
1 
 

Role of endothelial NAD+ deficiency in age-related vascular dysfunction  1 
 2 
Anna Csiszar1,2, Stefano Tarantini1, Andriy Yabluchanskiy1, Priya Balasubramanian1, Tamas 3 
Kiss1,2,3, Eszter Farkas2, Joseph A. Baur4, Zoltan Ungvari1,2,3,5,6 4 
 5 
1) Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on 6 
Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 7 
Oklahoma City, OK 8 
2) Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary  9 
3) Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary 10 
4) Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School 11 
of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 12 
5) Department of Pulmonology, Semmelweis University, Budapest, Hungary 13 
6) Department of Health Promotion Sciences, Hudson College of Public Health, University of 14 
Oklahoma Health Sciences Center, Oklahoma City, OK 15 
 16 
 17 
Correspondence: 18 
Zoltan Ungvari M.D., Ph.D. 19 
Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine 20 
University of Oklahoma Health Sciences Center 21 
975 NE 10th Street, BRC 1311 22 
Oklahoma City, OK 73104 USA 23 
Email: zoltan-ungvari@ouhsc.edu 24 
 25 
Running head: NAD boosters improve vascular function in aging 26 
 27 
 28 

  29 



2 
 

Abstract 30 
 Age-related alterations in endothelium and the resulting vascular dysfunction critically 31 
contribute to a range of pathological conditions associated with old age. To rationally develop 32 
therapies that improve vascular health and thereby increase health span and lifespan in older adults, 33 
it will be essential to understand the cellular and molecular mechanisms contributing to vascular 34 
aging. Pre-clinical studies in model organisms demonstrate that NAD+ availability decreases with 35 
age in multiple tissues and that supplemental NAD+ precursors can ameliorate many age-related 36 
cellular impairments. Here we provide a comprehensive overview of NAD+ dependent pathways 37 
(including the NAD+ utilizing sirtuins and poly (ADP-ribose) polymerase enzymes) and the 38 
potential consequences of endothelial NAD+ deficiency in vascular aging. The multifaceted 39 
vasoprotective effects of treatments that reverse the age-related decline in cellular NAD+ levels as 40 
well as their potential limitations are discussed. The preventive and therapeutic potential of 41 
NAD+ intermediates as effective, clinically relevant interventions in older adults at risk for ischemic 42 
heart disease, vascular cognitive impairment and other common geriatric conditions and diseases 43 
that involve vascular pathologies (e.g. sarcopenia, frailty) is critically discussed. We propose that 44 
NAD+ precursors (e.g., nicotinamide riboside, nicotinamide mononucleotide, niacin) should be 45 
considered as a critical component of combination therapies to slow the vascular aging process and 46 
increase cardiovascular health span.  47 
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Successful vascular aging determines lifespan and health span 53 
 Over the coming decades the average age of the population of the Western world will 54 
continue to grow. Due to the significant increase in the average life expectancy combined with 55 
unfavorable trends in fertility those aged  ≥65 will become a much larger share of the population 56 
(e.g., in the European Union rising from 19% to 29%(2)). The share of those aged ≥80 will increase 57 
from 5% to 13% of the population of European Union by 2070. Similar trends will be manifested 58 
both in Japan and the United States. The increasing fiscal strain linked to pensions, health care and 59 
long-term care combined with the increases in the old-age dependency ratio (people aged 65 and 60 
above relative to those aged 15 to 64; in the European Union: 29.6% in 2016, 51.2% in 2070) are 61 
expected to be a significant challenge to the societies of each industrialized nation(64). 62 
 While aging affects physiology and pathophysiology throughout the body, the consequences 63 
of age-related alterations of the cardiovascular system are especially relevant to the lifespans and 64 
health spans of the populations of the developed countries. Cardiovascular and cerebrovascular 65 
diseases are the most common cause of death among older people in these nations(1) accounting for  66 
approximately 1/3 of all deaths at the age of 65 and nearly 2/3 at an age of 85(164). In addition, 67 
aging-induced functional and structural alterations of the vasculature contribute to the pathogenesis 68 
of a wide range of age-related diseases that limit health span, contributing to decreased workforce 69 
participation, increased dependency and institutionalization in older adults. These age-related 70 
diseases include coronary heart disease (CHD), myocardial infarction, vascular contributions to 71 
cognitive impairment and dementia (including stroke), Alzheimer's disease, hypertension, 72 
peripheral artery disease, sarcopenia, kidney and eye diseases(164). Aging promotes endothelial 73 
apoptosis, impairs endothelial angiogenic capacity and promotes capillary regression(13, 36, 40, 74 
45).  A decline in capillary density ("microvascular rarefaction"(13, 142, 149, 157, 168, 169)) 75 
contributes to decreased tissue perfusion with age, which is a major contributor to mortality and 76 
morbidity. Vascular pathologies also contribute to gait and balance disorders(57, 145, 151, 165) 77 
promoting falls. Age-related pro-inflammatory changes in the vasculature contribute to the 78 
pathogenesis of chronic inflammatory diseases associated with old age, including atherosclerotic 79 
diseases (including CHD, stroke, peripheral artery disease, renal artery stenosis), osteoarthritis(6), 80 
metabolic disease and diseases of the gastrointestinal tract. Age-related endothelial changes 81 
promote increased coagulation and impair stem cell biology (e.g. by altering the local 82 
microenvironment in vascular stem cell niches(81, 129)). Aging-induced dysfunction of 83 
microvascular barrier and transport function (e.g. promoting the leakage of microbial breakdown 84 
products to the systemic circulation) likely promotes chronic systemic low-grade sterile 85 
inflammation and distant organ damage(135). Age-related alterations in the endothelial phenotype 86 
alter the secretion of growth factors, chemokines and enzymes that can degrade the extracellular 87 
matrix, likely promoting tumor progression, intravasation and cancer metastases(173). Finally, 88 
impaired release of gaseotransmitters (including NO) from the microvessels negatively impacts 89 
mitochondrial function and cellular bioenergetics in the skeletal muscle, the heart and the central 90 
nervous system(105, 106).  91 
 Therefore, it is critical to understand mechanisms underlying vascular aging(83) to better 92 
predict and prevent vascular contributions to the pathogenesis of multiple diseases associated with 93 
old age. A better mechanistic understanding of macro- and microvascular aging processes is also 94 
critical to develop and evaluate dietary, lifestyle and pharmacological countermeasures to address 95 
this growing health issue.  96 

