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T cells are central components of the adaptive immune system and play key roles in antitumor and antiviral responses. The diverse
cell fates of T cells enable them to respond to different durations and strengths of antigen stimulation and various cytokine milieus
in a context-dependent manner. During acute infection or vaccination, T cells differentiate into effector cells and later develop into
memory cells after antigen clearance, which mediate immune protection against the same antigen. In contrast, during cancer and
chronic infection, T cells fail to enter the canonical effector or memory cell differentiation path. Instead, antigen-specific T cells enter
a dysfunctional, partially responsive state called exhaustion. Exhausted T cells are heterogeneous. A subset of exhausted T cells
exhibits stem cell-like properties. These stem-like T cells sustain immunity through self-renewal and repopulation of terminally
differentiated progenies. Stem-like properties are critical for T cell immunity induced by immunotherapy. This review summarizes
recent advances in understanding the molecular mechanisms controlling the exhaustion and stemness of T cells and explores the
potential of rewiring these circuits to increase the efficiency of T-cell-based immunotherapy.
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INTRODUCTION
The differentiation trajectory of CD8 T cells is dictated by the
duration of antigen stimulation. During acute infection, naive
T cells (TNs) differentiate into either effector T cells (TEFFs) to clear
antigens or memory precursor cells (TMPs) [1, 2]. After the antigen
is cleared, terminally differentiated short-lived TEFF cells go
through a contraction phase to avoid immune pathology, while
TMP cells develop into memory T cells (TMEMs) to provide a self-
renewing antigen-specific T cell pool for long-term immune
protection against potential reinfection [1, 2]. Human TMEM cells
contain various subsets, including central memory (TCM), stem-like
memory (TSCM), effector memory (TEM), and CD45RA+ effector
memory (TEMRA) T cells, that circulate throughout the body and
maintain immune memory [3, 4]. Although both TCM and TSCM cells
can self-renew, the TSCM population has greater proliferation
capacity and multipotency and displays superior antitumor
immunity during adoptive cell therapy [4–7]. In addition to the
circulating TMEM subsets, a distinct noncirculating tissue-resident
memory T cell population (TRM) that mediates local immune
protection has been described [8–11].
During cancer and chronic infection, antigen-specific CD8 T cells

undergo constant TCR stimulation in an immunosuppressive
environment, which drives T cells to enter a dysfunctional state
called exhaustion [12]. Exhaustion prevents T cells from eradicat-
ing infected cells or cancer cells [13–21]. T-cell exhaustion has

been characterized in landmark studies in a mouse model of
chronic lymphocytic choriomeningitis virus (LCMV) clone 13
infection and has been observed in humans with chronic HIV,
HBV, and HCV infections and cancers [13–21]. Exhausted CD8 T
(TEX) cells progressively lose their effector function, upregulate
inhibitory receptors (also termed immune checkpoints), fail to
persist or form memory, and become metabolically dysregulated
[19–21]. Immune checkpoints, such as CTLA-4, PD-1, LAG-3, TIM3,
and TIGIT, transduce inhibitory signals to suppress T cell
responses. By blocking these signals, immune checkpoint block-
ade (ICB) reinvigorates T cell responses. In addition to constant
TCR stimulation, interactions with suppressive cells, including
myeloid cells, in the tumor microenvironment promote T-cell
exhaustion through immune checkpoints, including TIGIT [22]. The
epigenetic program of T cell exhaustion is largely unaffected by
checkpoint blockade and drives re-exhaustion after cessation of
PD-1 blockade [23, 24]. These “epigenetic scars” are characterized
by the maintenance of open chromatin at genes associated with
T-cell exhaustion after elimination of chronic antigen stimulation
[25, 26], suggesting that at least part of the epigenetic program
associated with T-cell exhaustion is irreversible once it is
established.
In autoimmune diseases, T-cell exhaustion restrains excessive

immune activation and is paradoxically associated with favorable
clinical outcomes, in contrast to its detrimental role during chronic
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infection or cancer. Transcriptomic analyses of CD8 T cells from
patients with autoimmune disorders such as antineutrophil
cytoplasmic antibody-associated vasculitis, systemic lupus erythe-
matosus, and type 1 diabetes revealed that a gene expression
signature resembling that of exhausted CD8 T cells in chronic viral
infection correlated with reduced relapse frequency and sustained
remission [27, 28]. T-cell exhaustion in autoimmune diseases arises
from persistent stimulation by autoantigens combined with
insufficient CD4 T-cell help [28, 29]. Exhaustion limits immuno-
pathology by dampening autoreactive CD8 T-cell responses,
acting as a form of peripheral tolerance once self-reactivity is
established [27, 30]. Indeed, genetic or pharmacologic blockade of
PD-1 or LAG-3 signaling in mice promotes autoimmune diseases,
underscoring the protective role of exhaustion-associated immune
checkpoint pathways [29]. Conversely, therapeutic induction of
exhaustion, for example, by enhancing PD-1 signaling, has been
proposed as a means to mitigate autoimmunity [30]. In organ
transplantation, T-cell exhaustion suppresses alloimmune activa-
tion and thereby promotes graft tolerance. Persistent alloantigen
exposure induces exhausted CD8 T cells with reduced cytokine
production, facilitating long-term transplant acceptance [31].
Conversely, disruption of PD-L1–mediated inhibitory signaling
enhances T-cell activation and accelerates cardiac allograft
rejection and vasculopathy [32]. Clinically, PD-1/PD-L1 blockade
restores antitumor responses but often promotes graft rejection,
suggesting that maintaining T-cell exhaustion is crucial for
sustaining transplant tolerance [33]. Collectively, T-cell exhaustion
limits antiviral and antitumor immunity but is beneficial for
preventing chronic autoreactivity or alloreactivity.

