Such NK cell sculpting can be accomplished directly by means of soluble substances released by cancer cells, for example, or indirectly by recruiting suppressor cells that obstruct NK cell antitumor action. MDSCs from mice having mammary cancer were shown to lower PRF1 levels in NK cells through coculture tests, which was correlated with a decrease in NK cell cytotoxicity *in vivo*.²²³ Besides, the unfavorable tumor microenvironment could obstruct the degranulation process, actively promoting tumor resistant to NK cell-mediated apoptosis. The activation of autophagy in hypoxic human breast cancer cells was found to enhance GZMB breakdown. The killing ability of NK cells *in vivo* was restored by inhibiting autophagy by specifically target-

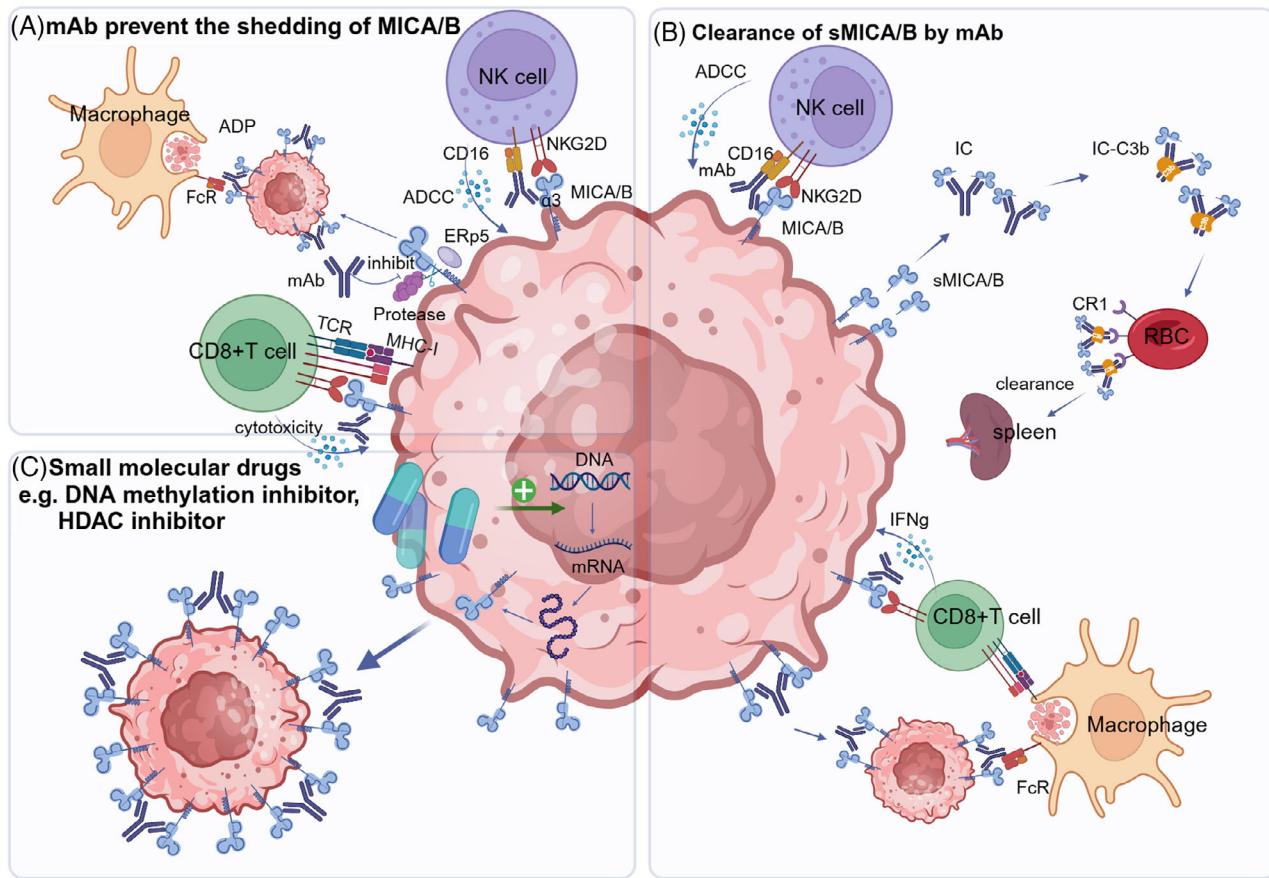

ing beclin1, a crucial regulator of autophagosome formation. Additionally, the presence of GZMB in hypoxic tumor cells *in vitro* was also restored.^{224,225} Various GZM family members are suppressed by serine protease inhibitors. Protease inhibitor 9 (Serpine B9) primarily targets GZMB's proteolytic action. Tumor cell lines expressing Serpin B9 demonstrated greater resistance to GZMB-induced apoptosis, suggesting that this evasion tactic may reduce NK cells' capacity to kill tumors by blocking the degranulation pathway.²²⁶ The effectiveness of ADCC-based therapeutics is restricted by resistance mechanisms that target PRF1 and GZM, as ADCC-mediated cytotoxicity is dependent on these immune mediators.^{227,228}

Chronic stress conditions like hypoxia or oxidative stress are often seen in the TME, and they can have a deleterious effect on the antitumor function of NK cells directly or through other cell subsets.²²⁹ Apoptosis is regulated by a few key proteins, and hypoxia tips the scales in favor of an antiapoptotic cellular state. Reduced amounts of proapoptotic BCL2 family members, like Bax, are seen in hypoxic tumor cells.²³⁰ In contrast, hypoxic tumor cells have higher levels of a number of antiapoptotic proteins, such as Mcl-1 and c-IAP2.^{231,232} It's interesting to note that cancer resistance to NK cell-mediated apoptosis is influenced by nonimmune cells from the tumor location, such as CAFs.²³³

6 | NK CELL-BASED IMMUNOTHERAPEUTIC STRATEGIES

Nowadays, only a subset of patients responds to current immunotherapy mediated by immune checkpoint inhibition, and many responders acquire resistance after initial responses.^{234–236} Immune checkpoint inhibition relies on the tumor expression of peptide-MHC complex on tumor cells. Those tumors possess impaired antigen presentation would fully escape the killing by CD8+ T cells. Thus, alternative immunotherapies with distinct mechanisms could effectively treat the resistant patient population.

Nearly 20 years ago, NK cell-based immunotherapy of cancer emerged as an effective and safe treatment approach for patients diagnosed of leukemia.²³⁷ Despite NK cell therapies' lower level of clinical success when compared with T cell therapy, their early preclinical and clinical successes have sparked growing interest in their potential. Various strategies include redirecting NK cell activity against tumor cells, releasing inhibitory signals that limit NK cell function, creating large-scale NK cells for adoptive transfer and cultivating an environment beneficial to NK cell activity.


FIGURE 5 NK-based immunotherapies. (A) Bispecific proteins (BiKE) recognize tumor antigens on one arm and bind to activating NK cell receptors on the other arm, which redirects NK cell cytotoxicity toward tumor cells and promotes the interaction between NK cells and tumor cells. Considering the power of ADCC, some bispecific proteins have been designed to provide stronger binding to CD16 than conventional antibodies. Chimeric antibody anti-VEGFR-MICA fusion protein cover VEGFR expression tumor cells with MICA, and sensitize them to NKG2D-mediated killing. (B) Immune checkpoint inhibitors (ICI), which block inhibitory checkpoints with therapeutic antibodies, have greatly unleashed NK cell antitumor potential and improved cancer immunotherapy. Monoclonal antibodies that target KIR and NKG2A have been developed to block their interaction with HLA I-class molecule on the tumor cells, improve NK cell effector functions and ADCC. (C) NK cell adoptive therapy: Infusing ex vivo cytokines (such as IL-2, IL-12, IL-15, and IL-18) can stimulate NK cells to become lymphokine-activated killer (LAK) cells. Then, reinfuse these cells back into patients for greater cytotoxicity against malignant targets. (D) Chimeric NKG2D connects NKG2D to the CD3 ζ chain on the surface of NK cells, then lyses target cells in a NKG2D ligand-dependent manner. 3MICA/B CAR, a novel CAR targeting the conserved α 3 domain of MICA/B (3MICA/B CAR iNK), into a multiplexed-engineered induced pluripotent stem cell (iPSC)-derived NK cell (3MICA/B CAR iNK).

6.1 | Engagement of activating receptors on NK cells

To increase NK cell activity *in vivo*, a variety of activating and costimulatory receptors expressed by NK cells like CD16 and NKG2D can be targeted with antibodies, soluble ligands, and other bioactive compounds.

One way to redirect NK cell cytotoxicity toward tumor cells is through bispecific (BiKE) and/or trispecific engagers (TriKE) to engage an NK cell response.²³⁸ Bispecific proteins recognize tumor antigens on one arm and bind to activating NK cell receptors on the other arm, which promotes the interaction between NK cells and tumor cells (Figure 5A). It has been demonstrated that

a CD16-targeting and CD33-targeting BiKE is efficacious against MDS and AML blasts in AML, especially when used in conjunction with an inhibitor of the disintegrin and MP domain-containing protein 17 (ADAM17), which maximizes ADCC activation.²³⁹ In vitro, AFM24, an IgG1-scFv fusion antibody that targets both EGFR on tumor cells and CD16 on innate immune cells, was extremely effective in triggering ADCC through NK cells.²⁴⁰ In order to improve antigen specificity and NK cell persistence *in vivo*, Vallera et al.²⁴¹ have created a TriKE, which consists of two antibody fragments directed against CD16 and CD33 along with IL-15, which can activate and expand NK cell populations. It is presently undergoing phase I trials for a variety of CD33 $^+$ hematological malignancies (NCT03214666).

FIGURE 6 Innovative immunotherapeutic strategies targeting MICA/B. (A) Monoclonal antibodies targeting MICA/B α -3 domain can prevent the shedding of MICA/B. The 7C6 mAb increases their cell surface density, and finally increase their binding and activation of NKG2D on NK cells and CD8+T cells. Besides, the mAb also triggers ADCC through Fc receptors on NK cells and ADP. (B) Ab-mediated clearance of sMICA/B. B10G5, a mAb which targets at sMICA/B, could neutralize free sMICA/B, antagonize immune suppression and result in a recovery of NK and CD8+ T cell-mediated cytotoxicity. Moreover, B10G5 trigger ADCC, and also opsonize DC to enhance antigen cross-presenting to CD8 T cells. (C) Small molecular drugs promote MICA/B transcription. Certain DNA methylation inhibitors and HDAC inhibitors could potently increase MICA/B expression on the tumor cells, thereby promoting the tumor immunity of NK cell and CD8+T cell.

Among immunotherapy with activated receptors, NKG2D-MICAB has been studied the most. The NK cell engagers, which contains Fab fragments binds to HER2 on tumor cells and NKG2D on NK cells, thereby inducing cytotoxicity through NK cells.²⁴² In recent years, NK cell recognition of tumor cells can be enhanced by MICA α 1- α 2 and anti-VEGFR2 bispecific protein.^{243,244} This mAb04-MICA fusion protein comprises full-length human anti-VEGFR2 antibodies and MICA α 1- α 2 ectodomain, which displayed antineoplastic activity through VEGFR2 and NKG2D targeting^{243,244} (Figure 5A). The fusion protein enables tumor cells with VEGFR2 to be recognized by NKG2D on NK cells. It can inhibit the proliferation of tumor and tumor angiogenesis in gastric cancer and non-small cell lung cancer, and also promote intratumoral NK and T cell infiltration and activation, resulting in efficient tumor suppression.