 97 
Role of oxidative stress and endothelial dysfunction in vascular aging  98 
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 Impairment of endothelium-dependent nitric oxide (NO)-mediated vasodilation 99 
("endothelial dysfunction") is a frequently used indicator of vascular health(29, 35, 60, 120, 132). 100 
Endothelial dysfunction associates with cardiovascular events (reviewed in(86)), is an early feature 101 
of atherosclerotic vascular diseases, and significantly contributes to impaired microvascular 102 
perfusion(149, 164, 167). Importantly, clinical and preclinical studies demonstrate that aging is a 103 
major cause for endothelial dysfunction(9, 44, 51) and that beneficial effects of anti-aging 104 
interventions are predicted by their ability to restore endothelial NO mediation in aging(36, 37, 40, 105 
42, 50, 114, 152). In many cases, the loss of NO signaling with age or disease is a direct reflection 106 
of oxidative stress, since superoxide readily reacts with NO to generate peroxynitrite, a free radical-107 
containing molecule that lacks NO’s signaling ability and damages other molecules. The sources of 108 
superoxide include mitochondrial production and NAD(P)H oxidase activation(36, 37, 44, 136, 109 
143, 151). NO released from the vascular endothelium is a potent vasodilator, which regulates 110 
vascular resistance and thereby tissue perfusion. In addition, endothelium-derived NO also confers 111 
important vasoprotective, cardioprotective, anti-inflammatory and anti-aging effects. For instance, NO 112 
was demonstrated to regulate cell division and survival, inhibit platelet aggregation and inflammatory cell 113 
adhesion to endothelial cells, promote angiogenesis, disrupt pro-inflammatory signaling pathways, and 114 
regulate mitochondrial function and cellular energy metabolism(149, 164, 167). Endothelial dysfunction 115 
contributes to the pathogenesis of cardiovascular disease, stroke and hypertension, vascular 116 
cognitive impairment and dementia, and a range of pathological conditions from erectile 117 
dysfunction to impaired exercise tolerance in older adults(164, 167). The critical role of 118 
endothelium-derived NO in aging is underscored by the findings that mice genetically deficient for 119 
endothelial nitric oxide synthase (eNOS) exhibit premature vascular, metabolic, brain and cardiac 120 
aging phenotypes associated with early mortality(89, 150), many of which can be reversed by 121 
supplying NO through exogenous nitrite(147). The mechanisms underlying age-related endothelial 122 
dysfunction prominently involve increased oxidative stress(5, 44, 53, 140, 164, 167). Previous 123 
preclinical and clinical studies have tested various experimental interventions designed to attenuate 124 
oxidative stress and interfere with oxidative stress-mediated pathways to improve endothelial 125 
function in animal models of aging(40, 61, 87, 88, 92, 110, 113, 114, 143, 148, 152, 164, 166). 126 
Despite these exciting studies, the molecular mechanisms that lie upstream of age-associated 127 
increased oxidative stress remain elusive.  128 
 Key objectives of geroscience research are to understand the biology of aging and to 129 
translate scientific insight obtained in models of aging into translationally relevant interventions 130 
that improve late-life health, including cardiovascular health. The prevailing view in the field of 131 
geroscience is that fundamental aging processes are causally upstream of, and the cause of, all age-132 
related pathologies, including cardiovascular diseases. Intervening in these fundamental cellular and 133 
molecular processes of aging thus should provide protection against a wide range of age-related 134 
diseases and conditions, including endothelial dysfunction. What is currently identifiable about 135 
organismal and tissue aging is that it is a very complex process, involving diverse biological 136 
mechanisms. However, the exact roles of fundamental cellular and molecular processes of aging in 137 
the genesis of increased oxidative stress and consequential endothelial dysfunction in the aging 138 
vasculature remain to be elucidated.   139 
   140 
Role of NAD+ deficiency and cellular energetic impairment in aging-induced endothelial 141 
dysfunction 142 