HETEROGENEITY WITHIN THE TEX LINEAGE
Like the TEFF and TMEM cells, TEX cells are also heterogeneous
(Fig. 1). An early study revealed that a subset of TEX cells is more
responsive to PD-1 blockade [34]. Transcription factors (TFs), such
as T-BET and EOMES, and surface proteins, such as CD39, have
been used to identify TEX cells with progenitor-like or terminally
exhausted phenotypes [35, 36]. Perhaps one of the most exciting
developments in the field of TEX biology is the discovery of a stem
cell-like T cell population that expresses the TF TCF1 during
chronic infection and cancer [37–47]. Stem-like T cells (TSLs), also
termed exhausted progenitor CD8 T cells or TPEX, are critical for
long-term cellular immunity. To maintain long-term control over
chronic infection and cancer, TSL cells self-renew and replenish
other exhausted TCF1− populations [37–47]. Stem-like T cells are
maintained by conventional type 1 dendritic cells in their niches in
the lymph node and tumor stroma, which serve as reservoirs for
antitumor T cells in cancer or antiviral T cells during chronic
infection [38–40, 48–55]. Compared with their TCF1− counterparts,
TSL cells exhibit a superior ability to proliferate in response to
immunotherapies, including PD-1 blockade and adoptive cell
therapy [37–39, 41, 42, 45, 46, 56–58]. In addition, TSL cells are
endowed with greater mitochondrial fitness, which is critical for
tumor control [56, 58–60]. The frequency of TCF1+CD8 T cells in
cancer patients treated with checkpoint inhibitors is associated
with favorable clinical outcomes [42, 61, 62]. In addition, the gene
signatures of T-cell stemness and/or T-cell memory in premanu-
factured T cells and in chimeric antigen receptor (CAR) T-cell
infusion products positively correlate with the response to CAR-T-
cell therapy in cancer patients [63–65]. These studies suggest that
the properties of TSL cells are ideal for eliciting optimal T-cell
immunity by immunotherapy. Notably, in autoimmune diseases,
TSL cells sustain autoreactivity and tissue destruction [66–68].
When and how TEX cells diverge from the differentiation

trajectory of TEFF ->TMEM are under active investigation. Rather
than being imprinted to become TEFF or TEX during priming,
antigen-specific T cells are continuously adapting to the antigenic
environment [69]. Recent developments in single-cell omics

profiling technologies have enabled us to pinpoint the bifurcation
point of the two distinct cell fates. In LCMV infection, single-cell
RNA sequencing (scRNA-seq) of CD8 T cells responding to acute
infection versus chronic infection diverged during the late stage of
initial clonal expansion [44]. Notably, despite the similarities
between TSL cells and TMP cells, the TF TOX is expressed only by
TSL cells [44]. TOX is essential for the development and persistence
of the TEX lineage, including TSL cells, whereas the loss of TOX
favors the fate of TEFF but ultimately impairs the persistence of
antigen-specific T cells under chronic antigen stimulation
[44, 70–74]. Recent discoveries of the common progenitors of
TSL cells and TMP cells have revealed the flexibility of early cell fate
decisions in both memory formation and exhaustion progression
[75, 76].
More recent studies revealed further heterogeneity among TSL

or TPEX cells. The expression of CD69 divides these cells into two
subsets: a CD69+ lymphoid tissue-resident subset (TEX-Prog1) and a
CD69− TEX-Prog2 subset that downregulates TCF1 and enters the
blood [77]. Notably, single-cell ATAC+RNA-sequencing analysis of
CAR-T cells revealed a TSL subset that shows greater activity of
T-box TFs, including EOMES, and may represent a transitory state
between the TSL and its progeny [78]. The proliferative potential
and multipotency are not evenly distributed among TSL cells. In
chronic LCMV infection, a subset of TF-MYB-dependent CD62L+

cells within TSL cells retain the highest level of stemness [79].
Importantly, the capacity for long-term self-renewal and a
proliferative burst in response to PD-1 blockade are selectively
preserved in this small subset of TSL cells [79]. Similarly, TSL cells
exhibit a hierarchical distribution of stemness characteristics in
cancer. Compared with their TCF1+TOX+ counterparts, a
TCF1+TOX− subset in the draining lymph node of the tumor is
protected from the epigenetic scar of exhaustion and demon-
strates superior antitumor immunity in adoptive cell therapy and
PD-1 blockade [51]. Two TSCM subsets, a functional progenitor
subset lacking expression of inhibitory receptors and a PD-
1+TIGIT+ exhausted-like subset, are found in human T cells [80].
The progenies of TSL cells are also heterogeneous. TSL cells first

differentiate into CD101−TIM3+ transitory TEX cells, which exhibit
partial effector function and respond to PD-1 blockade [81]. The
transitory subset then differentiates into the terminally exhausted
CD101+TIM3+ subset (TEX-Term) [81]. Compared with intermediate
TEX cells, TEX-Term cells upregulate CD69 expression [77]. scRNA-seq
revealed another potential differentiation pattern in which the TSL
subset bifurcates into two distinct progenies, the TEX-Term subset
and an IL-21-dependent KLRG1+CX3CR1+ subset that exhibits
superior effector function [47, 82]. In chronic LCMV infection,
CX3CR1+ eff-like TEX cells are closer to the circulation, whereas
CXCR6+CX3CR1− TEX-Term cells reside in tissues [83]. Because of its
short-lived nature, the eff-like TEX subset needs to be continuously
replenished by TCF1+ TSL cells [47]. In cancer patients, CX3CR1 is
expressed in a CD8 T cell population that responds to
chemoimmunotherapy [84]. The recent development of single-
cell multiomics provides further insight into the diversity within
the TEX-Term and eff-like TEX subsets [85, 86]. Notably, CXCR6 is
required to position eff-like TEX cells in proximity to CCR7+

conventional DCs that trans-present IL15 to facilitate the survival
of T cells [87]. Thus, CXCR6 itself may not drive T cell exhaustion.

