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Progress and challenges in
transplantationofhumanpluripotentstem
cell derived cardiomyocytes for cardiac
therapy

Check for updates

Jacelyn D. Bain1, Ryan W. Barrs1,2 & Ying Mei1,3

Myocardial infarction and heart failure remain leading causes of mortality worldwide. Human
pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent a promising approach to
regenerating damaged myocardium and restoring cardiac function. This review highlights
advancements in hPSC-CM differentiation, scale-up, and clinical-grade manufacturing; delivery
approaches; and insights frompreclinical and clinical studies.We also examinemechanisms of repair,
key challenges andmitigation strategies, and future directions to advance hPSC-CM therapies toward
clinical translation.

Each year, more than 735,000 people in the United States suffer from
myocardial infarction (MI), leading to the loss of up to one billion cardio-
myocytes in the left ventricle and a substantial decline in cardiac contractile
function1,2. While revascularization strategies such as percutaneous
coronary intervention (PCI) reduce acute mortality, many patients still
progress to heart failure (HF) due to the heart’s limited regenerative
capacity3,4.

Cell therapies have been investigated to address this unmet need. Early
trials usingnon-cardiac cells, includingbonemarrow-derivedmesenchymal
stemcells (MSCs), showedonlymodest functional benefit, largely attributed
to paracrine effects rather than true remuscularization5,6. These limitations
shifted focus towards cardiomyocytes derived from human pluripotent
stem cells (hPSC-CMs), from both embryonic stem cells (hESCs) and
induced pluripotent stem cells (iPSCs), which have demonstrated
robust remuscularization and functional cardiac recovery in preclinical
studies7–13. With growing evidence from preclinical studies and
increasingly efficient protocols for hPSC-CM differentiation, hPSC-CMs
have emerged as a leading candidate for next-generation cardiac cell
therapy14,15.

This review highlights recent advances in manufacturing, including
hPSC-CM differentiation, purification, and clinical-scale production;
delivery approaches; and insights from preclinical and clinical studies. We
also discuss key remaining challenges: cell survival, engraftment arrhyth-
mias (EAs), and immune rejection; and strategies to mitigate them. Finally,
we outline future directions for advancing hPSC-CM therapies toward
clinical translation.

Manufacturing of clinical-grade hPSC-CMs
Differentiation and purification
Primary cardiomyocytes have limited therapeutic potential due to chal-
lenges in their isolation and cultivation16. The advent of hPSCs enabled the
derivation of unlimited numbers of functional human cardiomyocytes for
therapeutic applications. Early spontaneous differentiation protocols led to
less than 1% hPSC-CMs, insufficient for therapy17. Directed differentiation
protocols using BMP4 and Activin A improved yields to >30% hPSC-
CMs18,19. Sequential Wnt/β-catenin activation (days 0-1) followed by inhi-
bition (days 3–5) now routinely yields >90% hPSC-CMs18–20.

To further enhance purity, lactate metabolic selection leverages dif-
ferences in glucose and lactate metabolism between cardiomyocytes and
non-cardiomyocytes, resulting in hPSC-CMpopulationswith a purity of up
to 99%15. Despite these advances, single cell RNA sequencing studies have
revealed the heterogeneous nature of hPSC-CMs, composed of sub-
populations including atrial-specific cells expressing MYL7 and NPPA;
ventricular-specific cells expressing MYL2 and IRX4; and nodal-like cells
expressing HCN4, SHOX2, and TBX321–24.

Subtype specific hPSC-CM differentiation protocols have there-
fore been gaining attention. For example, ventricular specification is
promoted by retinoic acid (RA) inhibition or modifying BMP4 and
Activin A levels, while atrial specification is enhanced by stimulating
the RA pathway22,23,25,26. By integrating efficient differentiation proto-
cols, metabolic purification, and subtype-directed approaches, hPSC-
CMs can be developed into standardized therapeutic products with
defined clinical functionality.
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Clinical-scale production
The loss of 1 billion cardiomyocytes in an MI necessitates efficient and
robust methods for hPSC-CM differentiation and expansion. Large scale
expansion after differentiation enables a ~250-fold increase in hPSC-CM
numbers within 4–5 passages27. Efficient cryopreservation further allows
pooling of hPSC-CMs from multiple batches to generate the quantities
required for therapeutic application28. Bioreactors have emerged as a pro-
mising approach to increase hPSC-CM yields. For example, stirred-tank
reactors generate 1.8*106 hPSC-CMs per mL, achieving ~94% viable cells
after cryopreservation, requiring aminimal footprint29. Similarly, Chen et al
leveraged canonical Wnt signaling in a bioreactor, producing 1.5–2*109