There is strong evidence that with advanced age there is decreased availability of cellular 143 
NAD+ (62, 95, 177), which may be a common contributor to aging processes across tissues and in 144 
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evolutionarily distant organisms. In support of this theory it was demonstrated that enhancing 145 
NAD+ biosynthesis extends lifespan in yeast, worms and flies(7, 8, 12, 102, 103) and improves both 146 
general health and longevity in mice(100, 181). Here we review the evidence supporting the concept 147 
that age-related decline in [NAD+] plays a critical role in vascular aging. 148 
 149 
Biological functions of NAD+ 150 

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form nicotinamide adenine 151 
dinucleotide phosphate (NADP) have central roles in cellular metabolism, energy production and 152 
survival(15). Over 400 enzymes require the NAD+ and NADP+, predominantly to accept or donate 153 
electrons for redox reactions. NADP is synthesized by NAD+ kinase, which phosphorylates NAD+. 154 
Although both NAD and NADP participate as electron carriers in a multitude of redox reactions, they 155 
support distinct functions. NAD+ participates primarily in energy-producing reactions requiring an 156 
electron exchange, including the catabolism of carbohydrates, fatty acids, proteins, and alcohol (e.g. 157 
glycolysis, pyruvate‐to‐lactate and pyruvate‐to‐acetyl‐CoA interconversions, β‐oxidation, citric acid 158 
cycle, and oxidative phosphorylation). NADP predominantly participates in anabolic pathways, 159 
including the synthesis of fatty acids, cholesterol and DNA. NADP is also critical for the regeneration of 160 
components of antioxidant systems. To support these distinct functions, mammalian cells maintain 161 
NAD predominantly in the oxidized state to serve as oxidizing agent for catabolic reactions, whereas 162 
NADP exists predominantly in a reduced state (NADPH) to be able to readily donate electrons for 163 
reductive cellular biochemical reactions. The cycling of NAD and NADP between oxidized and 164 
reduced forms in redox reactions is easily reversible, since when NAD(P)H reduces another molecule it 165 
is re-oxidized to NAD(P)+. Thus, these coenzymes can continuously cycle between the reduced and 166 
oxidized forms without being consumed. Altering the availability of these coenzymes, either through a 167 
shift in the redox ratio or via changes in cellular synthesis and/or degradation of NAD(H) and NADP(H) 168 
will likely affect the function of hundreds of NADH-dependent and NADPH-dependent enzymes.     169 

NAD+ is also the substrate for at least four classes of enzymes important for cellular survival, 170 
aging and normal physiological functioning. These include enzymes with mono adenosine diphosphate 171 
(ADP)-ribosyltransferase and poly (ADP-ribose) polymerase (PARP) activities, which catalyze ADP-172 
ribosyl transfer reactions. NAD+ is a rate-limiting co-substrate for Silent information regulator-2 (Sir2)-173 
like enzymes (sirtuins), which are key regulators both of pro-survival pathways and mitochondrial 174 
function and catalyze the removal of acyl groups from acylated proteins, utilizing ADP-ribose from 175 
NAD as an acceptor. Importantly, both NAD+-dependent PARP enzymes and sirtuins are involved in 176 