6.2 | Engagement of NKG2D ligands

6.2.1 | Antibodies preventing the shedding of MICA/B

Recently, mAbs targeting the conserved, membrane-proximal α 3 domain of MICA/B are found to prevent MICA/B shedding and enhance NK cell antitumor efficacy. Mice are immunized with the recombinant MICA α 3 domain and three mAbs (7C6, 6F11, and 1C2) are identified that bind to the α 3 domain, the extracellular domain that interacts with ERp5 to initiate cleavage.²⁴⁵ Among these mAbs, 7C6 is most effective in stabilizing MICA and MICB.¹⁶⁴

Humanized 7C6 mAb (hIgG1) could activate NK cells through two important receptors, the NKG2D and CD16 Fc receptors (Figure 6A and Table 2). The mAbs could inhibit

TABLE 2 Therapies targeting NKG2D and MICA/B.

Category	Drug name	Target	Mechanism	References
Monoclonal antibody (mAb)	7C6	MICA/B $\alpha 3$ domain	Prevent MICA/B shedding and enhance NK cell antitumor efficacy	246
Antibody	B10G5	sMICA/B	Neutralize free sMICA/B	247
Epigenetic drug	Deoxycytidine	DNA	Inhibit the DNA methylation, thus increase MICA and MICB expression	248
Epigenetic drug	Panobinostat	HDAC	Inhibit HDAC and potently increase MICA/B expression	120, 162
CAR NK	3MICA/B CAR	MICA/B $\alpha 3$ domain	Induce NKG2D-bearing NK cells into body to improve the immune function of NK cell	249
Vaccine	MICB-vax vaccine	MICA/B $\alpha 3$ domain	Induce high-titer antibodies targeting at $\alpha 3$ domain, inhibit the proteolytic shedding	250
BLS-MICA	BLS-MICA	MICA/B full domain	Induce high-titer antibodies targeting at $\alpha 3$ domain, interfere with a tumor-immune escape mechanism through scavenging of sMICA from serum	251

MICA/B shedding, increase their cell surface density, and finally increase their binding to NKG2D on NK cells. Meanwhile, the 7C6 mAb also triggers ADCC through Fc receptors on NK cells.²⁴⁶ Thus, 7C6 could increase NK cell cytotoxicity through stabilizing MICA/B and ADCC. Of importance, they do not obstruct NKG2D to bind to the $\alpha 1$ and 2 domains.³

Besides NK cells, the 7C6 mAb is proposed to activate other immune cells including macrophages and CD8+ T cells, which further promotes the antitumor immunity (Figure 6A). The 7C6 mAb binds surface MICA/B in tumor cells, which in turn are phagocytosed by macrophages on Fc receptor engagement, which is named antibody-dependent phagocytosis (ADP).²⁴⁶ Furthermore, NKG2D is expressed by CD8+ T cells and provides costimulation.^{51,137} Therefore, inhibition of MICA/B shedding may also promote CD8+ T-cell-driven immunity and enhance the therapeutic efficacy of T-cell checkpoint blockers and serve as an alternative for cancer patients who are resistant to PD-1/PD-L1 antibodies. Combination of 7C6 and PD-1 checkpoint therapy may exert more robust synergistic effect.

6.2.2 | Antibody-mediated clearance of sMICA/B

Proteolytic proteases-mediated tumor-shedding of sMICA/B accounted for one of the major mechanisms for MICA/B tumor evasion of NKG2D immune surveillance.²⁴⁷ The soluble NKG2D ligands (sMICA and sMICB) have been shown to subvert antitumor immunity through multiple mechanisms, including downmodulation of NKG2D on NK and CD8+ T cells, and expansion of suppressive MDSC and M2 macrophages.²¹²

B10G5 is a mouse IgG1 isotype, recognizing both MICA and MICB, thus could neutralize free sMICA/B^{211,252} (Figure 6B) (Table 2). The soluble antigen–antibody complex (IC) binds to C3b, and adheres to the surface of RBCs and platelets then phagocytosed and cleared by macrophages in the spleen, thus rescue the tumor immune suppression induced by sMICA/B.²⁵³ Recently, researchers have generated a “humanized” mouse model that expresses human MICA/B. The model has successfully demonstrated that therapy with the sMICA/B nonblocking monoclonal B10G5 can effectively induce regression of advanced primary tumors and eliminated metastasis.²⁴⁷ The therapeutic effect is conferred by unleashing endogenous antitumor immune responses.

B10G5 and NKG2D recognizes different epitopes of MICA/B,²⁴⁷ thus B10G5 does not block the NKG2D-mediated NK cell cytotoxicity. It promotes the NKG2D-MICA/B connection by ADCC, thus further enhance

susceptibility of MICA/B-tumor cells to NK cell killing.²⁴⁷ B10G5 also significantly increased the population of NKG2D+ CD8 T cells in the periphery, and revived cytotoxic CD8 T-cell antitumor responses (Figure 6B). In addition, it could potentiate CD4 T cells to Th1 responses in the tumor dLNs, resulting in significant increase in CD4 T cells with CD44hi memory phenotype. These effects may function through opsonized phagocytosis by dendritic cells and enhanced antigen presentation and cross-presenting to CD4 and CD8 T cells.^{254,255} Furthermore, B10G5 also could eliminate arginase I+ immune suppressive myeloid cells in tumor parenchyma.²¹²

Recently, it has been shown that Ab-mediated blockade of CTLA4 in mouse models could boost antitumor immunity in patients with melanoma.^{256,257} Notably, administration of anti-CTLA4 mAb spontaneously induced anti-MICA antibodies, which could clear soluble MICs, antagonize immune suppression and enhance innate and adaptive antitumor cytotoxicity. Thus, antibody-mediated clearance of soluble MICA/B is also involved in other immunotherapeutic strategies.

6.2.3 | Small molecules promoting MICA/B transcription

As MICA/B expressing tumor cells are more sensitive to NK cytotoxicity, many epigenetic drugs are found to increase MICA and MICB expression and exert antitumor effects (Figure 6C). Deoxycytidine, a DNA methylation inhibitor, could increase the cell-surface MICB expression and sensitize the cells to NK cell-mediated cytotoxicity²⁴⁸ (Table 2). HDAC inhibitors also potently increase MICA/B expression by several cancer types, thereby promoting NK-cell-driven immunity.^{258–261} Panobinostat and romidepsin, two broad-spectrum HDAC inhibitor, increased MICB mRNA in AML cells and enabled subsequent stabilization of the translated MICB protein by 7C6. Combined use of 7C6 and panobinostat substantially increased surface MICA/B expression in human AML cells^{120,162} (Table 2).

Several other drugs could also increase MICA/B expression by human cancers. Dacarbazine could upregulate the NKG2D ligands on tumor cells to activate NK and CD8 T Cells and restrain melanoma growth.²⁶² Poly (ADP-ribose) polymerase 1 inhibitors could induce the expression of NKG2DLs on leukemic stem cells to inhibit AML recurrence.²⁶³ In addition, proteasome inhibitors could augment the NKG2D ligand expression in multiple myeloma.²⁶⁴ All of them can be combined with 7C6 anti-MICA/B antibodies to eliminate tumors by activating NK cell and converting “cold” tumors to “hot” tumors.¹⁰⁹

6.3 | Release of NK cell inhibition

NK cell function is often restricted by signaling through inhibitory receptors and immunological checkpoints; hence, inhibiting these pathways can unleash NK cell antitumor potential. Clinical-grade mAbs that target KIR and NKG2A have been developed with the intention of enhancing or unleashing the antitumor NK cell function (Figure 5B).

Lirilumab, a mAbs targeting KIRs (specifically inhibitory KIR2DL1, KIR2DL2, and KIR2DL3), is a fully human IgG4 antibody and has demonstrated therapeutic potential in preclinical rodent models of AML²⁶⁵ and multiple myeloma in synergistic with lenalidomide.²⁶⁶ Despite favorable results from phase I clinical trials, Lirilumab as monotherapy did not increase leukemia-free survival in elderly patients with AML, according to recently published data from the French study EFFIKIR.²⁶⁷ Currently, more preclinical and clinical research is required to identify the best ways of Lirilumab therapy, as well as its indications.

As an increasingly recognized immunological checkpoint, NKG2A and its ligand HLA-E have been the focus of mAbs used in cancer immunotherapy. Monalizumab, an IgG4 blocking mAb against NKG2A, improves NK cell effector functions and stimulates effector T cell responses combined with anti-PD1.²⁶⁸ S095029, a new Fc-silenced NKG2A-blocking antibody with clinical development potential,²⁶⁹ counteracts the inhibitory effects of the NKG2A/HLA-E interaction in multiple experimental models. Phase 1 dose escalation studies are presently being conducted to assess S095029 as a single drug or in conjunction with anti-PD-1 therapy (NCT05162755).²⁶⁹ According to Ghaffari's research, a TCR mimic antibody called EXX-1 that binds to the NKG2A ligands had encouraging antitumor properties.²⁷⁰ In addition to inhibiting the NKG2A pathway, EXX-1 Fc antibody probably causes tumor cell death via ADCC.

6.4 | NK cell adoptive therapy

Due to the potent killing activity of NK cells, NK cell adoptive transfer therapy has emerged as a prominent focus in the field of tumor immunotherapy. It involves the infusion of ex vivo activated and expanded NK cells to enhance antitumor immune responses. NK cells can be obtained from the patient (autologous setting) or from a healthy donor (allogeneic setting).²⁷¹

Activating endogenous NK cells and encouraging their proliferation in patients were the goals of early research aiming to increase the anticancer activity of NK cells. Autologous NK cell adoptive transfer has been explored in

various malignancies, including lymphoma, leukemia, and solid tumors.²⁷² It has the advantage of reducing the risk of graft-versus-host disease (GVHD) and immune rejection.

One major strategy was to infuse ex vivo cytokines (such as IL-2, IL-12, IL-15, and IL-18), which stimulates NK cells to become lymphokine-activated killer (LAK) cells and then to reinfuse these cells to exhibit greater cytotoxicity against malignant targets^{273–275} (Figure 5C). It has been demonstrated that combining IL-2 and IFN- α with GM-CSF is beneficial to further increase the activity of NK cells, offering a strong foundation for the use of IL-2 to activate endogenous NK cells' anticancer activity.²⁷³ However, endogenous NK and LAK cells may not have enough cytotoxicity to fight tumor cells that have progressed.²⁷⁶ To effectively guide autologous NK cells to kill tumor cells, it is therefore necessary to develop a mechanism to circumvent the inhibition of autologous NK-cells by self-HLA molecules.