THE MOLECULAR CIRCUIT REGULATING THE EXHAUSTION
AND STEMNESS OF T CELLS
The transcriptional program of T cell exhaustion
While many transcriptional regulatory circuits are shared between
acute and chronic antigen exposure, some transcriptional signal-
ing cascades are specific to the adaptation of TEX subsets to
chronic antigen stimulation (Fig. 2). The typical “exhaustion-
specific” TF is TOX, which defines the TEX lineage and plays key
roles in all exhausted T cell subset differentiation processes
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[44, 70–74]. High expression of TOX is a direct consequence of
strong and constant TCR stimulation, and it can be a potential
adaptive mechanism to maintain CD8 T cell internal homeostasis
at the transcriptional and epigenetic level [44, 70–74]. Indeed,
overexpression of TOX improves the persistence of virus-specific
CD8 T cells during chronic infection [44], suggesting that TOX
plays a beneficial role in the adaptation of T cells to chronic
stimulation. Removing TOX drives the differentiation of antigen-
specific CD8 T cells to short-lived TEFF cells while impairing the
differentiation of the TSL population [44, 70–74]. Consequently, in
the long term, all TEX cell subsets fail to persist [44, 70–72]. In
addition to TCR signaling, LAG-3 also sustains TOX to facilitate the
development of TEX lineages [88]. TSL cells are maintained by
sustained TCR stimulation [55]. Cessation of TCR signaling prompts
TSL cells to diverge to a TMEM fate, which is accompanied by
downregulation of TOX [75, 76, 89]. These findings are consistent
with the notion that TOX is a key feature that distinguishes TSL
cells from TMP cells [44]. Notably, the effect of TOX may be dosage
dependent. A partial reduction in TOX levels results in effective
tumor control without compromising long-term T cell immunity
[70]. Other TFs critical for the development of T cell exhaustion,
such as NR4A family members [73, 90–92], NFAT-AP-1 signaling
[93–96], and BATF/IRF4 [97–100], are also associated with TCR
signaling.

TCF1– the “identity” of stemness
TCF1, the most broadly reported pro-stem TF, has two major
isoforms (short p33 and long p45) with distinct functions in

different biological processes [101]. TCF1 was first reported as a
master regulator during T cell development in the thymus via
Notch signaling [102, 103]. As a pioneer factor, TCF1 has the
capacity to shape and reprogram the epigenetic landscape toward
a functional mature T cell stage to initiate T cell identity [104].
Together with its homolog LEF1, TCF1 establishes the epigenetic
landscape of T cells by controlling both histone acetylation and
chromatin architecture via the intrinsic HDAC activity of its short
isoform p33 [105] and by coordinating with CTCF [106]. Thus, from
a developmental perspective, TCF1 has the capacity to modulate T
cell identity toward a naive mature T cell stage and maintain T cell
stemness with strong epigenetic footprints.
During acute antigen exposure, TCF1 restrains hyper-effector

proliferation and modulates the memory T cell pool to maintain its
capacity for secondary responses [6, 107–109]. A lack of TCF1 has a
limited effect on the initial immune response; however, it has a
significantly strong effect on recall toward the same antigen,
suggesting that it plays a key role in maintaining the stemness of
memory T cells [107–109]. In particular, the TCF1 p45 isoform
contributes to optimal memory formation [110]. TCF1 has been
shown to regulate multiple downstream pathways contributing to
memory formation, including EOMES and BCL-2 [107, 108]. Interest-
ingly, moderate levels of coinhibitory signaling molecules such as PD-
1 and LAG-3 during acute infection help T cells maintain memory
capacity and high expression of TCF1. In fact, intermediate levels of
PD-1 expression marked a TSCM population with high CD62L
expression, high self-renewal capacity with secondary transfers, and,
most importantly, better genomic protection [5].

Fig. 1 Differentiation trajectories of CD8 T cells during acute and chronic antigen exposure. During acute infection, naïve T cells (TNs)
differentiate into effector cells that mediate rapid pathogen clearance and memory cells that provide long-term protection. In contrast,
persistent antigen stimulation during chronic viral infection or cancer drives an alternative pathway. Early in the immune response, terminal
effector-like cells emerge from naïve precursors but decline quickly and show limited persistence. In parallel, stem-like T (TSL) cells, which
serve as progenitors of the exhausted lineage, increase and retain self-renewal capacity. TSL cells differentiate into transitory exhausted cells
(TEX-Trans), which can transiently expand but ultimately progress irreversibly into terminally exhausted cells (TEX-term) with fixed dysfunction or
into effector-like exhausted cells (eff-like TEX)
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During chronic infection, TCF1 acts as a master regulator and
maintains a pool of TSL cells that renew themselves even in the
presence of constant antigen stimulation and mount a prolif-
erative burst to ICB. In the LCMV chronic infection model, TCF1
was first defined as the core TF that regulates a follicular-like CD8
T cell population with a major capacity for self-renewal during
chronic infection and response to PD-1 blockade [37–41], similar
to the regulatory circuitry of follicular helper T cells (TFHs) [111].
This TCF1+ population is defined as progenitors for exhausted
T cells during chronic infection and is negatively associated with
IFN signaling sensing [37, 112]. The major follicular features of TSL
cells are that they are CXCR5+ and Ly108+ and are exclusive to
terminal differentiation markers such as TIM3 and CD39
[37–39, 47, 82]. In the early stages of chronic infection, TCF1
restrains terminal differentiation and promotes TSL generation
[47]. At the late stage of chronic infection, TCF1 is required for the
persistence of the antigen-specific CD8 T cell population,
including the TEX-Term and eff-like TEX subsets, which can be either
binarily differentiated from TSL cells [81, 82] or from a tissue-
circulation-tissue-migration manner for peripheral proliferation of
antigen-specific T cells [77, 113]. Notably, similar to the acute
setting, the TCF1 isoform p45 plays a strong role in maintaining
TSL cell fate [47], suggesting a potential regulatory role of Wnt-β-
catenin signaling in regulating TSL cell identity maintenance [6].