DNA repair pathways. Finally, ADP-ribosylcyclases such as CD38, which have relevance for calcium 177 
signaling and endothelial NO mediated vasodilation(180), also require NAD+. 178 

 179 
Biosynthesis of NAD+ 180 

In mammals, NAD+ can be synthesized de novo in the cytosol from the amino acid tryptophan, 181 
from nicotinic acid, or salvaged from nicotinamide or intermediates containing this moiety (Fig. 1). In 182 
the first step of the de novo pathway, tryptophan is converted into N‐formylkynurenine by either of two 183 
different enzymes: tryptophan‐2,3‐dioxygenase (TDO) or indoleamine 2,3‐dioxygenase (IDO). TDO is 184 
critical for NAD+ biosynthesis in liver, whereas IDO is expressed in many extrahepatic tissues, 185 
including endothelial cells(19) and is known to be upregulated in response to inflammatory cytokines. 186 
N‐formylkynurenine is converted into kynurenine by formamidase. Kynurenine is metabolized in one of 187 
two ways: one pathway yields kynurenic acid, whereas the other yields 3-hydroxykynurenine and 188 
quinolinic acid, precursors of NAD+.  189 
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The Preiss-Handler and NAD+ salvage pathways recycle components of NAD+ that are taken up 190 
from food or released by biochemical reactions that break down NAD+. Three vitamin precursors 191 
containing a pyridine base that are used in these pathways are nicotinic acid (NA), nicotinamide (Nam) 192 
and nicotinamide riboside (NR) (Fig. 1). These compounds are termed vitamin B3 or niacin (although 193 
niacin may also refer to nicotinic acid specifically). NAD+ synthesis from nicotinamide requires two 194 
steps: nicotinamide is first converted into nicotinamide mononucleotide (NMN) by nicotinamide 195 
phosphoribosyltransferase (NAMPT)(69), then the production of NAD+ from NMN and ATP is 196 
catalyzed by nicotinamide mononucleotide adenylyltransferases (NMNATs). NMNAT1 is a nuclear 197 
enzyme, NMNAT2 is located in the cytosol and Golgi apparatus, while NMNAT3 is located in the 198 
mitochondria in most cell types(76). NAMPT is considered the rate-limiting component in this NAD+ 199 
biosynthesis pathway(123). In the Preiss–Handler pathway, NA is converted into NA mononucleotide 200 
(NaMN) by the addition of ribose-phosphate (from phosphoribosyl pyrophosphate by nicotinic acid 201 
phosphoribosyltransferase [NAPRT]). NaMN is then converted into NA adenine dinucleotide (NaAD) 202 
by NMNATs, and lastly into NAD+ the presence of ATP and ammonia by NAD synthase. In mammals, 203 
which lack nicotinamidase, NA seems to be derived primarily from extracellular sources. Exogenously 204 
administered NA has been demonstrated to be a good precursor of NAD biosynthesis, significantly 205 
increasing tissue NAD+ levels(34, 71, 90) in addition to its better-known effect a lipid lowering agent 206 
via direct inhibition of triglyceride synthesis and decreasing secretion of VLDL and LDL particles from 207 
hepatocytes(74). Important for the present review is that treatment with niacin is associated with 208 
improved endothelial function(126). NR and nicotinic acid riboside are converted to NMN and 209 
nicotinic acid mononucleotide (NaMN), respectively, by nicotinamide riboside kinase 1 (NRK1) and 210 
NRK2(15, 16, 121).  211 