Allogeneic NK cell therapy has the advantage of providing a large and potentially more potent NK cell population. This strategy enables the use of NK cells from healthy donors who may have enhanced cytotoxicity and can bypass inhibitory signals from tumor cells. Since tumor cells lack the proper MHC class I ligands to bind inhibitory KIRs, they are more prompt to be destroyed by allogeneic NK cells.²⁷⁷ This approach has shown promise in hematological malignancies and solid tumors.²⁷⁸ One phase I clinical trial found that adoptive transfer of allogeneic NK cells grown and activated in vitro with IL-15 and hydrocortisone (HC) was safe and potentially effective when used in patients with advanced non-small cell lung cancer in conjunction with standard treatment.²⁷⁹

The development of NK cell adoptive transfer therapy has shown promising results in the field of cancer immunotherapy. Clinical trials have demonstrated its safety, feasibility, and potential efficacy. However, challenges such as optimizing NK cell expansion, insufficient cytotoxicity, and immune-mediated rejection due to MHC mismatch remain to be addressed. Future research will focus on refining the therapeutic strategies and combinations with other immunotherapies to maximize the potential of NK cell adoptive transfer therapy in treating cancer.

6.5 | CAR-NK cells and NKG2D CAR-T therapy

CAR-T/NK is a rapidly developing adoptive immunotherapy of tumor in recent years. This therapy introduces synthetic CARs into T/NK cells to enable them to specifically identify and attack tumor cells. The outcomes of recent clinical study indicate that CAR-NK therapy has

higher benefits.^{280,281} Infusions of allogeneic CAR-NK cells can lower the risk of GVHD that results from the response of allogeneic T cells against the host tissues of recipients who are immunosuppressed.²⁸² Furthermore, NK cells themselves are difficult to induce excessive cytokine secretion, which makes neurotoxicity and cytokine release syndrome less common in CAR-NK immunotherapy.^{283,284} In addition, CAR-NK therapy does not require the patient's autologous immune cells as the source, and the advantages of lower treatment cost both may make it a major competitor of CAR-T therapy.²⁸⁰

Research on CAR-NK cells has mostly used CAR designs intended for CAR-T cells thus far. New CAR constructions have recently been created especially for NK cells.^{285,286} However, the majority of related trials focus on hematological malignancies using CAR-NK cells to target CD19, CD22, and B cell maturation antigen (BCMA).²⁸⁷ Recently, the first large-scale CAR-NK cell trial (NCT03056339) demonstrated that anti-CD19 CAR NK-cell therapy has shown remarkable clinical efficacy in B-cell cancers and had the potential to overcome these limitations of CAR T-cell therapy.²⁸³ Imai et al.²⁸⁷ reported that a second-generation anti-CD19 CAR containing 4-1BB costimulatory domain (scFv-CD8TM-4-1BB-CD3 ζ), which overcame inhibitory signals and induced NK cell specific killing of CD19+ acute lymphoblastic leukemia. Similarly, a second-generation CAR targeting BCMA has demonstrated significant anti-MM activity in vitro and in vivo.²⁸⁸ To address the issue of antigen escape and achieve a more durable response, a dual-targeted CAR-NK cell therapy has been proposed, targeting both BCMA and GPRC5D.^{289,290} A high expression of human EGFR 2 (HER2) in breast, renal cell and GBM cancer makes it an ideal candidate to develop immunotherapy using HER2-CAR-modified NK cells.^{291–293} Then CAR construct containing CD28 costimulatory domain has also been developed to direct against HER2.²⁹⁴

NKG2D ligands are primarily expressed on tumor cells but are absent on most normal tissues. Chimeric NKG2D connects NKG2D to the CD3 ζ chain on the surface of T cells (Figure 5D). These chimeric NKG2D (chNKG2D)-modified T cells produced large amounts of T-helper 1 cytokines and lysed target cells in a NKG2D ligand-dependent manner.²⁹⁵ Soluble MICA/B might desensitize the engineered T cells potentially by downregulating the chimeric NKG2D receptor. However, chNKG2D T cells are resistant to inhibition by high concentrations of sMICA. When exposed to 1.5 μ g/mL of soluble MICA, engineered T cells are still not deactivated, which further enhances the feasibility of this strategy.

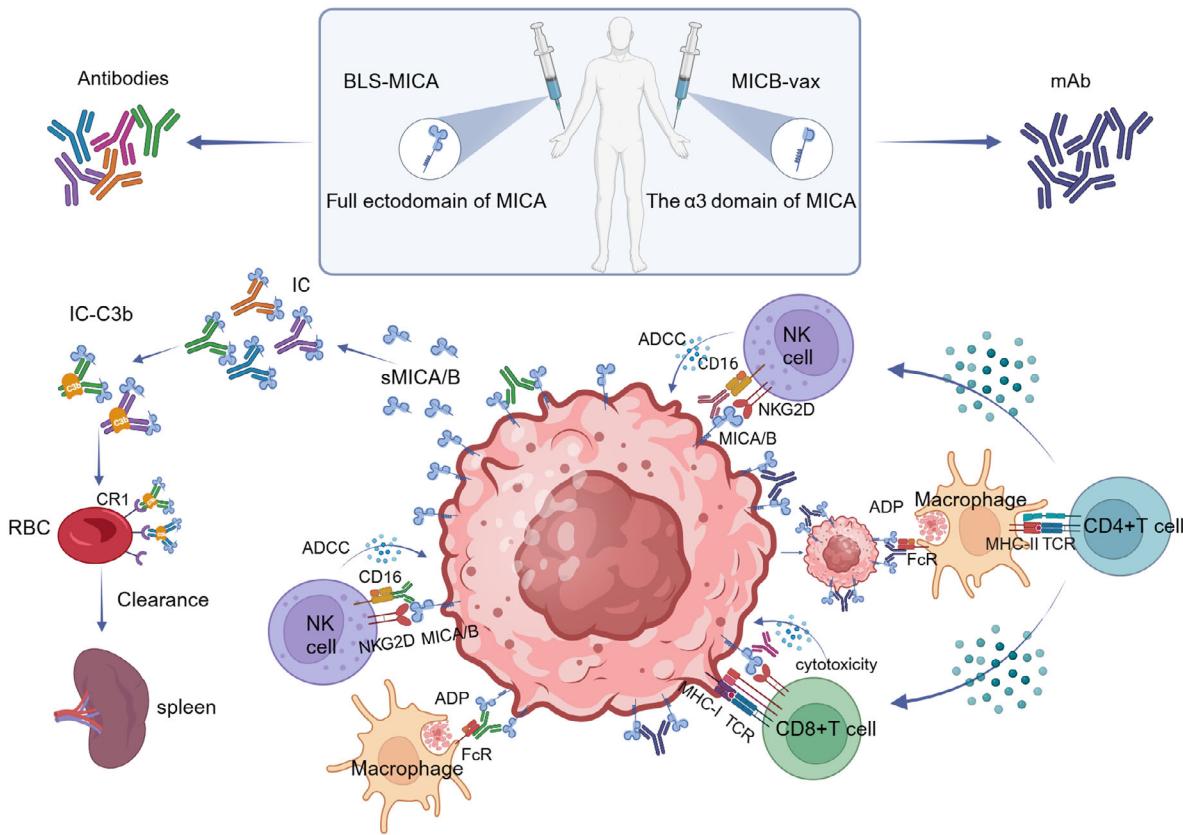
Furthermore, in the treatment of ovarian cancer, valproate increases NKG2DL on the surface of cancer cells, and enhances the lethality of CAR-T cell.²⁹⁶ Thus, we can

further enhance NKG2D-CAR-T cell's cytotoxicity against tumors through adjuvant methods, which could increase the expression of NKG2DL on tumor cells (Table 1). Of note, chimeric NKG2D receptor T cells were well tolerated by patients with hematological malignancies in a clinical trial reported recently, thus serving as the first evidence of the safety of an NKG2D-based CAR-T immunotherapy.²⁹⁷ Meanwhile, such chNKG2D CAR-NK cells may also be functional in efficient tumor killing²⁹⁸ (Table 1).

Besides NKG2D itself, chimeric antibodies targeting NKG2D ligands are also employed to construct CAR-T cells. According to a recent study,²⁴⁹ researchers incorporated 3MICA/B CAR, a novel CAR targeting the conserved $\alpha 3$ domain of MICA/B (3MICA/B CAR), into a multiplexed-engineered induced pluripotent stem cell (iPSC)-derived NK cell (3MICA/B CAR iNK) (Figure 5D and Table 2). 3MICA/B CAR mitigates MICA/B shedding and inhibition via soluble MICA/B, while simultaneously shows potent cytolytic activity against various solid and hematological tumor models. The data demonstrate a promising pan-cancer immunotherapy approach.

However, due to CAR-NK cells' short lifespan in the bloodstream, there is comparatively little chance of on-target or off-tumor damage to normal organs.²⁹⁹ And for solid tumors, they may also have some restrictions.³⁰⁰ It is primarily because of the immunosuppressive TME, and weak capacity of NK cells to infiltrate solid tumors.³⁰¹ Thus, antitumor adoptive cell immunotherapy of NK cells and NKG2D CAR-T/NK cells may need to be combined with other strategies in order to provide an efficient antitumor function.¹⁰⁹

6.6 | Innovative tumor vaccines targeting MICA/B


Therapeutic cancer vaccines have undergone a resurgence in the past decade. The purpose is to stimulate the patient's adaptive immune system against specific tumor antigens to regain control over tumor growth, induce regression of established tumors and eradicate minimal residual tumors.³⁰² Current therapeutic cancer vaccines are mainly based on neoantigens produced by specific mutations in tumor cells, necessitating personalization owing to the vast diversity in MHC molecules that present peptides to T cells.⁶⁰ In addition, the inactivating mutations (or downregulation) of genes in the MHC-I antigen presentation or IFN- γ signaling pathways sometimes greatly impair CD8+ T cell-mediated tumor immunity, and gives rise to the resistance of tumor vaccine.²³⁴⁻²³⁶ Recently, the innovative antitumor vaccines targeting MICA/B have been developed, and may possess a good prospect on tumors,

especially those have defects in MHC class I antigen presentation pathway.

A new universal therapeutic cancer vaccine has been invented recently, which targets NKG2D-NKG2DL pathway instead of neoantigens, and it is suitable for all kinds of tumors.⁶⁰ It also maintains efficacy against MHC I-deficient tumors, which are resistant to cytotoxic T cells, through the coordinated action of NK cells and T cells.⁶⁰ This specific MICB-vax vaccine applies the $\alpha 3$ domain of MICB to induces high-titer antibodies targeting the highly conserved $\alpha 3$ domain (Figure 7), then the antibodies strongly bind to tumor cells expressing human MICB and prevent its shedding.²⁵⁰ Subsequently, dendritic cells that recognize antibody-bound tumor cells through FcR are activated, internalizing and presenting antigens to T cells, and further promote the recruitment of NK cells.²⁵⁰ The recruited NK cells and CD8+T cells become activated by binding to MICA/B on the surface of tumor cells, exerting the tumor killing effect of the immune system.

MICB-vax not only controlled the established tumors, but also greatly reduced the number of lung metastases in melanoma and breast cancer models⁶⁰ (Table 2). This vaccine also shows substantial efficacy in controlling subcutaneous EL4 tumors that expressed either MICB or MICA.⁶⁰ MICB-vax also could induce immunological memory to prevent tumor recurrence. Furthermore, this vaccination also successfully controlled tumors lacking $\beta 2m$, which have impaired TCR recognition and killing via CD8+ T cells. Both CD4+T cells and NK cells are also necessary in the efficacy.⁶⁰ Now a first-in-human clinical trial with MICB-vax is being planned.