Master regulators of stem-like T cells and their progenies
In addition to TCF1, multiple TFs are involved in maintaining T cell
stemness during either acute or chronic infection and targeting
different signaling cascades, such as those involved in T cell
quiescence, survival, metabolism, and transcription.
BACH2 maintains the naïve differentiation state of mature

T cells and is critical for the development of TCM and regulatory
T cells [114–118]. This effect of BACH2 further extends as a major
factor in repressing the terminal exhaustion program and

maintaining the transcriptional and epigenetic landscape of TSL
cells during both acute and chronic infection [119, 120].
Transcriptionally, BACH2 has a shared motif comparable to that
of AP-1, and the expression/motif usage of BACH2 and AP-1
strongly antagonizes both mouse and human T cell differentiation
trajectories [116, 119, 120]. This potential transcriptional competi-
tion between BACH2 and AP-1 occurs on the enhancer of TCR-
induced activation genes, and BACH2 reshapes the whole
epigenetic landscape of CD8 T cells toward a more stemness-
restrained pattern [116, 119, 120]. Notably, the expression level of
BACH2 is correlated with the degree of stemness in CAR-T cells
and can be harnessed to optimize the antitumor immunity of CAR-
T cells [121]. In addition to AP-1 TFs, BACH2 also antagonizes
RUNX3 and BLIMP1, both of which are important players in the
terminal differentiation and exhaustion of T cells [119].
MYB has been reported to be among the major regulators of

hematopoietic stem cell maintenance and lymphocyte lineage
commitment [122–124]. It is also directly involved in regulating T
cell development at different stages [125, 126], suggesting that it
may have a role similar to that of TCF1 in reshaping the epigenetic
landscape of “naive-like” T cells. During acute infection, MYB is
strongly enriched in memory-associated populations, particularly
in the CD62L+ TSCM population, and is the central factor that
maintains memory cell homeostasis [127, 128]. Manipulating MYB
strongly affects memory recall responses and polyfunctionality.
For example, enhancing MYB expression results in better memory
T cell survival via increased BCL-2/BCL-XL expression and durable
polyfunctional responses of multiple cytokines via potential
oxidative metabolic processes [127, 128]. This MYB-driven
enhanced stemness signaling cascade is also associated with an
increased CD62L+ TPEX population during chronic infection, which
further strongly contributes to TPEX population survival as well as
the response to PD-1 blockade [47, 79]. MYB overexpression in
therapeutic T cells enhances tumor control during adoptive cell
therapy [128].
FOXO1, a major TF that is involved in multiple metabolic

processes to increase gluconeogenesis [129], also plays a key role
in stemness maintenance in TN and TCM cell populations
[130, 131]. FOXO1 generally enhances memory T cell formation
via the inhibition of effector-associated genes such as T-bet [132]
and promotes the expression of memory-associated receptors
such as IL7RA and CCR7, even at the early stage of activation
[133, 134]. During chronic infection, FOXO1 is a key regulator that
maintains PD-1 expression and ensures the survival of the TSL
population [135, 136]. This FOXO1-PD-1 axis further influences
metabolic regulation, where the FOXO1-PGC1a pathway counter-
balances PD-1-driven exhaustion and maintains partial function-
ality of antigen-responsive T cells [137].
FOXP1 is a member of the Forkhead box (FOX) TF family. In

T cells, FOXP1 was first described as a TF that enforces T cell
quiescence and suppresses FOXO1 and the MEK/ERK pathway
[138]. Deletion of FOXP1 in naïve T cells induces an effector-like
phenotype in lymphopenic mice [138]. FOXP1 is also required for
the homeostasis and suppressive function of regulatory T cells
[139, 140]. CD8 T cells from mice in which FOXP1 is deleted from
T cells during development exhibit increased effector function and
antitumor immunity [141]. Surprisingly, acutely disrupting FOXP1
in CD8+ CAR-T cells impaired expansion and tumor control by
CAR-T cells [78]. In addition, FOXP1 deficiency compromises the
differentiation of TSL cells and promotes the premature transition
from TSL to TEFF CAR-T cells [78]. Mechanistically, FOXP1 deficiency
increases chromatin accessibility to TCR downstream TFs, includ-
ing AP-1 and NR4A family TFs. Thus, FOXP1 may play context-
dependent roles at different stages of T cell differentiation. Future
studies are warranted to determine how to optimize T cell
immunity during immunotherapy by harnessing the activity
of FOXP1.