Despite the presence of the de novo pathway, the NAD+ salvage pathway is essential in 212 
mammals: a lack of niacin in the diet results in significant decline in tissue NAD+(122) and mice 213 
lacking NAMPT constitutively are not viable(124). Even with an intact salvage pathway, the lack of 214 
niacin in the diet causes the severe vitamin deficiency disease pellagra(84), which is characterized by 215 
dermatitis, diarrhea, dementia and ultimately death. Data derived from the 1995 Continuing Survey of 216 
Food Intakes by Individuals indicate that in the United States the greatest contribution to the niacin 217 
intake of the adult population comes from mixed dishes high in meat, fish, or poultry, enriched and 218 
wholegrain breads and fortified cereals(70). Fish, such as tuna (niacin content: 18.4 mg/100 g), sardines 219 
((3)) and salmon (niacin content: 7.8 mg/100 g), as well as chicken meat (niacin content: 13.9 mg/100 220 
g) and liver (niacin content: 11 mg/100 g) are relatively rich in NAD+ precursors. One of the best food 221 
sources of niacin is yeast (niacin content: 40.2 mg/100 g)(4). Milk and milk products also contain NAD+ 222 
precursors (60% as nicotinamide, 40% as NR)(156), although the niacin content in them is significantly 223 
lower relative to aforementioned food items (niacin content in milk: 0.089 mg/100 g). Several food 224 
items contain particularly high concentrations of NMN, including edamame, avocado and 225 
broccoli(100).  226 

It should be noted that niacin intake in the adult population in the United States is generous in 227 
comparison with the Estimated Average Requirement (EAR)(70). For instance, the median intake by 228 
adult women is 17 to 20 mg of niacin, which exceeds the Estimated Average Requirement of 11 mg of 229 
niacin equivalents needed to prevent pellagra. The Boston Nutritional Status Survey reported that 230 
people over age 60 in this cohort has a median niacin intake of 21 mg/day for men and 17 mg/day for 231 
women(70). Niacin intake from supplements is also significant. Over one third of adults participating in 232 
the National Health and Nutrition Examination Survey (1999–2000) reported taking a multivitamin 233 
dietary supplement containing niacin in the previous month(119). Data from the Boston Nutritional 234 
Status Survey indicates that in elderly individuals taking supplements, the fiftieth percentile of 235 
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supplemental niacin intake was 20 mg for men and 30 mg for women(70). Of note, supplements 236 
containing up to about 400 mg of niacin are available without a prescription. It should also be  noted 237 
that nicotinic acid has been also used as a lipid lowering agent since the 1970s, based on its inhibitory 238 
effect of triglyceride synthesis, accelerated intracellular hepatic apo B degradation and the decreased 239 
secretion of VLDL and LDL particles. 240 