Brucella spp lumazine synthase (BLS)-MICA constitutes another novel antitumor vaccine²⁵¹ (Table 2). It is a chimeric protein consisting of the full ectodomain of MICA fused to highly bacterial immunogenicity protein BLS that display intrinsic adjuvant properties and induce high-titer anti-MICA antibodies in vivo.²⁵¹ The use of BLS-MICA as vaccine to induce therapeutic anti-MICA pAb constitutes a "all-in-one" strategy (Figure 7). The specific antibodies that target at MICA $\alpha 3$ domain could inhibit the proteolytic shedding of MICA/B and then activate NKG2D ligands on NK cells and CD8+T cells. In addition, BLS-MICA could induce antibodies recognize $\alpha 1$ and $\alpha 2$, which simultaneously scavenging sMICA from serum. Furthermore, all these antibodies also promote tumor elimination through ADCC and ADP. By these mechanisms, it could lead to a reprogramming of the tumor microenvironment toward an proinflammatory phenotype and finally result in a recovery of NK and CD8+ T cell-mediated cytotoxicity and a better prognosis.^{254,303} However, it should be taken into consideration that blocking antibodies that generated by BLS-MICA may impair the recognition of MICA/B

FIGURE 7 Innovative antitumor vaccines targeting MICA/B. The specific vaccine MICB-vax induce specific antibodies targeting the highly conserved $\alpha 3$ domain in MICB. BLS-MICA is a chimeric protein consisting of the full ectodomain of MICA fused to highly bacterial immunogenicity protein BLS, which could induce high-titer anti-MICA antibodies in vivo. The antibodies targeting $\alpha 3$ domain inhibit proteolytic shedding of MICA/B, and increased MICA/B on the surface of tumor cells, which could bind and active the NKG2D receptors on NK cells and CD8+T cells. Antibodies targeting $\alpha 1$ and $\alpha 2$ can interfere with a tumor-immune escape mechanism through scavenging of sMICA from serum. All these antibodies bind on tumor cells further promote tumor cytotoxicity through ADCC and ADP and also enhance presentation of tumor antigens by antigen-presenting cells (dendritic cells, etc.) to CD4+ and CD8+ T cells. These vaccines could finally result in a recovery of NK and CD8+ T cell-mediated cytotoxicity and a better prognosis of the disease.

expressing tumors by NK cell and reducing the tumor surveillance.

6.7 | Immune modulation drugs targeting NK cells

Despite the fact that NK cells identify and eradicate tumor cells *in vitro*, the tumor microenvironment is crucial in determining their antitumor efficiency *in vivo*. Thus, cytokines and drugs targeting TME and NK cells also showed potential effects in NK cell-mediated tumor immunotherapy.

IL-2 has been identified as key cytokines that upregulate the activity of NK cells. However, it has the side effects that it drives Treg cell development, which produces immunosuppressive cytokines on tumor-infiltrating lymphocytes. More recently, IL-2 variants have been designed that induce the expansion of effector immune cell popu-

lations but promote only minor expansion of the Treg cell population.^{304,305} An alternative method entails introducing engineered synthetic IL-2 (OrthoIL-2) into constructed T cells. This IL-2 is only able to communicate with its matching engineered receptor (OrthoIL-2R).³⁰⁶

When compared with IL-2, IL-15 might be a preferable choice because it has the ability to boost NK cell populations and their activating receptor expression without stimulating the growth of Treg cell populations. A phase I clinical trial of patients with metastatic malignancies has reported that daily infusion of IL-15 induces NK cell proliferation and substantially increases the number of NK cells.³⁰⁷

In addition to stimulatory cytokines, inhibitory factors in the tumor microenvironment can hinder NK cell function, with TGF- β being a major suppressor of NK cell responses.^{308,309} Phase I studies are now testing vatosertib (TEW-7197), an oral bioavailable inhibitor of the serine/threonine kinase TGF β receptor type 1 (TGFR-1), as

a monotherapy for advanced solid tumors (NCT02160106) and MDS (NCT03074006). Galunisertib is another TGFR-1 kinase inhibitor that has shown promise in treating AML and colon cancer.³¹⁰ Its administration is linked to the production of TNF and IFN- γ , as well as the restoration of NKG2D expression on NK cells.

Moreover, novel medication classes that possess both immunomodulatory and direct antitumor actions can regulate the function of NK cells.³¹¹ Thalidomide analogs (such as lenalidomide and pomalidomide) called “immunomodulatory drugs” are of special interest because of their ability to increase NK cell-mediated cytotoxicity by increasing NCR expression, expanding NK cell populations and increasing immune cell recognition of tumor cells in various models.³¹² For instance, one study found that lenalidomide increased NK cell cytotoxicity and IFN- γ production while simultaneously decreasing the immunosuppressive activities of Treg cells.³¹³

Recently, a new study proposed that the use of inhibitors targeting sphingomyelin can significantly increase the sphingomyelin content of NK cell membrane in tumor microenvironment and restore NK cell membrane protrusions, thus improving tumor cell recognition and killing ability. Intervention targeting sphingomyelin enzyme combined with immune checkpoint blockers has a synergistic anticancer effect.³¹⁴

7 | CONCLUSIONS AND PERSPECTIVE

NK cells have enormous therapeutic potential and are currently a key component of the tumor immunotherapy area. The damage caused by a tumor can be significantly decreased as long as the pertinent molecules involved in tumor immune escape are found and altered.

Nowadays, choosing novel target molecules and therapeutic approaches is a crucial path. With NKG2D-dependent NK cell-mediated anticancer effects, targeting the NKG2D/NKG2DL axis, and particularly MICA and MICB within it, is a very appealing target for tumor immunity promotion. Adoptive cell treatments, vaccines, and antibodies related to this axis have previously been produced. Antibodies against MICA/B are currently known to have noticeable effects on hematological malignancies,²⁴⁶ but treating solid tumors still presents a number of challenges, particularly when trying to overcome the immunosuppressive TME. Furthermore, even though MICA/B is mostly expressed on cancerous cells, toxicity must still be taken into account because these ligands may be produced by a variety of stressors.

Nevertheless, treatments that target NKG2D/NKG2DL represent a cutting-edge, novel criterion in tumor immunotherapy, offering a multitude of opportunities

and potentially having a significant antitumor effect when combined with other treatments. Tumor clearance may be enhanced and synergistic effects may result from combining NK cell-based therapies with other immunotherapies such as immune checkpoint inhibitors or CAR-T cell therapy. Additionally, it can be used in conjunction with a number of traditional treatments, including targeted therapies, radiation therapy, and chemotherapy, to offer a more all-encompassing approach to the treatment of cancer. NK cells can help eliminate residual tumor cells and prevent immune evasion after these treatments. What is more, we can enhance NK cell effector function functionality through genetic modification of NK cells,^{315,316} overexpress specific activating receptors or cytokines, or by improving NK cell expansion and persistence *in vivo*. Additionally, we can modulate immunosuppressive signals in the tumor microenvironment, such as strategies targeting inhibitory receptors, such as PD-1, NKG2A, or TGF- β , could enhance NK cell functionality and counteract immune evasion by tumor cells.

Overall, further research and development are needed to optimize NK cell and NKG2D-based therapies for effective tumor immunotherapy. Combination approaches, targeting immunosuppressive signals, and genetic engineering techniques hold promise for enhancing NK cell antitumor responses and improving patient outcomes.

AUTHOR CONTRIBUTIONS

DanRu Wang, LiHao Sui, and LingYun Dou drafted the paper and prepared figures. Yiquan Xue and Sheng Xu reviewed and edited the manuscript. All authors have read and approved the final manuscript.

ACKNOWLEDGMENTS

We thank Ms Jie Chen (National Key Laboratory of Immunity and Inflammation) for technical assistance. This work was funded by the National Natural Science Foundation of China (82071789, 31870910) and Peak Disciplines (Type IV) of Institutions of Higher Learning in Shanghai and National Basic Research Program of China (2015CB964403).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Not applicable.

ETHICS STATEMENT

Not applicable.

ORCID

Sheng Xu <https://orcid.org/0000-0002-9547-8052>

REFERENCES

- Kiessling R, Klein E, Wigzell H. "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. *Eur J Immunol*. 1975;5(2):112-117.
- Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. *Int J Cancer*. 1975;16(2):230-239.
- Xing S, Ferrari de Andrade L. NKG2D and MICA/B shedding: a 'tag game' between NK cells and malignant cells. *Clin Transl Immunol*. 2020;9(12):e1230.
- Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. *Nat Rev Immunol*. 2023;23(2):90-105.
- Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. *Cell Mol Immunol*. 2019;16(5):430-441.
- Kaufman DS, Schoon RA, Leibson PJ. MHC class I expression on tumor targets inhibits natural killer cell-mediated cytotoxicity without interfering with target recognition. *J Immunol*. 1993;150(4):1429-1436.
- Le Maux Chansac B, Moretta A, Vergnon I, et al. NK cells infiltrating a MHC class I-deficient lung adenocarcinoma display impaired cytotoxic activity toward autologous tumor cells associated with altered NK cell-triggering receptors. *J Immunol*. 2005;175(9):5790-5798.
- Vojdani A, Koksoy S, Vojdani E, Engelmann M, Benzvi C, Lerner A. Natural killer cells and cytotoxic T cells: complementary partners against microorganisms and cancer. *Microorganisms*. 2024;12(1):230.
- Rosenberg J, Huang J. CD8(+) T cells and NK cells: parallel and complementary soldiers of immunotherapy. *Curr Opin Chem Eng*. 2018;19:9-20.
- Vitale M, Bottino C, Sivori S, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. *J Exp Med*. 1998;187(12):2065-2072.
- Sivori S, Vitale M, Morelli L, et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. *J Exp Med*. 1997;186(7):1129-1136.
- Lanier LL. NKG2D receptor and its ligands in host defense. *Cancer Immunol Res*. 2015;3(6):575-582.
- Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. *Proc Natl Acad Sci USA*. 1996;93(22):12445-12450.
- Vivier E, Rebuffet L, Narni-Mancinelli E, Cornen S, Igarashi RY, Fantin VR. Natural killer cell therapies. *Nature*. 2024;626(8000):727-736.
- O'Sullivan TE, Sun JC, Lanier LL. Natural killer cell memory. *Immunity*. 2015;43(4):634-645.
- Giancetti E, Delfino DV, Fierabracci A. Natural killer cells: potential biomarkers and therapeutic target in autoimmune diseases? *Front Immunol*. 2021;12:616853.
- Mujal AM, Delconte RB, Sun JC. Natural killer cells: from innate to adaptive features. *Annu Rev Immunol*. 2021;39:417-447.
- Bottino C, Castriconi R, Moretta L, Moretta A. Cellular ligands of activating NK receptors. *Trends Immunol*. 2005;26(4):221-226.
- Raffaghelli L, Prigione I, Airola I, et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. *Neoplasia (New York, NY)*. 2004;6(5):558-568.
- Suen WC, Lee WY, Leung KT, Pan XH, Li G. Natural killer cell-based cancer immunotherapy: a review on 10 years completed clinical trials. *Cancer Invest*. 2018;36(8):431-457.
- Pross HF, Baines MG. Spontaneous human lymphocyte-mediated cytotoxicity against tumour target cells. I. The effect of malignant disease. *Int J Cancer*. 1976;18(5):593-604.
- Boyiadzis M, Foon KA, Herberman RB. NK cells in cancer immunotherapy: three decades of discovery. *Discov Med*. 2006;6(36):243-248.
- Lanier LL, Phillips JH, Hackett J Jr, Tutt M, Kumar V. Natural killer cells: definition of a cell type rather than a function. *J Immunol*. 1986;137(9):2735-2739.
- Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. *Lancet (London, England)*. 2000;356(9244):1795-1799.
- Nersesian S, Schwartz SL, Grantham SR, et al. NK cell infiltration is associated with improved overall survival in solid cancers: a systematic review and meta-analysis. *Transl Oncol*. 2021;14(1):100930.
- Pasero C, Gravis G, Granjeaud S, et al. Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. *Oncotarget*. 2015;6(16):14360-14373.
- Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M, et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. *Cancer Immunol Res*. 2019;7(7):1162-1174.
- Li B, Jiang Y, Li G, Fisher GA Jr, Li R. Natural killer cell and stroma abundance are independently prognostic and predict gastric cancer chemotherapy benefit. *JCI Insight*. 2020;5(9):e136570.
- Montaldo E, Del Zotto G, Della Chiesa M, et al. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. *Cytometry A*. 2013;83(8):702-713.
- Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. *Trends Immunol*. 2001;22(11):633-640.
- Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. *Immunity*. 2017;47(5):820-833.
- Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. *Nat Immunol*. 2008;9(5):503-510.
- Jacobs R, Hintzen G, Kemper A, et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. *Eur J Immunol*. 2001;31(10):3121-3127.
- Kärre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. *Nature*. 1986;319(6055):675-678.
- Pende D, Parolini S, Pessino A, et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. *J Exp Med*. 1999;190(10):1505-1516.