Fig. 2 Transcriptional regulators of TSL, eff-like TEX, and TEX-term.
Development and/or maintenance of TSL is driven by transcription
factors such as TCF1, BACH2, MYB, FOXP1, FOXO1, ID3, BCL6, c-JUN,
and SATB1. The transcription factors BATF, IRF4, ID2, and RUNX3
promote the terminal differentiation of CD8 T cells and suppress
stem-like cell fate. Among the terminally differentiated subsets, the
eff-like TEX subset is positively regulated by KLF2, ZEB2, T-BET, and
BHLHE40, whereas NR4A and BLIMP1 promote terminal exhaustion.
Both the TSL and TEX-Term lineages require TOX
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The zinc finger TF KLF2 is best known as a master regulator that
promotes T cell egress from lymphoid tissues and regulates the
expression of S1PR1, CD62L, and integrin β7 [142]. KLF2, which is
highly expressed in naïve T cells, is a gatekeeper for T cell
activation and restrains cytokine production [143]. The down-
regulation of KLF2 and S1PR1 is required for the formation of TRM
cells [144]. TSL and TEFF cells are predominantly found in CAR-T
cells recovered from hosts that have cleared tumors [78].
Simultaneous profiling of the single-cell transcriptome and
epigenome established the gene regulatory network of TEFF-like
CAR-T cells and revealed that KLF2 is a hub TF [78]. KLF2-deficient
CAR-T cells exhibit profound defects in the generation of the TEFF-
like subset [78]. Instead, KLF2-deficient CAR-T cells display an
exhaustion-like phenotype and upregulate the expression of
inhibitory receptors and TOX [78]. KLF2 deficiency also down-
regulates effector molecules and impairs in vitro killing by T cells
[78]. In mice with solid tumors, KLF2 deficiency reduces tumor
infiltration by CAR-T cells [78]. Single-cell epigenetic analysis
revealed that KLF2 deficiency increases chromatin accessibility at
binding sites of AP-1 and NFAT TFs while decreasing chromatin
accessibility at binding sites of KLF and T-box TFs [78]. Like CAR-T
cells, virus-specific CD8 T cells that respond to acute LCMV or MHV
infection also exhibit marked defects in TEFF differentiation and
upregulation of the exhaustion signature [145, 146]. Thus, KLF2
may represent a master switch controlling the cell fate decision
between TEFF and TEX lineages. It is worth further investigating
whether the effect of KLF2 on TEFF versus TEX differentiation is
connected to its role in regulating T cell migration. In addition,
whether targeting KLF2 activity in therapeutic T cells improves
their synergy with ICB awaits further investigation.

Transcriptional circuits determine T cell effectiveness versus
persistence
While these major TFs individually contribute to T cell stemness,
they also form a transcriptional network core in which these TFs
maintain the expression level of one another. For example, TCF1 is
critical for maintaining the expression of MYB; however, alteration
of the expression level of TCF1 is among the major phenotypes of
MYB genetic perturbation [47, 79]. While FOXO1 may coordinate
with TCF1 and BACH2 to promote stemness at the epigenetic level
[119, 147, 148], both TCF1 and BACH2 can be potential direct
targets of FOXO1 [134]. These TFs inside the stemness core self-
enhance the expression and function of each other to restrain
T cells in a high-proliferative capacity but low-activation stage.
Removal of these TF core candidates usually results in a limited or
no reduction in TEFF populations but has a significant effect on the
development of TSL cells during chronic antigen stimulation.
Another important feature of the function of this stemness TF

core is that multiple candidates can respond to the same
upstream signals. For example, an intermediate level of PD-1
expression is important for maintaining the expression of both
TCF1 and FOXO1 [5, 47, 135, 137], whereas type 1 interferon
signaling inhibits both of them [37, 149]. MYB and FOXO1 share
the same upstream miRNA, miR-150, to inhibit their expression
[127, 150]. These coordinated upstream signals can upregulate or
downregulate TFs in this stemness transcriptional core to make
the cell fate decide whether to maintain commitment to a stem-
like state or terminally differentiate in response to an antigen.
In addition to the core module, multiple polarized TF pairs affect

“effectiveness” versus “persistence” during CD8 T cell responses.
These TF pairs include T-BET versus EOMES [35, 151], ID2 versus
ID3 [152, 153], BLIMP1 versus BCL6 [154, 155], STAT4 versus STAT3
[156–158], and ZEB2 versus ZEB1 [159, 160]. Most of these TF pairs
have the feature of tuning the same functional module with
different activation intensities. For example, both T-bet and Eomes
are T-box family members that can drive the expression of Ifng
and other effector genes. T-bet, however, has much stronger
functionality in pushing cells into an “effective” module and

overactivation via T-bet-triggered terminal Teff differentiation [2],
whereas Eomes maintains a partial response capacity to the
antigens in both post-Teff contraction during acute infection and
cellular persistence during chronic infection and cancer progres-
sion [161–163]. Similar rationales apply to Blimp1 versus Bcl6
[154], although Blimp1+ cells are considered to be more terminal
CD8 T cells with high cytotoxicity but limited cytokine-secreting
capacity [164–167].
TFs involved in stem cell maintenance primarily function by

promoting “persistence-biased” TFs to retain the stem-like or
progenitor identity of CD8 T cells or by directly inhibiting
“effectiveness-biased” TFs. TCF1, FOXO1, and MYB are known to
promote Eomes expression and mediate the T-bet-to-Eomes
transition after the Teff boost phase, both in acute and chronic
infections [47, 168]. TCF1 also enhances and maintains the
expression of Bcl6 and Id3 to promote TMP or TSL cell fate, and
the latter TFs drive a function-specific molecular module to ensure
T cell persistence [37, 39, 40, 169, 170]. The chromatin organizer
SATB1 maintains the quiescent and stem-like state of TSL cells and
inhibits expansion and effector differentiation during chronic
infection and cancer by regulating transcriptional programs,
chromatin accessibility, and genome architecture at key
stemness-associated loci such as Tcf7, Bach2, and Myb [171, 172].
Recently, researchers have discovered the functions of more

transcriptional circuits that are related to a “persistence-to-
terminal effectiveness” transition rationale. For example, a study
revealed that the ETS family member Fli1 is a transcriptional
immune checkpoint that inhibits hyper-Teff responses in both
multiple infection and cancer models. Fli1 directly inhibits the cis-
regulatory elements on effector-associated genes by competing
with Runx3 [173], which drives TEFF responses, particularly in
pathological tissue [174–177]. Furthermore, in addition to these
transcriptional checkpoints, several TFs previously known to
regulate TH2 versus TH1 responses, including GATA3 and EGR2,
also promote “naiveness” or “stemness”modules during CD8 T cell
responses. GATA3 inhibits Teff differentiation, potentially by
suppressing the expression of the terminal Teff TF BHLHE40
[178–180], whereas EGR2 contributes to the expression of multiple
persistence module TFs, including FOXO1 and Eomes [181].