hPSC-CMs per liter with 91–92% purity and 85% recovery post-
cryopreservation30. Dhahri et al. applied the BMP4-Activin A protocol in
a PDMS lined 1 liter roller bottle yielding 1.2*108 mature hPSC-CMs per
liter31. Together, advances in bioreactor platforms, large-scale expansion,
and cryopreservation are enabling the production of clinically relevant
numbers of hPSC-CMs for transplantation.

Transplantation methods
Avariety of approaches, including intracoronary, systemic intravenous, and
retrograde coronary venous injections, were initially tested for hPSC-CM
transplantation into infarcted myocardium. However, these methods
resulted in poor cell retention and had limited functional recovery32. Con-
sequently, current hPSC-CM delivery strategies have shifted towards
intramyocardial injections and epicardial patches, which demonstrate
improved engraftment and therapeutic potential.

Intramyocardial injection
Intramyocardial injections deliver cells directly into the myocardium using
syringes or specialized catheters (Fig. 1a). Although overall cell retention is
modest (~1–10%), robust engraftments of hPSC-CMs within the infarcted
left ventricle of non-human primate (NHP) hearts have been demonstrated
(Fig. 1b). For example, Chong et al. reported mean engraftments of 2.1%
(0.7–5.3%) of the infarcted region in NHPs33. Engrafted hPSC-CMs form
electromechanical connections with host cardiomyocytes, contributing to
functional recovery in infarcted hearts33–41.

Beyond single-cell suspensions, intramyocardial injections have been
used to deliver 3DhPSC-CMmicrotissues (Fig. 1a). Compared to single cell
suspensions, microtissues demonstrate improved cell retention, as
demonstrated by a study comparing the retention of 20 μm (32.4 ± 10.8%)
and 175 μm (48.7 ± 14.3%) fluorescent beads following transplantation42.
Building on this, Fukuda et al. developed amulticomponent delivery system
consisting of a specialized syringe attachment, a gelatin hydrogel, and
purified hPSC-CM spheroids42 (Fig. 1c). The syringe attachment featured
six needles,withmultiple holes on the side of eachneedle, reducing spheroid
backflow and dispersing cells more evenly in the myocardium. Delivery of
hPSC-CM spheroids using this system improved cardiac function, includ-
ing increased ejection fraction, in rat and pig heart failure models10,43.

3DhPSC-CMmicrotissues also enable the incorporation of supportive
cell types and biomaterials. For example, vascular cells, such as endothelial
cells, have been incorporated into 3Dmicrotissues to enhance graft survival
and maturation9,44 (Fig. 1d). Additional supporting cells, including fibro-
blasts and pericytes, have been explored to further promote engraftment.
For example, Min et al. designed a microtissue system incorporating mul-
tiple cell types, cardiac extracellular matrix, and fluid flow to create mac-
roscale tissue aggregates45.Delivery of thesemicrotissues into a rat ischemia-
reperfusion model improved cardiac function, evidenced by increased left
ventricular ejection fraction and fractional shortening.

Epicardial patches
Epicardial patches provide another viable strategy to engraft hPSC-CMsonto
the surface of infarcted myocardium (Fig. 2a). Zimmermann and Eschen-
hagen pioneered this approach in 2006 by implanting large engineered car-
diac tissues composed of primary rat CMs onto infarcted rat hearts7

(Fig. 2b, c) and later demonstrated successful engraftment in ahumanheart46.

Compared with intramyocardial injection, epicardial patches offer greater
structural support, enhancing hPSC-CM retention (>10%).