36. Moretta A, Bottino C, Vitale M, et al. Receptors for HLA class-I molecules in human natural killer cells. *Annu Rev Immunol*. 1996;14:619-648.

37. Moretta A, Biassoni R, Bottino C, et al. Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. *Immunol Rev*. 1997;155:105-117.

38. Wagtmann N, Rajagopalan S, Winter CC, Peruzzi M, Long EO. Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. *Immunity*. 1995;3(6):801-809.

39. Braud VM, Allan DS, O'Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. *Nature*. 1998;391(6669):795-799.

40. Long EO, Burshtyn DN, Clark WP, et al. Killer cell inhibitory receptors: diversity, specificity, and function. *Immunol Rev*. 1997;155:135-144.

41. Colonna M. Specificity and function of immunoglobulin superfamily NK cell inhibitory and stimulatory receptors. *Immunol Rev*. 1997;155:127-133.

42. Lanier LL. Natural killer cells: from no receptors to too many. *Immunity*. 1997;6(4):371-378.

43. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. *Nat Rev Immunol*. 2003;3(10):781-790.

44. Ravetch JV, Bolland S. IgG Fc receptors. *Annu Rev Immunol*. 2001;19:275-290.

45. Smyth MJ, Cretney E, Kelly JM, et al. Activation of NK cell cytotoxicity. *Mol Immunol*. 2005;42(4):501-510.

46. Piccioli D, Sbrana S, Melandri E, Valiante NM. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. *J Exp Med*. 2002;195(3):335-341.

47. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G. Reciprocal activating interaction between natural killer cells and dendritic cells. *J Exp Med*. 2002;195(3):327-333.

48. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Münz C. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. *J Exp Med*. 2002;195(3):343-351.

49. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. *Oncogene*. 2008;27(45):5932-5943.

50. Houchins JP, Yabe T, McSherry C, Bach FH. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. *J Exp Med*. 1991;173(4):1017-1020.

51. Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. *Science*. 1999;285(5428):727-729.

52. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. *Nat Immunol*. 2008;9(5):495-502.

53. Oppenheim DE, Roberts SJ, Clarke SL, et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. *Nat Immunol*. 2005;6(9):928-937.

54. Sharma P, Goswami S, Raychaudhuri D, et al. Immune checkpoint therapy-current perspectives and future directions. *Cell*. 2023;186(8):1652-1669.

55. Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. *Nature*. 2023;619(7971):707-715.

56. Wang Y, Jin S, Zhuang Q, et al. Chimeric antigen receptor natural killer cells: a promising antitumor immunotherapy. *MedComm*. 2023;4(6):e422.

57. Curio S, Jonsson G, Marinović S. A summary of current NKG2D-based CAR clinical trials. *Immunother Adv*. 2021;1(1):Itab018.

58. Sallman DA, Kerre T, Havelange V, et al. CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial. *Lancet Haematol*. 2023;10(3):e191-e202.

59. Zhou H, Luo Y, Lo JF, et al. DNA-based vaccines activate innate and adaptive antitumor immunity by engaging the NKG2D receptor. *Proc Natl Acad Sci USA*. 2005;102(31):10846-10851.

60. Badrinath S, Dellacherie MO, Li A, et al. A vaccine targeting resistant tumours by dual T cell plus NK cell attack. *Nature*. 2022;606(7916):992-998.

61. Vishwasrao P, Hui SK, Smith DL, Khairnar V. Role of NK cells in cancer and immunotherapy. *Oncol*. 2021;1(2):158-175.

62. Burgess SJ, Maasho K, Masilamani M, Narayanan S, Borrego F, Coligan JE. The NKG2D receptor: immunobiology and clinical implications. *Immunol Res*. 2008;40(1):18-34.

63. Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. *Nat Immunol*. 2016;17(9):1025-1036.

64. Chiassone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. *Nat Rev Immunol*. 2018;18(11):671-688.

65. Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. *Cell Mol Immunol*. 2013;10(3):230-252.

66. Afossi N, André P, Guia S, et al. Human NK cell education by inhibitory receptors for MHC class I. *Immunity*. 2006;25(2):331-342.

67. Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. *J Clin Oncol*. 2010;28(28):4390-4399.

68. Bournazos S, Wang TT, Dahan R, Maamary J, Ravetch JV. Signaling by antibodies: recent progress. *Annu Rev Immunol*. 2017;35:285-311.

69. Li Y, Orange JS. Degranulation enhances presynaptic membrane packing, which protects NK cells from perforin-mediated autolysis. *PLoS Biol*. 2021;19(8):e3001328.

70. Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. *J Leukocyte Biol*. 2019;105(6):1319-1329.

71. Bryceson YT, March ME, Ljunggren HG, Long EO. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. *Blood*. 2006;107(1):159-166.

72. Mukherjee S, Jensen H, Stewart W, et al. In silico modeling identifies CD45 as a regulator of IL-2 synergy in the NKG2D-mediated activation of immature human NK cells. *Sci Signal*. 2017;10(485):eaai9062.

73. Miller JS, Morishima C, McNeil DG, et al. A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. *Clin Cancer Res*. 2018;24(7):1525-1535.

74. Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, Raulet DH. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. *Immunity*. 2018;49(4):754-763. e4.

75. Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. *Nat Rev Cancer*. 2016;16(1):7-19.

76. Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. *Immunol Rev*. 2006;214:73-91.

77. Mocikat R, Braumüller H, Gumi A, et al. Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. *Immunity*. 2003;19(4):561-569.

78. Koka R, Burkett P, Chien M, Chai S, Boone DL, Ma A. Cutting Edge: murine dendritic cells require IL-15R α to prime NK cells. *J Immunol*. 2004;173(6):3594-3598.

79. Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. *Nat Rev Immunol*. 2005;5(2):112-124.

80. Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. *Nat Rev Drug Discov*. 2020;19(3):200-218.

81. Wang J, Li CD, Sun L. Recent advances in molecular mechanisms of the NKG2D pathway in hepatocellular carcinoma. *Biomolecules*. 2020;10(2):301.

82. Ochoa MC, Minute L, Rodriguez I, et al. Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells. *Immunol Cell Biol*. 2017;95(4):347-355.

83. Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytotoxicity. *Annu Rev Immunol*. 2001;19:197-223.

84. Tomasello E, Olcese L, Vély F, et al. Gene structure, expression pattern, and biological activity of mouse killer cell activating receptor-associated protein (KARAP)/DAP-12. *J Biol Chem*. 1998;273(51):34115-34119.

85. Pogge von Strandmann E, Simhadri VR, von Tresckow B, et al. Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. *Immunity*. 2007;27(6):965-974.

86. Baychelier F, Sennepin A, Ermonval M, Dorgham K, Debré P, Vieillard V. Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. *Blood*. 2013;122(17):2935-2942.

87. Rosental B, Brusilovsky M, Hadad U, et al. Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. *J Immunol*. 2011;187(11):5693-5702.

88. Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. *FEBS J*. 2005;272(24):6179-6217.

89. Brown GD, Willment JA, Whitehead L. C-type lectins in immunity and homeostasis. *Nat Rev Immunol*. 2018;18(6):374-389.

90. Plougastel B, Trowsdale J. Cloning of NKG2-F, a new member of the NKG2 family of human natural killer cell receptor genes. *Eur J Immunol*. 1997;27(11):2835-2839.

91. Bellón T, Heredia AB, Llano M, et al. Triggering of effector functions on a CD8+ T cell clone upon the aggregation of an activatory CD94/kp39 heterodimer. *J Immunol*. 1999;162(7):3996-4002.

92. Lanier LL, Corliss B, Wu J, Phillips JH. Association of DAP12 with activating CD94/NKG2C NK cell receptors. *Immunity*. 1998;8(6):693-701.

93. Houchins JP, Lanier LL, Niemi EC, Phillips JH, Ryan JC. Natural killer cell cytolytic activity is inhibited by NKG2-A and activated by NKG2-C. *J Immunol*. 1997;158(8):3603-3609.

94. Carretero M, Palmieri G, Llano M, et al. Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants. *Eur J Immunol*. 1998;28(4):1280-1291.

95. Lee N, Llano M, Carretero M, et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. *Proc Natl Acad Sci USA*. 1998;95(9):5199-5204.

96. Colonna M, Samaridis J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. *Science*. 1995;268(5209):405-408.

97. Wagtmann N, Biassoni R, Cantoni C, et al. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. *Immunity*. 1995;2(5):439-449.

98. Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules. *Philos Trans R Soc Lond B Biol Sci*. 2012;367(1590):800-811.

99. Graef T, Moesta AK, Norman PJ, et al. KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C. *J Exp Med*. 2009;206(11):2557-2572.

100. Biassoni R, Cantoni C, Falco M, et al. The human leukocyte antigen (HLA)-C-specific "activatory" or "inhibitory" natural killer cell receptors display highly homologous extracellular domains but differ in their transmembrane and intracytoplasmic portions. *J Exp Med*. 1996;183(2):645-650.

101. Parham P, Guethlein LA. Genetics of natural killer cells in human health, disease, and survival. *Annu Rev Immunol*. 2018;36:519-548.

102. Wang W, Erbe AK, Alderson KA, et al. Human NK cells maintain licensing status and are subject to killer immunoglobulin-like receptor (KIR) and KIR-ligand inhibition following ex vivo expansion. *Cancer Immunol Immunother*. 2016;65(9):1047-1059.

103. Pende D, Falco M, Vitale M, et al. Killer Ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. *Front Immunol*. 2019;10:1179.

104. Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN, Long EO. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. *Mol Cell Biol*. 2003;23(17):6291-6299.