Metabolic adaptation of TEX cells to chronic antigen
stimulation
Metabolism is a critical determinant of T-cell function. The
exchange of metabolites between T cells and their surrounding
environment profoundly influences T cell fate. Dysregulation of
cellular energy metabolism in exhausted T cells not only limits
their bioenergetic capacity but also reshapes their epigenetic
program.
Exhausted CD8 T cells in chronic infections and tumors exhibit

marked impairment in core bioenergetic pathways, with both
glycolysis and oxidative phosphorylation (OXPHOS) substantially
reduced [137, 182–185]. Mitochondria in exhausted T cells display
reduced mass, lower membrane potential, and impaired respira-
tory reserve, changes that are closely associated with decreased
expression of PGC1α, a central regulator of mitochondrial
biogenesis and antioxidant defense [137, 182–185]. Depolarized
mitochondria in CD8⁺ tumor-infiltrating lymphocytes (TILs),
resulting from impaired mitophagy, drive terminal exhaustion
through epigenetic reprogramming. Enhancing mitochondrial
fitness with nicotinamide riboside alleviated dysfunction and
improved the response to PD-1 blockade [186]. In parallel,
glycolytic flux is suppressed through both extrinsic and intrinsic
mechanisms [137, 185, 187]. Nutrient limitation in the tumor
microenvironment restricts glucose uptake, while persistent
signaling through the PD-1 pathway inhibits aerobic glycolysis,
further exacerbating metabolic insufficiency [137]. Metabolic
reprogramming of T cells by increasing phosphoenolpyruvate
production via PCK1 overexpression enhances effector function

Z. Chen et al.

5

Cellular & Molecular Immunology (2026) 23:1 – 14



and tumor control by T cells [187]. Together, mitochondrial and
glycolytic defects create an energy-deficient state that reinforces
functional decline in exhausted T cells.
The metabolic state of exhausted T cells directly shapes their

epigenetic landscape. Key metabolites such as acetyl-CoA, α-
ketoglutarate, and S-adenosylmethionine (SAM) act as substrates
or cofactors for histone acetylation and methylation, thereby
modulating gene expression profiles that are central to T-cell fate
[188–192]. Perturbations in amino acid metabolism can also have
lasting epigenetic consequences. Methionine availability regulates
methyl group donation for histone and DNA methylation, whereas
tryptophan catabolism alters chromatin states [188, 193–195].
Metabolic–epigenetic coupling stabilizes exhaustion-associated
programs, making T cells resistant to functional reprogramming
even when inhibitory receptor signaling is blocked.
Beyond mitochondrial bioenergetics and metabolic–epigenetic

coupling, additional metabolites and nutrient pathways critically
influence the establishment and persistence of T-cell exhaustion.
In the tumor microenvironment, the depletion of amino acids
such as arginine and serine impairs proliferation, cytokine
secretion, and receptor expression [196, 197]. Dysregulated lipid
metabolism is a common feature of PD-1hi TILs and is
characterized by the accumulation of cholesterol and fatty acids
[198, 199]. These lipid deposits induce endoplasmic reticulum
stress, thereby impairing effector T-cell function. However,
cholesterol deficiency also impairs the effector function of
tumor-infiltrating T cells [200]. Conjugated bile acids accumulate
in liver cancer, whereas inhibiting their synthesis improves T cell
function and sensitivity to ICB [201]. Hypoxia has dual effects on
T cells. While HIF signaling promotes glycolytic metabolism and
augments effector activity in certain contexts [202–204], it may
simultaneously induce inhibitory receptor expression and dampen
cytotoxic function [205]. Importantly, under persistent antigenic
stimulation, hypoxic stress accelerates this dysfunction by enfor-
cing Blimp1–mediated repression of PGC1α-dependent mitochon-
drial reprogramming [206, 207]. Other metabolic by-products
regulate T-cell exhaustion and differentiation. Succinate, a TCA
cycle metabolite that accumulates in SDH-deficient tumors,
enhances CD8 T cell stemness and persistence through mitochon-
drial and epigenetic remodeling and thereby improves the
response to CAR-T and checkpoint blockade therapies [208].
Acidic metabolic waste accumulated in the tumor microenviron-
ment paradoxically preserved T cell stemness and enhanced
persistent antitumor T-cell immunity [209]. Clearance of ammonia,
a byproduct of amino acid metabolism, is required for the
development of T cell memory and can be targeted to improve
adoptive cell therapy [210]. Additional by-products, such as tumor-
derived lactate and excess extracellular potassium, also regulate
exhaustion by directly impairing effector function or skewing
differentiation toward stem-like states [211–213]. Notably, stiffness
of the extracellular matrix is a hallmark of cancer and promotes
exhaustion through the PIEZO1-OSR2 axis [214]. Thus, T-cell
exhaustion is not caused by a single metabolic defect but by a
complex interplay of nutrient availability, metabolic activity, and
environmental stressors.
TCR activation triggers calcium release from the endoplasmic

reticulum [215]. Increased cytosolic calcium is subsequently taken
up by mitochondria, which are the primary sites of oxidative
phosphorylation, and increases the activity of multiple TCA cycle
enzymes. This increase in enzymatic activity promotes the
generation of redox cofactors and increases reactive oxygen
species (ROS) production. In both tumor and chronic infection
models, persistent antigenic stimulation drives mitochondrial
dysfunction in T cells, leading to impaired oxidative phosphoryla-
tion, ATP depletion, and ROS accumulation [216]. These redox-
driven defects enforce terminal exhaustion by suppressing self-
renewal programs and activating exhaustion-associated TFs,
whereas antioxidant treatment restores proliferation, effector