There are two main approaches to patch fabrication, scaffold-free and
scaffolded. Scaffold free patches rely on self-organized tissue sheets. For
example, thermoresponsive poly(N-isopropylacrylamide) has been used to
generate sheets of hPSC-CMs that detach from culture substrates at low
temperatures and then stacked two to three layers thick47. Alternatively,
Stevens et al developed scaffold free hPSC-CM patches using suspension
culture on a rotating orbital plate, incorporating vascular supporting cells to
promote vascularization and improve the functions of the patches48,49

(Fig. 2d–f).
Scaffold-based patches embed hPSC-CMs within biomaterials such as

fibrin or collagen, often supplemented with bioactive factors (Fig. 2g). In
cryoinjury guinea pig models, functional recovery has been demonstrated,
although electrical integration between the patch and the host was limited,
with 3 out of 10 subjects demonstrating coupling across two studies12,50.
Importantly, transplantation of a clinically relevant size fibrin-based patch
composedof hPSC-CMs, smoothmuscle cells (SMCs), and endothelial cells
into pig models increased ejection fraction and decreased infarct size8.
Querdel et al. further demonstrated that patch engraftment and functional
recovery was dependent on the dose of cells delivered by the patch51.

Preclinical models of myocardial infarction and heart
failure
Rodent models were essential for initial proof-of-concept studies; however
their high heart rates (HR) (400 and 600 beats per minute (bpm)) obscure
engraftment arrhythmias (EAs). Guinea pigs exhibit action potentials more
similar to humans, but their high collateral coronary blood flow makes
creating a severe enough infarct by ligation difficult. Pig hearts are anato-
mically and electrophysiologically similar to humans (HR 80–100 bpm),
while non-human primates (HR 120–150 bpm) provide the closest elec-
trophysiological match, enabling more accurate arrhythmia assessment.
EAs have been shown to be present in these models, with fatal arrhythmias
observed in pig models52.

Three main approaches are used to induce myocardial injury. Per-
manent ligation of coronary arteries, particularly the left anterior des-
cending artery (LAD), models a transmural MI7,53. Ischemia reperfusion
(IR) models mimic a PCI treated MI, typically requiring 60–180min of
ligation followedby reperfusion9,13,22,41,54–56. Cryoinjurymodels create precise
infarct borders, commonly used in guinea pig models12,38,50.

The dosing of transplanted hPSC-CMs varies widely between studies
and between animal models. The timing of hPSC-CM delivery has been
studied across acute7,12,13,22,38,41,50,57, subacute9,39,56, and chronic phases54,55.
While most studies focus on acute and subacute treatment phases of MI,
increasing attention is shifting toward chronic HF, especially with the
initiation of human clinical trials in HF patients54,58,59. Table 1 summarizes
models, injury induction, cell doses, and endpoints.

Clinical translation
Building on the promising preclinical findings, several human clinical trials
have been initiated using single cell suspensions, spheroids, and epicardial
patches. Table 2 summarizes ongoing and completed human trials
including therapy type, inclusion criteria, and primary outcomes.

Intramyocardial injection trials
Allogenic hPSC-CMs have been delivered via intramyocardial injection
during scheduled coronary artery bypass grafting (CABG) in two trials: one
targeting patients with worsening ischemic heart disease (NCT05566600)
and another enrolling patients with severe ischemic heart disease
(NCT06340048). The HECTOR trial (NCT05068674) is evaluating trans-
endocardial delivery of hPSC-CMs through cardiac catheterization.

The LAPiS trial (NCT04945018) administers allogeneic hPSC-CM
spheroids intramyocardially to patients with severeHF. Five patients have
been recruited into both a low dose and high dose cohort, 50 and 150
million hPSC-CMs, respectively, with early reports showing improved left
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ventricular ejection fraction (LVEF), decreased New York Heart Asso-
ciation (NYHA) classification, and reduced levels of N-terminal pro-B-
type natriuretic peptide (NT-proBNP) (https://heartseed.jp/en/news/
assets/2023/07/aa5fdd0940390720c758960ae066298f1c35d66c.pdf)
(https://heartseed.jp/en/news/assets/2023/09/230911-Press%20Release-
Heartseed_LAPiS_JCCvF.pdf).

Epicardial patch trials
The BioVAT-HF trial (NCT04396899) employs epicardial patches com-
posed of hPSC-CMs and stromal cells in a collagen 1 matrix to treat HF
patients. Few adverse effects have been reported, and functional benefits at
the maximal dose (800M hPSC-CM/patient) include reductions in NYHA
classification (from stage III to II) and increased ejection fraction60. Notably,

the graft remained detectable after 3 months post-transplantation in one
patient later undergoing heart transplantation46.