105. Liu D, Peterson ME, Long EO. The adaptor protein Crk controls activation and inhibition of natural killer cells. *Immunity*. 2012;36(4):600-611.

106. Peterson ME, Long EO. Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. *Immunity*. 2008;29(4):578-588.

107. Sun C, Xu J, Huang Q, et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. *Oncoimmunology*. 2017;6(1):e1264562.

108. Long EO. Negative signaling by inhibitory receptors: the NK cell paradigm. *Immunol Rev.* 2008;224:70-84.

109. Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D ligands in immuno-oncology. *Front Immunol.* 2021;12:713158.

110. Huang AC, Postow MA, Orlowski RJ, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. *Nature.* 2017;545(7652):60-65.

111. Pesce S, Greppi M, Tabellini G, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. *J Allergy Clin Immunol.* 2017;139(1):335-346. e3.

112. Zhou XM, Li WQ, Wu YH, et al. Intrinsic expression of immune checkpoint molecule TIGIT could help tumor growth in vivo by suppressing the function of NK and CD8(+) T cells. *Front Immunol.* 2018;9:2821.

113. Zhang Q, Bi J, Zheng X, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. *Nat Immunol.* 2018;19(7):723-732.

114. Chan CJ, Martinet L, Gilfillan S, et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. *Nat Immunol.* 2014;15(5):431-438.

115. Sun H, Huang Q, Huang M, et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. *Hepatology (Baltimore, Md).* 2019;70(1):168-183.

116. Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. *Nat Rev Immunol.* 2015;15(6):388-400.

117. López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK cells. *Cancer Cell.* 2017;32(2):135-154.

118. Zhang J, Basher F, Wu JD. NKG2D ligands in tumor immunity: two sides of a coin. *Front Immunol.* 2015;6:97.

119. Watzl C. The NKG2D receptor and its ligands-recognition beyond the “missing self”? *Microbes Infect.* 2003;5(1):31-37.

120. Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. *Immunity.* 2004.

121. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. *Nat Immunol.* 2000;1(2):119-126.

122. Prajapati K, Perez C, Rojas LBP, Burke B, Guevara-Patino JA. Functions of NKG2D in CD8(+) T cells: an opportunity for immunotherapy. *Cell Mol Immunol.* 2018;15(5):470-479.

123. Huang C, Xiang Z, Zhang Y, et al. NKG2D as a cell surface marker on $\gamma\delta$ -T cells for predicting pregnancy outcomes in patients with unexplained repeated implantation failure. *Front Immunol.* 2021;12:631077.

124. Li H, Xiang Z, Feng T, et al. Human $\gamma\delta$ V δ 2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells. *Cell Mol Immunol.* 2013;10(2):159-164.

125. Xiang Z, Liu Y, Zheng J, et al. Targeted activation of human $\gamma\delta$ V δ 2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. *Cancer Cell.* 2014;26(4):565-576.

126. Nedellec S, Sabourin C, Bonneville M, Scotet E. NKG2D costimulates human V gamma 9 V delta 2 T cell antitumor cytotoxicity through protein kinase C theta-dependent modulation of early TCR-induced calcium and transduction signals. *J Immunol.* 2010;185(1):55-63.

127. Crane CA, Austgen K, Haberthür K, et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. *Proc Natl Acad Sci USA.* 2014;111(35):12823-12828.

128. Ogasawara K, Lanier LL. NKG2D in NK and T cell-mediated immunity. *J Clin Immunol.* 2005;25(6):534-540.

129. Cosman D, Müllberg J, Sutherland CL, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. *Immunity.* 2001;14(2):123-133.

130. Bahram S, Bresnahan M, Geraghty DE, Spies T. A second lineage of mammalian major histocompatibility complex class I genes. *Proc Natl Acad Sci USA.* 1994;91(14):6259-6263.

131. Baranwal AK, Mehra NK. Major histocompatibility complex class I chain-related A (MICA) molecules: relevance in solid organ transplantation. *Front Immunol.* 2017;8:182.

132. Stephens HA. MICA and MICB genes: can the enigma of their polymorphism be resolved? *Trends Immunol.* 2001;22(7):378-385.

133. Molinero LL, Marcos CY, Mirbaha F, Fainboim L, Stastny P, Zwirner NW. Codominant expression of the polymorphic MICA alloantigens encoded by genes in the HLA region. *Eur J Immunogenet.* 2002;29(4):315-319.

134. Bahram S. MIC genes: from genetics to biology. *Adv Immunol.* 2000;76:1-60.

135. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. *Science.* 1998;279(5357):1737-1740.

136. Das H, Groh V, Kuijl C, Sugita M, Bukowski JF. MICA engagement by human V γ 2V δ 2 T cells enhances their antigen-dependent effector function. *Immunity.* 2001;15(1):83-93.

137. Groh V, Rhinehart R, Randolph-Habecker J, et al. Costimulation of CD8 $\alpha\beta$ T cells by NKG2D via engagement by MIC induced on virus-infected cells. *Nat Immunol.* 2001;2(3):255-255.

138. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived $\gamma\delta$ T cells of MICA and MICB. *Proc Natl Acad Sci USA.* 1999;96(12):6879-6884.

139. Cerwenka A, Bakker AB, McClanahan T, et al. Retinoic acid early inducible genes define a ligand family for the activating nkg2d receptor in mice. *Immunity.* 2000;12:721-727.

140. Huntington ND, Cursons J, Rautela J. The cancer-natural killer cell immunity cycle. *Nat Rev Cancer.* 2020;20(8):437-454.

141. Seoane J, Le HV, Massague J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. *Nature.* 2002;419(6908):729-734.

142. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. *Annu Rev Immunol.* 2013;31:413-441.

143. Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. *Nature.* 2005;436(7054):1186-1190.

144. Wang X, Ran T, Zhang X, et al. 3.9 Å structure of the yeast Mec1-Ddc2 complex, a homolog of human ATR-ATRIP. *Science.* 2017;358(6367):1206-1209.

145. Mistry AR, O’Callaghan CA. Regulation of ligands for the activating receptor NKG2D. *Immunology.* 2007;121(4):439-447.

146. Tang ML, Gasser S. ATM activation mediates anticancer immunosurveillance by natural killer and T cells. *Oncoimmunology*. 2013;2(6):e24438.

147. Zhao Y, Chen N, Yu Y, et al. Prognostic value of MICA/B in cancers: a systematic review and meta-analysis. *Oncotarget*. 2017;8(56):96384-96395.

148. Kaye J, Browne H, Stoffel M, Minson T. The UL16 gene of human cytomegalovirus encodes a glycoprotein that is dispensable for growth in vitro. *J Virol*. 1992;66(11):6609-6615.

149. Chalupny NJ, Sutherland CL, Lawrence WA, Rein-Weston A, Cosman D. ULBP4 is a novel ligand for human NKG2D. *Biochem Biophys Res Commun*. 2003;305(1):129-135.

150. Bacon L, Eagle RA, Meyer M, Easom N, Young NT, Trowsdale J. Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. *J Immunol*. 2004;173(2):1078-1084.

151. Sutherland CL, Rabinovich B, Chalupny NJ, Brawand P, Miller R, Cosman D. ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL-15. *Blood*. 2006;108(4):1313-1319.

152. Carayannopoulos LN, Naidenko OV, Fremont DH, Yokoyama WM. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. *J Immunol*. 2002;169(8):4079-4083.

153. Rölle A, Mousavi-Jazi M, Eriksson M, et al. Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. *J Immunol*. 2003;171(2):902-908.

154. Welte SA, Sinzger C, Lutz SZ, et al. Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. *Eur J Immunol*. 2003;33(1):194-203.

155. Sutherland CL, Chalupny NJ, Cosman D. The UL16-binding proteins, a novel family of MHC class I-related ligands for NKG2D, activate natural killer cell functions. *Immunol Rev*. 2001;181:185-192.

156. Kubin M, Cassiano L, Chalupny J, et al. ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells. *Eur J Immunol*. 2001;31(5):1428-1437.

157. Rosen DB, Araki M, Hamerman JA, Chen T, Yamamura T, Lanier LL. A structural basis for the association of DAP12 with mouse, but not human, NKG2D. *J Immunol*. 2004;173(4):2470-2478.

158. Wu J. Dap10 and Dap12 form distinct, but functionally cooperative, receptor complexes in natural killer cells. *J Exp Med*. 2000;192(7):1059-1068.

159. Wu J, Wang X. *NKG2D-Based Cancer Immunotherapy*. Current Cancer Treatment—Novel Beyond Conventional Approaches; 2011.

160. Gilfillan S, Ho EL, Celli M, Yokoyama WM, Colonna M. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. *Nat Immunol*. 2003;3(12):1150-1155.

161. Diefenbach A, Tomasello E, Lucas M, et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. *Nat Immunol*. 2002;3(12):1142-1149.

162. Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. *Nature*. 1998;391(6668):703-707.

163. Li P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK. Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. *Nat Immunol*. 2001;2(5):443-451.

164. Wang X, Lundgren AD, Singh P, Goodlett DR, Plymate SR, Wu JD. A six-amino acid motif in the alpha3 domain of MICA is the cancer therapeutic target to inhibit shedding. *Biochem Biophys Res Commun*. 2009;387(3):476-481.

165. Kaiser BK, Yim D, Chow IT, et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. *Nature*. 2007;447(7143):482.

166. Liu G, Atteridge CL, Wang X, Lundgren AD, Wu JD. The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule A independent of A disintegrin and metalloproteinases. *J Immunol*. 2010;184(7):3346.

167. Waldhauer I, Goehlsdorf D, Gieseke F, et al. Tumor-associated MICA is shed by ADAM proteases. *Cancer Res*. 2008;68(15):6368-6376.

168. Tsukerman P, Stern-Ginossar N, Gur C, et al. MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. *Cancer Res*. 2012;72(21):5463-5472.

169. Wongfieng W, Jumnainsong A, Chamgramol Y, Sripa B, Leelayuwat C. 5'-UTR and 3'-UTR regulation of MICB expression in human cancer cells by novel microRNAs. *Genes*. 2017;8(9):213.

170. Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. *Cancer Cell*. 2006;9(6):435-443.

171. Choudhry H, Catto JW. Epigenetic regulation of microRNA expression in cancer. *Methods Mol Biol*. 2011;676:165-184.

172. Marín R, Ruiz-Cabello F, Pedrinaci S, et al. Analysis of HLA-E expression in human tumors. *Immunogenetics*. 2003;54(11):767-775.

173. Ze-Qing W, Chin RKJC JoCP, Treatment. HLA-G and escape mechanism of tumor cells. 2007.

174. Urosevic M, Trojan A, Dummer R. HLA-G and its KIR ligands in cancer—another enigma yet to be solved? *J Pathol*. 2002;196(3):252-253.

175. Lin A, Yan W-H. Human leukocyte antigen-G (HLA-G) expression in cancers: roles in immune evasion, metastasis and target for therapy. *Mol Med*. 2015;21(1):782-791.

176. Moreau P, Mouillot G, Rousseau P, Marcou C, Dausset J, Carosella ED. HLA-G gene repression is reversed by demethylation. *Proc Natl Acad Sci USA*. 2003;100(3):1191-1196.