function, and progenitor-like features, thereby enhancing anti-
tumor immunity [216]. While excessive ROS are detrimental to the
T cell response, ROS also play an important role in T cell activation
[217]. KEAP1 is a key sensor of oxidative stress. Under basal
conditions, it targets the TF NRF2 for proteasomal degradation.
Upon oxidation of reactive cysteine residues, NRF2 is released
from KEAP1, which is subsequently translocated to the nucleus,
where it activates the expression of antioxidant genes. KEAP1
expression is essential for CD8 T cells to adapt to chronic antigens
because it prevents NRF2-driven hyperactivation of TCR signaling,
cell death, and metabolic dysregulation [218]. KEAP1 deficiency
and NRF2 hyperactivation reduce the TSL subset and lead to the
accumulation of TEX with a terminal exhaustion phenotype [218].
NRF2 promotes exhaustion by upregulating the expression of the
immune checkpoint PTGIR, which impairs metabolism and
cytokine production by T cells [219]. In the context of asparagine
restriction, however, NRF2 plays a positive role in the metabolic
fitness and antitumor response of T cells [220]. The precise impact
of the KEAP1-NRF2 axis on the T cell response may be context
dependent.

Targeting the molecular program of T cell exhaustion and
stemness to improve immunotherapy efficacy
Successful T-cell-based cancer immunotherapy depends on the
balanced differentiation of T-cell effectiveness and persistence. It
has been shown that the TCF1+ TSL population in the tumor
microenvironment is the major population that responds to ICB,
and these cells differentiate into further reinvigorated eff-like TEX
cells to eliminate tumor growth [42, 45, 221, 222]. According to
multiple scRNA-seq studies of tumor-infiltrated immune cells, the
abundance of TSL cells is a prognostic marker for ICB treatment in
different cancer types, including melanoma [223], breast cancer
[224], and renal cell carcinoma [225]. While this persistent
transcriptional module is important for maintaining the antigen-
specific cellular response pool to ICBs, the major reinvigoration
feature of ICB-treated antigen-specific CD8 T cells is eff-like TEX
reactivation [23]. In clinical studies, enhanced T cell response
features, such as stronger cell cycling and effector-associated
molecule expression, have also been reported to be associated
with better outcomes [226, 227], although these effector-like cells
share TEX receptor profiles [228–232]. Thus, modulating transcrip-
tional circuits to reinforce TEFF-associated responses has also been
a working hypothesis in several studies that involved targeting
TOX [44, 70–74], Fli1 [173], and Blimp1/NR4A3 [233] or enhancing
STAT5 signaling [113].
The transcriptional features of CAR-T cells in the tumor

microenvironment are similar to those of infection-model-
defined TEX cells [78, 88, 234], with an increase in effector features
over time in non-Hodgkin lymphoma patients but an increased
AP-1/NR4A/BLIMP1 TF profile in the TIGIT+ CAR-T cell population
in the nonresponsive group [234]. Similar dysfunctional CAR-T cell
features with increased Blimp1/NR4A3 expression were also
observed in metastatic prostate cancer treatment, in which
targeting these two TFs increased the therapeutic effect of CAR-
T cells in murine models [233]. Deletion of the pro-exhaustion TF
ETV7 also enhances the antitumor efficacy of CD8 T cells [235].
Furthermore, in vitro CRISPR screening revealed TLE4 and IKZF2 as
negative regulators that restrict the effects of effector-like CAR-
T cells against glioblastomas [236]. In addition to tuning the
effector and terminal exhaustion balance, several other studies
have focused on enhancing stem-like differentiation during CAR-
T-cell responses and have highlighted the importance of the
stemness module during cancer treatment. An earlier study of
Listeria monocytogenes infection revealed that deleting the
histone H3 lysine 9 methyltransferase Suv39h1 promotes the
stemness of T cells [237]. Consistently, disruption of Suv39h1 in
CAR-T cells improves stemness, expansion, persistence, and tumor
control [238]. In addition to Suv39h1, disrupting other epigenetic
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regulators, such as DNMT3a, TET2, and ASXL1, also enhances T cell
stemness and antitumor T cell immunity in adoptive cell therapy
[239, 240] and ICB [241]. The AP-1 TF c-JUN promotes a TSL-like
phenotype in CAR-T cells [242]. Another AP-1 member, BATF, is
the key TF downstream of PD-1 [98] and is involved in early T cell
activation [243]. BATF can amplify effector-like T cell features
during chronicity [244], and targeting BATF in CAR-T cells
enhances the stemness module for a long-term robust response
[245]. Notably, the deletion of REGNASE-1, which targets BATF, in
T cells programs the long-term antitumor efficacy of adoptive cell
therapy [99]. Combined deletion of REGNASE-1 and BCOR
synergistically induces an immortal stem-like state and enhances
the function of CAR-T cells [246]. Furthermore, while activating
more IL2-STAT5 transcriptional circuits may be an important
strategy for promoting stronger eff-like TEX signatures
[77, 113, 247–249], activating more stemness-related modules
via IL10-STAT3 signaling may also be a viable strategy for
achieving better therapeutic outcomes [250, 251]. These studies
indicate several potential general mechanisms involved in the
transcriptional regulation of CAR-T-cell responses: (1) Effector and
exhausted T-cells are defined on the basis of the functional
capacity per cell, and both of them can be driven into terminal
stages via transcriptional circuits involving TFs such as Blimp1; (2)
AP-1 activation is a major feature of CAR-T-cell activation;
however, different AP-1 family members may trigger different
downstream effects in tuning the effector versus stemness
modules, potentially by involving different TF co-binders such as
IRF4 or NFAT; and (3) considering that BACH2 inhibits broad AP-1
function and locks the cell into a stemness stage, it is important to
orchestrate BACH2 and AP-1 levels to maintain the balance in the
differentiation of CAR-T-cells in vivo for the best potential
outcomes. (4) STAT signaling activation in the tumor microenvir-
onment is among the key factors involved in the differentiation of
the T cell response, with STAT5 signaling being more biased
toward effector differentiation and STAT3 signaling being more
biased toward stemness. Both strategies may benefit clinical
outcomes, but in different scenarios.
How should we choose to enhance short-term effector function