Another ongoing clinical trial in Japan (jRCT2053190081) uses hPSC-
CM cell sheets61,62. Similar to BioVAT-HF trial, few adverse events were
causally linked to treatment. Published results from three patients indicate
functional recovery in two cases, with increased LVEF and decreased left
ventricular end systolic and diastolic diameters observed at both 6 months
and 1 year post-treatment62.

Mechanism of repair
Engrafting hPSC-CMs into the myocardium to remuscularize damaged
hearts was initially assumed to be the primarymechanism of cardiac repair.
Murry’s group first demonstrated that hPSC-CMs functionally integrated

Fig. 1 | Intramyocardial injections components and key developments.
a Intramyocardial injections can be single cell solutions or 3D microtissues.
b Inspired by a figure of a large hPSC-CM engraftment by Liu et al.41. (Top) control
heart. (Bottom) hPSC-CM treated heart. The blue regions represent collagen 1, the
pink is cTnT, and the green is human cTnI. c Fukuda et al. specialized delivery
system. (Top left) spheroids in phase contrast42. (Top right) schematic of spheroid
distribution upon injection42. (Bottom) distribution of tissue marking dye delivered
through the injection device (left) long axis (right) short axis42. d Nanowired orga-
noid by Tan et al. (Top left) stained for alpha sarcomeric actinin (green), Vimentin

(red) nanowires (yellow) and DAPI (blue) (top right) stained for alpha sarcomeric
actinin (green), nanowires (yellow) and DAPI (blue) (Bottom left) stained for alpha
sarcomeric actinin (green), Vimentin (red) and DAPI (blue) (bottom right) stained
for alpha sarcomeric actinin (green), vonWillebrand Factor (red) and DAPI (blue)9.
c Reprinted from ref. 42 Copyright (2019), with permission from Elsevier. d From
Tan et al. Nanowired human cardiac organoid transplantation enables highly effi-
cient and effective recovery of infarcted hearts. Science Advances 9, eadf2898 https://
doi.org/10.1126/sciadv.adf2898. Reprinted with permission from AAAS.
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into infarcted hearts, forming gap junctions with host cardiomyocytes via
connexin-4356. Optogenetic silencing experiments confirmed this con-
tribution, as contractile benefits were immediately lost when grafts were
inhibited63.

Paracrine signaling has increasingly been recognized as another key
mechanism of hPSC-CM mediated cardiac repair64–66. In particular, extra-
cellular vesicles (EVs), including exosomes, have emerged potentmediators
of cardiac recovery. Exosomes deliver bioactive cargos, proteins, messenger
RNAs (mRNAs),microRNAs (miRNAs) andbioactive lipids, thatmodulate
intercellular signaling67–70. In porcine MI models, EV injections improved
cardiac function to a degree comparable with transplanted cells, under-
scoring their critical role in cardiac repair66.

Karbassi et al. further dissected this mechanism by generating non-
contractile hPSC-CMs by knocking out slow skeletal TNNI1 and cardiac
TNNI3, key components of the contractile machinery of hPSC-CMs65.

Remarkably, these noncontractile hPSC-CMspreservedheart function after
IR injury to a similar extent as wild-type hPSC-CMs, highlighting the
importance of paracrine effects.

Both remuscularization and paracrine effects act in parallel. From a
translational perspective, cell-free therapies may reduce risks associated
with cell transplantation, but their rapid clearancemaynot confer long-term
improvements to heart function as would a direct cell replacement therapy.
By contrast, hPSC-CMs can act as a “living drug” after transplantation,
providing contractile force, secreting pro-survival signals, and dynamically
responding to host injury71.