177. Mouillot G, Marcou C, Rousseau P, Rouas-Freiss N, Carosella ED, Moreau P. HLA-G gene activation in tumor cells involves cis-acting epigenetic changes. *Int J Cancer*. 2005;113(6):928-936.

178. Urosevic M, Kurrer MO, Kamarashev J, et al. Human leukocyte antigen G up-regulation in lung cancer associates with high-grade histology, human leukocyte antigen class I loss and interleukin-10 production. *Am J Pathol*. 2001;159(3):817-824.

179. Lefebvre S, Moreau P, Guiard V, et al. Molecular mechanisms controlling constitutive and IFN-gamma-inducible

HLA-G expression in various cell types. *J Reprod Immunol*. 1999;43(2):213-224.

180. Wagner SN, Rebmann V, Willers CP, Grosse-Wilde H, Goos M. Expression analysis of classic and non-classic HLA molecules before interferon alfa-2b treatment of melanoma. *Lancet (London, England)*. 2000;356(9225):220-221.

181. Mouillet G, Marcou C, Zidi I, et al. Hypoxia modulates HLA-G gene expression in tumor cells. *Hum Immunol*. 2007;68(4):277-285.

182. Yaghi L, Poras I, Simoes RT, et al. Hypoxia inducible factor-1 mediates the expression of the immune checkpoint HLA-G in glioma cells through hypoxia response element located in exon 2. *Oncotarget*. 2016;7(39):63690-63707.

183. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. *Curr Opin Genet Dev*. 2010;20(1):51-56.

184. Tomasec P, Braud VM, Rickards C, et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. *Science*. 2000;287(5455):1031.

185. Hofer T, Wenger RH, Kramer MF, Ferreira GC, Gassmann M. Hypoxic up-regulation of erythroid 5-aminolevulinate synthase. *Blood*. 2003;101(1):348-350.

186. Concha-Benavente F, Srivastava RM, Trivedi S, et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFN γ that induce PD-L1 expression in head and neck cancer. *Cancer Res*. 2016;76(5):1031-1043.

187. Betzler AC, Theodoraki MN, Schuler PJ, et al. NF- κ B and its role in checkpoint control. *Int J Mol Sci*. 2020;21(11):3949.

188. Kataoka K, Shiraishi Y, Takeda Y, et al. Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers. *Nature*. 2016;534(7607):402-406.

189. Kumar S, Sharawat SK. Epigenetic regulators of programmed death-ligand 1 expression in human cancers. *Transl Res*. 2018;202:129-145.

190. Dennis KL, Blatner NR, Gounari F, Khazaie K. Current status of interleukin-10 and regulatory T-cells in cancer. *Curr Opin Oncol*. 2013;25(6):637-645.

191. Salazar-Onfray F. Interleukin-10: a cytokine used by tumors to escape immunosurveillance. *Med Oncol*. 1999;16(2):86-94.

192. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. *Curr Opin Immunol*. 2010;22(2):231-237.

193. Castriconi R, Cantoni C, Chiesa MD, Vitale M, Moretta A. Transforming growth factor β 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. *Proc Natl Acad Sci USA*. 2003;100(7):4120-4125.

194. Lee JC, Lee KM, Kim DW, Heo DS. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. *J Immunol*. 2004;172(12):7335-7340.

195. Castriconi R, Cantoni C, Della Chiesa M, et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. *Proc Natl Acad Sci USA*. 2003;100(7):4120-4125.

196. Laouar Y, Sutterwala FS, Gorelik L, Flavell RA. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. *Nat Immunol*. 2005;6(6):600-607.

197. Yu J, Wei M, Becknell B, et al. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon- γ production by human natural killer cells. *Immunity*. 2006;24(5):575-590.

198. Mamessier E, Sylvain A, Thibault ML, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. *J Clin Invest*. 2011;121(9):3609-3622.

199. Della Chiesa M, Carlomagno S, Frumento G, et al. The tryptophan catabolite L-kynurenone inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. *Blood*. 2006;108(13):4118-4125.

200. Pietra G, Manzini C, Rivara S, et al. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. *Cancer Res*. 2012;72(6):1407-1415.

201. Munn DH, Sharma MD, Lee JR, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. *Science*. 2002;297(5588):1867-1870.

202. Krockenberger M, Dombrowski Y, Weidler C, et al. Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. *J Immunol*. 2008;180(11):7338-7348.

203. Raskovalova T, Lokshin A, Huang X, Jackson EK, Gorelik E. Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-activated NK cells: involvement of protein kinase A isozyme I (PKA I). *Immunol Res*. 2006;36(1-3):91-99.

204. Raskovalova T, Huang X, Sitkovsky M, Zacharia LC, Jackson EK, Gorelik E. Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. *J Immunol*. 2005;175(7):4383-4391.

205. Boutet P, Agüera-González S, Atkinson S, et al. Cutting edge: the metalloproteinase ADAM17/TNF-alpha-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. *J Immunol*. 2009;182(1):49-53.

206. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. *Nature*. 2002;419(6908):734.

207. Ogasawara K, Benjamin J, Takaki R, Phillips JH, Lanier LL. Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts. *Nat Immunol*. 2005;6(9):938.

208. Ogasawara K, Hamerman JA, Hsin H, et al. Impairment of NK cell function by NKG2D modulation in NOD mice. *Immunity*. 2003;18(1):41-51.

209. Oppenheim DE, Roberts SJ, Clarke SL, et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. *Nat Immunol*. 2005;6(9):928-937.

210. Wiemann K, Mittrucker HW, Feger U, et al. Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. *J Immunol*. 2005;175(2):720.

211. Liu G, Lu S, Wang X, et al. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. *J Clin Invest*. 2013;123(10):4410-4422.

212. Xiao G, Wang X, Sheng J, Lu S, Yu X, Wu JD. Soluble NKG2D ligand promotes MDSC expansion and skews macrophage to the alternatively activated phenotype. *J Hematol Oncol*. 2015;8:13.

213. Koguchi Y, Hoen H, Bambina S, et al. Serum immunoregulatory proteins as predictors of overall survival of metastatic melanoma patients treated with ipilimumab. *J Immunother Cancer*. 2015;3(2):1-1.

214. Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of apoptosis resistance to NK cell-mediated cytotoxicity in cancer. *Int J Mol Sci.* 2020;21(10):3726.

215. Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. *Nature.* 2004;432(7015):307-315.

216. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell.* 2011;144(5):646-674.

217. Stupack DG. Caspase-8 as a therapeutic target in cancer. *Cancer Lett.* 2013;332(2):133-140.

218. Ionov Y, Yamamoto H, Krajewski S, Reed JC, Perucho M. Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. *Proc Natl Acad Sci USA.* 2000;97(20):10872-10877.

219. Valnet-Rabier MB, Challier B, Thiebault S, et al. c-Flip protein expression in Burkitt's lymphomas is associated with a poor clinical outcome. *Br J Haematol.* 2005;128(6):767-773.

220. McLornan D, Hay J, McLaughlin K, et al. Prognostic and therapeutic relevance of c-FLIP in acute myeloid leukaemia. *Br J Haematol.* 2013;160(2):188-198.

221. Ullenhag GJ, Mukherjee A, Watson NF, Al-Attar AH, Scholefield JH, Durrant LG. Overexpression of FLIPL is an independent marker of poor prognosis in colorectal cancer patients. *Clin Cancer Res.* 2007;13(17):5070-5075.

222. Taylor MA, Chaudhary PM, Klem J, Kumar V, Schatzle JD, Bennett M. Inhibition of the death receptor pathway by cFLIP confers partial engraftment of MHC class I-deficient stem cells and reduces tumor clearance in perforin-deficient mice. *J Immunol.* 2001;167(8):4230-4237.

223. Liu C, Yu S, Kappes J, et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. *Blood.* 2007;109(10):4336-4342.

224. Baginska J, Viry E, Berchem G, et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. *Proc Natl Acad Sci USA.* 2013;110(43):17450-17455.

225. Viry E, Baginska J, Berchem G, et al. Autophagic degradation of GZMB/granzyme B: a new mechanism of hypoxic tumor cell escape from natural killer cell-mediated lysis. *Autophagy.* 2014;10(1):173-175.

226. Medema JP, de Jong J, Peltenburg LT, et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. *Proc Natl Acad Sci USA.* 2001;98(20):11515-11520.

227. Gonzalez-Rodriguez AP, Villa-Álvarez M, Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez S. NK cells in the treatment of hematological malignancies. *J Clin Med.* 2019;8(10):1557.

228. Sordo-Bahamonde C, Vitale M, Lorenzo-Herrero S, López-Soto A, Gonzalez S. Mechanisms of resistance to NK cell immunotherapy. *Cancers.* 2020;12(4):893.

229. Lorenzo-Herrero S, Sordo-Bahamonde C, González S, López-Soto A. Immunosurveillance of cancer cell stress. *Cell Stress.* 2019;3(9):295-309.

230. Sermeus A, Genin M, Maincent A, et al. Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types. *PLoS One.* 2012;7(11):e47519.

231. Park SY, Billiar TR, Seol DW. Hypoxia inhibition of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). *Biochem Biophys Res Commun.* 2002;291(1):150-153.

232. Piret JP, Minet E, Cosse JP, et al. Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-induced apoptosis. *J Biol Chem.* 2005;280(10):9336-9344.

233. Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. *Nat Rev Cancer.* 2020;20(3):174-186.

234. Gao J, Shi L, Zhao H, et al. Loss of IFN- γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. *Cell.* 2016;167(2):397-404. e9.

235. Pitt JM, Vétizou M, Daillère R, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-Intrinsic and -Extrinsic Factors. *Immunity.* 2016;44(6):1255-1269.

236. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. *N Engl J Med.* 2016;375(9):819.

237. Ruggeri L, Mancusi A, Burchielli E, et al. NK cell alloreactivity and allogeneic hematopoietic stem cell transplantation. *Blood Cells Mol Dis.* 2008;40(1):84-90.

238. Felices M, Lenvik TR, Davis ZB, Miller JS, Vallera DA. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. *Methods Mol Biol.* 2016;1441:333-346.

239. Gleason MK, Ross JA, Warlick ED, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. *Blood.* 2014;123(19):3016-3026.

240. Wingert S, Reusch U, Knackmuss S, et al. Preclinical evaluation of AFM24, a novel CD16A-specific innate immune cell engager targeting EGFR-positive tumors. *mAbs.* 2021;13(1):1950264.

241. Vallera DA, Felices M, McElmurry R, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. *Clin Cancer Res.* 2016;22(14):3440-3450.

242. Raynaud A, Desrumeaux K, Vidard L, et al. Anti-NKG2D single domain-based antibodies for the modulation of anti-tumor immune response. *Oncoimmunology.* 2020;10(1):1854529.

243. Pan M, Wang F, Nan L, et al. alphaVEGFR2-MICA fusion antibodies enhance immunotherapy effect and synergize with PD-1 blockade. *Cancer Immunol Immunother.* 2023;72(4):969-984.

244. Xie W, Liu F, Wang Y, et al. VEGFR2 targeted antibody fused with MICA stimulates NKG2D mediated immunosurveillance and exhibits potent anti-tumor activity against breast cancer. *Oncotarget.* 2016;7(13):16445-16461.

245. Ferrari de Andrade L, Tay RE, Pan D, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. *Science.* 2018;359(6383):1537-1542.