or stem-like differentiation and the persistence of CD8 T cell
responses during disease treatment, particularly in cancer
immunotherapies? One major potential prediagnostic identifier
is the “effective immune–tumor intensity ratio.” Previous studies
have shown that the “responsive T cell-to-tumor” ratio can be a
key marker for predicting the clinical outcome of anti-PD-1
responses [252, 253]. Indeed, combining immunotherapy with
chemotherapy or radiotherapy enhances the clinical response and
has demonstrated potential benefits across a variety of clinical
scenarios [254, 255]. In addition to the effects of extraantigen
exposure as well as local inflammatory immune microenvironment
reorganization [255], one of the potential reasons for better
outcomes in some of these situations is increasing the “effective
immune–tumor intensity ratio”. These findings indicate that there
are two potential outcomes after treatment: (1) Antigen-specific
T cells respond strongly to a limited tumor volume. In this context,
a stronger effector T cell response is more likely to trigger a
favorable clinical outcome, with the capacity to achieve tumor
clearance at least at the given lesion level. (2) The antigen-specific
T cell population has some response but is not able to clear tumor
cells in the lesion in the short term. Under these conditions, the
persistence of exhausted T cells is important for maintaining
immune–tumor equilibrium and a partial response or stable
disease. This notion is supported by a recent study on the ICB-
induced T cell response in murine tumors with different levels of
immunogenicity [256].
A topic that has recently garnered increased research efforts is

whether we can rewire the molecular circuits of T cells to achieve
a context-specific T cell response, particularly in the tumor
microenvironment. In the past decade, the syn-Notch system

has been developed to sequentially arrange tumor microenviron-
mental signaling activation toward local CAR expression in T cells,
thus triggering only an intratumoral CAR-T cell response at target
sites [257–259]. Additionally, the development of an orthogonal
cytokine system offers the ability to improve cytokine treatment
by supporting the persistence of infiltrating T cells and promoting
lesion-dependent, local antigen-specific T cell proliferation
[113, 260, 261]. Furthermore, the recent development of integrat-
ing CAR constructs, particularly into PD-1 loci, suggests the
possibility of using exhaustion-specific DNA regulatory elements
to achieve tumor microenvironment-specific functional molecular
responses [262, 263]. These strategies aim to initiate strong
antigen-specific T cell responses in the lesion area while
eliminating off-site T cell activation to reduce potential immune-
related adverse events in patients. Thus, future efforts may dive
deeper into rewiring molecular circuits of the T cell response at
the lesion microenvironmental level to achieve precision micro-
environmental medicine.

Druggable targets and interventional modalities
Recent studies have revealed diverse regulatory checkpoints that
control T cell exhaustion, many of which represent potential
druggable targets for immune modulation. At the epigenetic level,
inhibition of the histone demethylase LSD1 by a small-molecule
drug preserves the progenitor-exhausted T cell pool and sustains
durable responses to PD-1 blockade by counteracting TCF1
repression and terminal differentiation [264]. Despite their critical
role in controlling T cell fates, most master transcriptional
regulators are challenging to target using traditional small-
molecule therapeutics. Emerging strategies such as PROTACs
and molecular glues offer promising alternatives for modulating
these TFs. Degradation of the nuclear receptor NR4A1, which
represses the effector program in exhausted T cells, by the
PROTAC NR-V04 reprograms the tumor microenvironment by
enhancing the response of effector-memory CD8 T cells and
reducing suppressive myeloid populations [265]. A molecular glue
targeting IKZF2 rescues exhausted T cells and potentiates immune
control of tumors [266]. In addition, chemical switches can be
fused to TFs such as BACH2 to exert temporal and tunable control
of T cell differentiation and improve the efficacy of CAR-T-cell
therapy [121]. A screen of chromatin-modifying drugs revealed
HDAC inhibitors that increase the persistence and repress the
exhaustion of CAR-T cells to promote their antitumor immunity
[267]. HDAC inhibitors also synergize with PD-1 blockade to
enhance antitumor T cell responses [268]. Inhibitors of the EZH2
protein, a core component of the polycomb repressive complex 2,
increase CAR-T-cell efficacy by directly repressing exhaustion
[269]. JQ1, a small-molecule inhibitor of BRD4, enhances the
persistence and antitumor immunity of T cells in adoptive cell
therapy while preventing terminal differentiation [270, 271]. The
in vitro manufacturing of therapeutic T cells, including CAR-T cells,
offers a unique opportunity to rewire their cellular programs with
chemical treatments while avoiding direct drug exposure in
patients. Treatment with ibrutinib, which inhibits ITK and BTK,
during manufacturing promotes survival and stemness and
represses the exhaustion of CAR-T cells [218, 272]. Pretreatment
of CAR-T cells with inhibitors targeting AKT or MEK attenuated
exhaustion and terminal differentiation and potentiated the
antitumor efficacy of CAR-T cells in vivo [273, 274]. Interestingly,
lithium carbonate treatment enhances antitumor immunity in
T cells through directing lactate to mitochondria and could
improve T cell-based immunotherapy [275]. Therefore, targeting
key regulators of T cell exhaustion and stemness, either in vivo or
in vitro, constitutes a viable strategy to improve the antitumor
efficacy of T cells.
In this article, we summarize the major molecular circuits that

regulate the stemness and exhaustion of T cells and the
differentiation of TSL cells into different TEX progenies. We further
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discuss how the balance between the short-term response to TEFF
cells and long-term persistence sustained by TSL cells affects the
outcome of T cell-mediated immune responses in cancer and
chronic infection. Finally, we discuss the current status and future
directions for harnessing molecular circuits to control T cell
differentiation in T-cell-based immunotherapy.
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