Challenges and mitigation strategies
hPSC-CM population heterogeneity
Single cell sequencing studies have highlighted the heterogeneous nature of
hPSC-CM cultures22 (Fig. 3d). Thorough characterization of hPSC-CMs is

Fig. 2 | Epicardial patch components and key developments. a Epicardial patches
are applied to the external layer of the heart. b, c Scaffolded patch composed of
hPSC-CMs and a fibrin scaffold7. bMultiloop scaffolded patch. cPatches are secured
to the heart by 6 sutures. d–f Scaffold free patchwith hPSC-CMs+ human umbilical
vein endothelial cells+ fibroblasts48. d beta myosin heavy chain expression in the
patch. e Lumen structures form in the patch. f Patch attached to the outside of the

heart. g Schematic of scaffold-based epicardial patch fabrication with hPSC-CMs,
biomaterials, and bioactive factors. h Patch CMs’ retention (red) in infarcted mice
hearts without bioactive factors (left) or with CHIR99021+ FGF1 nanoparticles
(right)80. b, cReproduced from ref. 7. d–fReproduced from ref. 48.With permission
from PNAS. h Reprinted from ref. 80 Copyright (2020), with permission from
Elsevier.
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critical to ensure reproducible therapeutic efficacy and to prevent aberrant
in vivo differentiation of residual stem cells40. Atrial, ventricular, and nodal
hPSC-CMs differ in electrophysiology, contractile function, and gene
expression22,72–75. One study reported that populations with increased atrial
and pacemaker-like cells led to increased rates of EA, with all animals
demonstrating nearly sustained arrhythmia by day 8 post-transplantation22.
Themechanisms underlying this increased arrhythmogenicity has not been
fully explored. By contrast, ventricular specific hPSC-CMs have been
differentiated23,25,26 and transplanted23, but their arrhythmia risk has not yet
been investigated. A deeper mechanistic understanding of how hPSC-CM
subtypes contribute to efficacy and safety is needed, and the optimal cell
population for therapy remains undefined.

hPSC-CMmaturity
Compared to adult cardiomyocytes, hPSC-CMs display an immature
phenotype characterized by differences in 1) morphology, 2) electro-
physiology, 3) calcium handling, 4) contractility, 5) metabolism, and 6)
proliferative capacity76. Immature hPSC-CMs are typically round, exhibit
depolarized resting potentials, reliance on glycolysis, generate low con-
tractile force, and lack T-tubules.

Most transplantation studies have used hPSC-CMs with an age of two
to three weeks post-differentiation in vitro (Table 1). This immaturity may
confer advantages, including increasedproliferation and enhanced ischemic
tolerances. However, the automaticity of hPSC-CMs has been implicated in
EAs due to interference with host action potential propagation76. Interest-
ingly, there is evidence of in situmaturation, with spontaneous resolution of
EAs observed around 30 days after hPSC-CM transplantation33,35,40. It has
been demonstrated that in vitro matured hPSC-CMs form grafts with
improved structure and function in injured hearts31.

Numerous strategies have been explored to promote hPSC-CM
maturity prior to transplantation. Biophysical approaches include modify-
ing culture substrates, electrical pacing (1–2Hz), andmechanical stretchhave
been explored76,77. Modifying culture substrates has been shown to have an
effect on maturity: aligned fibers led to a more mature cell population at
earlier time points78. In addition, substrates coated with PDMS of ~400 kPa
stiffness increased hPSC-CMmaturation31. When transplanted into cryoin-
jured guinea pigs, PDMS-cultured hPSC-CMs exhibited decreased arrhyth-
mic burden relative to tissue culture plastic cultured hPSC-CMs.

In parallel, biochemical approaches such as supplementing fatty acids
with hormones and peroxisome proliferator-activated nuclear receptor
agonists to culture media have also been used to shift metabolism from
glycolysis to fatty acid oxidation, yielding hPSC-CMs with a compact
ventricular phenotype (Fig. 3a)23. Although these matured grafts were
smaller, they contained more structurally and functionally mature
hPSC-CMs.

Notably, the ideal maturation state for hPSC-CMs remains undefined.
Optimal cells should maximize graft quality, such as increased contractility
and calcium handling, while minimizing risks such as the enhanced
arrhythmogenicity and reduced survival or proliferation. Determining this
balance represents one of the field’s greatest challenges and opportunities.