246. Alves da Silva PH, Xing S, Kotini AG, et al. MICA/B antibody induces macrophage-mediated immunity against acute myeloid leukemia. *Blood.* 2022;139(2):205-216.

247. Lu S, Zhang J, Liu D, et al. Nonblocking monoclonal antibody targeting soluble MIC revamps endogenous innate and adaptive antitumor responses and eliminates primary and metastatic tumors. *Clin Cancer Res.* 2015;21(21):4819-4830.

248. Tang KF, He CX, Zeng GL, et al. Induction of MHC class I-related chain B (MICB) by 5-aza-2'-deoxycytidine. *Biochem Biophys Res Commun.* 2008;370(4):578-583.

249. Goulding J, Yeh WI, Hancock B, et al. A chimeric antigen receptor uniquely recognizing MICA/B stress proteins provides an effective approach to target solid tumors. *Med (New York, NY).* 2023;4(7):457-477. e8.

250. Cichocki F, Miller JS. Promoting T and NK cell attack: preserving tumor MICA/B by vaccines. *Cell Res.* 2022;32(11):961-962.

251. Torres N, Regge MV, Secchiari F, et al. Restoration of antitumor immunity through anti-MICA antibodies elicited with a chimeric protein. *Immunother Cancer.* 2020;8(1):e000233.

252. Basher F, Dhar P, Wang X, et al. Antibody targeting tumor-derived soluble NKG2D ligand sMIC reprograms NK cell homeostatic survival and function and enhances melanoma response to PDL1 blockade therapy. *J Hematol Oncol.* 2020;13(1):74.

253. Vivanco F, Muñoz E, Vidarte L, Pastor C. The covalent interaction of C3 with IgG immune complexes. *Mol Immunol.* 1999;36(13-14):843-852.

254. Jinushi M, Hodi F, Dranoff G. Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. *Proc Natl Acad Sci USA.* 2006;103(24):9190-9195.

255. Groh V, Li YQ, Cioca D, et al. Efficient cross-priming of tumor antigen-specific T cells by dendritic cells sensitized with diverse anti-MICA opsonized tumor cells. *Proc Natl Acad Sci USA.* 2005;102(18):6461-6466.

256. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. *Science.* 1996;271(5256):1734-1736.

257. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. *N Engl J Med.* 2010;363(8):711-723.

258. Armeanu S. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. *Cancer Res.* 2005;65(14):6321.

259. Cai Z, Wang Y, Zhou Z, Jian Z, Tian Z. Sodium butyrate upregulates expression of NKG2D ligand MICA/B in HeLa and HepG2 cell lines and increases their susceptibility to NK lysis. *Cancer Immunol Immunother.* 2009;58(8):1275-1285.

260. Diermayr S, Himmelreich H, Durovic B, et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. *Blood.* 2008;111(3):1428-1436.

261. Skov S. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. *Cancer Res.* 2005;65(23):11136-11145.

262. Hervieu A, Rébé C, Végran F, et al. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth. *J Invest Dermatol.* 2013;133(2):499-508.

263. Paczulla AM, Rothfelder K, Raffel S, Konantz M, Lengerke C. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. *Nature.* 2019;572(7768):1.

264. Soriani A, Zingoni A, Cerboni C, et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. *Blood.* 2009;113(15):3503-3511.

265. Romagné F, André P, Spee P, et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. *Blood.* 2009;114(13):2667-2677.

266. Benson DM, Jr., Bakan CE, Zhang S, et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. *Blood.* 2011;118(24):6387-6391.

267. Vey N, Dombret H, Ifrah N, et al. Intergroup ALFA/GOELAMS randomized phase II trial of lirilumab anti-KIR monoclonal antibody (IPH2102/BMS986015) as maintenance treatment in elderly patients with acute myeloid leukemia (EFFIKIR trial). *J Clin Oncol.* 2013;31:TPS3117-TPS3117(2013).

268. André P, Denis C, Soulas C, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. *Cell.* 2018;175(7):1731-1743. e13.

269. Melander M, Laugel B. Abstract LB220: s095029: a novel clinical-stage Fc-silenced NKG2A-blocking antibody with best-in-class potential. *Cancer Res.* 2023;83(8):LB220-LB220.

270. Ghaffari S, Weidanz JA. Targeting the NKG2A axis with a TCR mimic antibody containing an active Fc domain promotes anti-tumor immunity. *J Immunol.* 2023;210(1):89.

271. Becker PS, Suck G, Nowakowska P, et al. Selection and expansion of natural killer cells for NK cell-based immunotherapy. *Cancer Immunol Immunother.* 2016;65(4):477-484.

272. Klingemann H. Challenges of cancer therapy with natural killer cells. *Cytotherapy.* 2015;17(3):245-249.

273. Sutlu T, Alici E. Natural killer cell-based immunotherapy in cancer: current insights and future prospects. *J Intern Med.* 2009;266(2):154-181.

274. Rosenberg SA. Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. *Cancer J Sci Am.* 2000;6(1):S2-S7.

275. Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells. *Adv Immunol.* 2005;86:209-239.

276. Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-killer-cell surveillance and therapy of cancer. *Nat Rev Cancer.* 2002;2(11):850-861.

277. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. *Science.* 2002;295(5562):2097-2100.

278. Pegram HJ, Lee JC, Hayman EG, et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. *Blood.* 2012;119(18):4133-4141.

279. Iliopoulos EG, Kountourakis P, Karamouzis MV, et al. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. *Cancer Immunol Immunother.* 2010;59(12):1781-1789.

280. Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: a promising cellular immunotherapy for cancer. *EBioMedicine.* 2020;59:102975.

281. Marof F, Rahman HS, Thangavelu L, et al. Renaissance of armored immune effector cells, CAR-NK cells, brings the higher hope for successful cancer therapy. *Stem Cell Res Ther.* 2021;12(1):200.

282. Lupo KB, Matosevic S. Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. *Cancers.* 2019;11(6):769.

283. Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced natural killer cells in CD19-positive lymphoid tumors. *N Engl J Med.* 2020;382(6):545-553.

284. Chou CK, Turtle CJ. Insight into mechanisms associated with cytokine release syndrome and neurotoxicity after CD19 CAR-T

cell immunotherapy. *Bone Marrow Transplant.* 2019;54(2):780-784.

285. Zheng L, Ren L, Kouhi A, et al. A humanized Lym-1 CAR with novel DAP10/DAP12 signaling domains demonstrates reduced tonic signaling and increased antitumor activity in B-cell lymphoma models. *Clin Cancer Res.* 2020;26(14):3694-3706.

286. Kotanides H, Sattler RM, Lebron MB, et al. Characterization of 7A5: a human CD137 (4-1BB) receptor binding monoclonal antibody with differential agonist properties that promotes antitumor immunity. *Mol Cancer Ther.* 2020;19(4):988-998.

287. Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. *Blood.* 2005;106(1):376-383.

288. Lebrun A, Myhal G, Ceneston N, Constanzo-Yanez J, Grégoire YJB. Transfusion of sickle cell anemia patients in Quebec: challenges and opportunities. *Blood.* 2017;130:3745-3745.

289. Cao Z, Yang C, Wang Y, et al. Allogeneic CAR-NK cell therapy targeting both BCMA and GPRC5D for the treatment of multiple myeloma. *Blood.* 2022;140:7378.

290. Yang C, Wang Y, Liu T, et al. Abstract 4077: dual-targeted CAR-NK cell therapy: optimized CAR design to prevent antigen escape and elicit a deep and durable response in multiple myeloma. *Cancer Res.* 2023;83(7):4077.

291. Liu H, Yang B, Sun T, et al. Specific growth inhibition of ErbB2-expressing human breast cancer cells by genetically modified NK-92 cells. *Oncol Rep.* 2015;33(1):95-102.

292. Schönfeld K, Sahm C, Zhang C, et al. Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. *Mol Ther.* 2015;23(2):330-338.

293. Zhang C, Burger MC, Jennewein L, et al. ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. *J Natl Cancer Inst.* 2016;108(5).

294. Kruschinski A, Moosmann A, Poschke I, et al. Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas. *Proc Natl Acad Sci USA.* 2008;105(45):17481-17486.

295. Zhang T. Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. *Cancer Res.* 2006;66(11):5927-5933.

296. Song DG, Ye Q, Santoro S, Fang C, Best A. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. *Hum Gene Ther.* 2013;24(3):295-305.

297. Baumeister SH, Murad J, Werner L, et al. Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. *Cancer Immunol Res.* 2019;7(1):100-112.

298. Leivas A, Valeri A, Córdoba L, et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. *Blood Cancer J.* 2021;11(8):146.

299. Zhang Y, Wallace DL, de Lara CM, et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. *Immunology.* 2007;121(2):258-265.

300. Merino AM, Kim H, Miller JS, Cichocki F. Unraveling exhaustion in adaptive and conventional NK cells. *J Leukocyte Biol.* 2020;108(4):1361-1368.

301. Navin I, Lam MT, Parihar R. Design and implementation of NK cell-based immunotherapy to overcome the solid tumor microenvironment. *Cancers.* 2020;12(12):3871.

302. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. *Nat Rev Cancer.* 2021;21(6):360-378.

303. Dranoff G. Targets of protective tumor immunity. *Ann NY Acad Sci.* 2010;1174:74-80.

304. Levin AM, Bates DL, Ring AM, et al. Exploiting a natural conformational switch to engineer an interleukin-2 'superkine'. *Nature.* 2012;484(7395):529-533.

305. Charych DH, Hoch U, Langowski JL, et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. *Clin Cancer Res.* 2016;22(3):680-690.

306. Sockolosky JT, Trotta E, Parisi G, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. *Science.* 2018;359(6379):1037-1042.

307. Conlon KC, Lugli E, Welles HC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. *J Clin Oncol.* 2015;33(1):74-82.

308. Ghiringhelli F, Ménard C, Terme M, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. *J Exp Med.* 2005;202(8):1075-1085.

309. Viel S, Marçais A, Guimaraes FS, et al. TGF- β inhibits the activation and functions of NK cells by repressing the mTOR pathway. *Sci Signal.* 2016;9(415):ra19.

310. Otegbeye F, Ojo E, Moreton S, et al. Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. *PLoS One.* 2018;13(1):e0191358.

311. Krieg S, Ullrich E. Novel immune modulators used in hematology: impact on NK cells. *Front Immunol.* 2012;3:388.

312. Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. *Blood.* 2001;98(1):210-216.

313. Hagner PR, Chiu H, Ortiz M, et al. Activity of lenalidomide in mantle cell lymphoma can be explained by NK cell-mediated cytotoxicity. *Br J Haematol.* 2017;179(3):399-409.

314. Zheng X, Hou Z, Qian Y, et al. Tumors evade immune cytotoxicity by altering the surface topology of NK cells. *Nat Immunol.* 2023;24(5):802-813.

315. Goldenson BH, Hor P, Kaufman DS. iPSC-derived natural killer cell therapies—expansion and targeting. *Front Immunol.* 2022;13:841107.

316. Rezvani K, Rouce RH. The application of natural killer cell immunotherapy for the treatment of cancer. *Front Immunol.* 2015;6:578.

How to cite this article: Wang DR, Dou LY, Sui LH, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. *MedComm.* 2024;5:e626.
<https://doi.org/10.1002/mco2.626>