Cell survival and engraftment
Ensuring robust survival and integration of transplanted hPSC-CMs is
essential for achieving lasting therapeutic benefits in patients. After trans-
plantation, hPSC-CMs face multiple stressors including; hypoxia, oxidative
stress, inflammation, and mechanical washout48,56,79. To address these
challenges, Laflame et al. developed a pro-survival cocktail containing
components that mitigate anoikis, apoptosis, necrotic, and mitochondrial
cell death, while also enhancing ischemic tolerance56. This cocktail has
enabled robust hPSC-CM engraftment in rodent and NHP models. In
addition, microtissues such as spheroids have been employed to overcome
mechanicalwashout andpromote hPSC-CMengraftments10. Incorporation
of electrically conductive silicon nanowires has been used to increase
microtissue integration and enhanced functional recovery of host
myocardium9.T
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Epicardial patches often suffer from low survival without sufficient
vascularization. The addition of vascular supporting cells, particularly
endothelial cells, has been used in patches to promote engraftment and
vascular recruitment48. Other supporting vascular cells such as SMCs, have
been shown to improve patches vascularization and functional recovery in
pig models8. Beyond cellular composition, modulation of biochemical and
physical cueswithin epicardial patches offers a powerful strategy to improve
survival and engraftment. For example, Fan et al. engineered hPSC-CM
patches to incorporate nanoparticles loadedwithCHIR99021andFGF14780

(Fig. 2g). These patches increased engraftment fourfold and stimulated
hPSC-CM proliferation in a mouse model.

Engraftment arrhythmia
Large animal studies have reported EAs that occur shortly after hPSC-CM
injections,which typically resolve spontaneously after 1month (Fig. 3b, c)22,52,81.
EAs are thought to arise from the heterogenicity and immaturity of trans-
planted hPSC-CMs. Compared with intramyocardial injections, fewer EAs
have been observed following transplantation of epicardial hPSC-CM pat-
ches, likely due to their physical insulation from host myocardium50.

However, this same limited electrical integration can lead to unsynchronized
contractions of transplanted patches and suboptimal therapeutic benefit39.

A straightforward and clinically translatable strategy for reducing
arhythmic burden after hPSC-CM transplantation is the use of anti-
arrhythmia drugs. Nakamura et al. screened several clinically relevant
antiarrhythmic drugs and identified two effective options: amiodarone, a
class III antiarrhythmic drug primarily a potassium channel inhibitor, and
ivabradine, a HCN4 channel antagonist82. Amiodarone was delivered
continuously, while ivabradine was administered during sustained tachy-
cardiawhen porcine subjects reachedheart rates greater than 150 bpm.This
regimen eliminated fatal arrhythmias and reduced overall arrhythmic
burden. Selvakumar et al. further confirmed the effectiveness of combined
ivabradine and amiodarone, demonstrating decreased arrhythmia duration
(in hours per day) and frequency (days with arrhythmia)22 (Fig. 3c). In
addition, they evaluated catheter ablation, successfully mapping EAs to
hPSC-CM injection sites, and decreasing the arrhythmogenic burden fol-
lowing catheter ablation. Notably, one porcine subject treated with hPSC-
CMscomposedof ahigher atrial subpopulation, had recurrentEAs traced to
secondary locations beyond the original ablation target.

Fig. 3 | Mitigation strategies developed to increase intramyocardial injection
therapeutic effectiveness. aMorphological differences in hPSC-CMs as they pro-
gressively matured with palmitate (Pal), Dex and T3 (DT) or PPar agonist+
palmitate+Dex and T3 (mature)23. b ECG traces of arrhythmias present in a
minipig injury model NSR normal, VT ventricular tachycardia, AJR accelerated
junctional rhythm, AIVR accelerated idioventricular82. c Anti-arrhythmia drugs
decrease the arrhythmogenic burden in hPSC-CM treated pigs22.d scRNAseq data of
hPSC-CMs showing the multiple number of subpopulations contained within one

culture22. e Diagram of gene edits made in MEDUSA hPSC-CMs to reduce auto-
maticity. Red channels are knockouts, and green channels were knocked in.
f Arrhythmogenic burden was decreased in the gene edited hPSC-CM treatment
group81. aModified from ref. 23 originally published under CC-BY 4.0 https://
creativecommons.org/licenses/by/4.0/. bModified from ref. 82 originally published
under CC-BY 4.0 https://creativecommons.org/licenses/by/4.0/. c, dModified from
ref. 22 originally published under CC-BY 4.0. f Reprinted from ref. 81 with per-
mission from Elsevier.
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To further probe EA mechanisms, Marchiano et al. conducted sys-
tematic genome editing to reduce hPSC-CMs automaticity81. By knocking
out HCN4, Cav3.2, and NCX1, while overexpressing of Kir2.1, they gen-
erated cells capable of responding to action potentials without spontaneous
firing. When transplanted into porcine models, these engineered hPSC-
CMs substantially reduced arrhythmic burden (Fig. 3e, f).

Immune rejection
Immune rejection remains a critical barrier to achieving long term hPSC-
CM engraftment. While immunocompromised rodents (e.g., athymic rats)
arewidely used for transplantation studies, immunosuppression is currently
the only viable option for large-animal and human trials.

Autologous hPSC-CMs are impractical for clinical use in acute MI
treatment due to the 3–6months required formanufacturing and their high
cost83,84. In contrast, allogenic hPSC-CMs aremore readily available and are
being tested in all current clinical trials. However, they require either
immunosuppressive regimens or human leukocyte antigen (HLA) match-
ing to avoid rejection. Immunosuppressive drugs carry significant risks,
particularly in vulnerable HF patients85,86. HLA class matching is a feasible
alternative in relatively genetically homogenous populations such as Japan,
where as few as 140 cell lines couldmatch 90% of individuals87. By contrast,
in genetically diverse populations such as United States, substantially larger
HLA-matched cell banks are needed to achieve broad coverage, particularly
for underrepresented ethnic groups88.

Emerging hypoimmune technologies offer a promising strategy to
overcome these challenges. By genetically editing hPSC-CMs to eliminate
expressionofHLAclass I and/or IImolecules, these cells evadeCD8+ and/or
CD4+T cell mediated killing83. To prevent natural killer (NK) cell mediated
lysis, immune evasive factors such as CD47, and HLA-E/G can be knocked
in89. Notably, hypoimmune gene-edited hPSC cardiac organoids have
demonstrated the ability to restore contractile function in infarcted rat
hearts and to improve graft retention and immune evasion in humanized
mice relative to wild-type controls90.

Conclusions and future perspectives
Over the past decade, hPSC-CM therapies advanced significantly, culmi-
nating in ongoing clinical trials. Progress in hPSC-CM differentiation and
purification has enabled the production of clinical-grade hPSC-CMs, while
intramyocardial injections and epicardial patches have emerged as pro-
misingdelivery strategies. Early clinical trial results suggest these approaches
improve cardiac function.

Despite this progress, several key challenges must be addressed before
hPSC-CM therapies transform MI and HF treatment. Major obstacles
include limited cell survival, low engraftment efficiency, and the risk of EAs.
Pro-survival cocktails and co-transplantation with supporting cells have
shown promise in enhancing hPSC-CM survival, but the optimal cell type
and composition tomaximize engraftment remains undefined. Tomitigate
EAs, anti-arrhythmicdrugs, catheter ablation, and ion channels gene editing
have been explored. While anti-arrhythmic drugs and catheter ablation are
clinically feasible, further investigation is needed to minimize EA risk.

Optimizing the composition and maturity of transplanted hPSC-CMs
is another critical challenge. Evidence suggests that hPSC-CM populations
enriched in atrial-like subpopulations may increase arrhythmogenic risk,
whereas whether ventricular-specific populations reduce EA remains
undetermined. Striking the right balance between the proliferative and
stress-tolerant properties of immature hPSC-CMs and the contractile and
electrophysiological competence of mature hPSC-CMs will be essential to
defining the ideal therapeutic cell product.

Immune rejection also remains a major barrier. Although current
immunosuppression regimes are effective, they pose significant risks,
highlighting the need for alternative approaches. Hypoimmune technolo-
gies, pioneered in hPSC-derived pancreatic islet transplantation, offer
promising strategies for cardiac regenerative medicine.

Lastly, a deeper mechanistic understanding of hPSC-CM-mediated
cardiac repair is essential. The relative contributions of remuscularization

compared to paracrine effects remain incompletely understood, and
resolving this will be critical for refining therapeutic strategies.

Looking ahead, integrating emerging innovations in cell engineering,
immunomodulation, and tissue engineeringwill be key to overcoming these
challenges and realizing the full potential of hPSC-CM therapies for treat-
ment of MI and HF.
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