Endothelial cells abundantly express the enzymes required to metabolize NAD+ precursors 241 
(Csiszar and Ungvari, unpublished observation 2018), suggesting that endothelial NAD+ levels are 242 
likely to be responsive to exogenously administration or dietary intake of NAD+ precursors. For a more 243 
extensive review on the biosynthesis of NAD+, the reader is directed to references(15, 76).    244 

 245 
Mechanisms of age-related decline in cellular NAD+ levels 246 

NAD+ concentration decreases in multiple tissues over the course of normal aging. Although 247 
the dispersion of endothelial cells within a given tissue makes it difficult to measure their NAD+ 248 
pools directly in situ, studies on endothelial cells isolated from the brains of young and aged 249 
animals provide evidence that [NAD+] also falls in the endothelial compartment (Tarantini, Csiszar 250 
and Ungvari, submitted, 2019).  251 

The mechanisms underlying the age-related decline in [NAD+] are likely multifaceted(127) 252 
and may include decreased expression of nicotinamide phosphorybosyltransferase (NAMPT; which 253 
catalyzes the rate limiting step in the biosynthesis of NAD+)(178), increased utilization of NAD+ by 254 
activated poly (ADP-ribose) polymerase (PARP-1)(110), and increased activity and expression of 255 
the NADase CD38 (23, 146) (Fig. 2). The functional relevance of these pathways is shown by the 256 
findings that genetic depletion of NAMPT and/or pharmacological inhibition of NAMPT (by the 257 
inhibitor FK866) decreases cellular NAD+ levels and mimic aspects of the aging phenotype in 258 
endothelial cells(171), skeletal muscle(131) and neuronal cells(138, 139). PARP-1 is a constitutive 259 
factor of the DNA damage surveillance network. In aged cells PARP-1 is activated in response to 260 
DNA damage induced by increased oxidative/nitrative stress. PARP-1 cleaves NAD+ and transfers 261 
the resulting ADP-ribose moiety onto target nuclear proteins and onto subsequent polymers of 262 
ADP-ribose, depleting cellular NAD+ pools in the process. There is evidence that in human tissues 263 
(skin samples) advanced aging results in increased DNA damage, which correlates with increased 264 
PARP activity and decreased NAD+ levels(95). Importantly, genetic depletion(11) and/or 265 
pharmacological inhibition of PARP-1 were shown to increase tissue NAD+ levels in rodent models 266 
of accelerated aging. Pharmacological inhibition of PARP-1 was also shown to improve endothelial 267 
function in aged rodents(110-112). Two recent studies demonstrated that the expression and activity 268 
of the NADase CD38 increase with age, and that blocking CD38 activity is sufficient to increase 269 
[NAD+] and prevent the age-related decline in multiple tissues including skeletal muscle, liver and 270 
adipose tissue(23, 146). Endothelial cells are known to express CD38 and CD38-mediated NAD+ 271 
depletion in this cell type has been linked to loss of eNOS mediated NO generation(22, 125).    272 

In addition to the intrinsic effects of age, cardiovascular risk factors that promote 273 
accelerated vascular aging result in cellular NAD+ depletion. Accordingly, there is evidence linking 274 
high fat diet-induced obesity(27, 59), high homocysteine levels(20), diabetes(133, 134) to a decline 275 
in cellular NAD+ levels, which would likely contribute to endothelial dysfunction.   276 

 277 
Anti-aging effects of treatment with NAD+ boosters 278 
 Cellular NAD+ levels can be increased by up-regulating the enzymes involved in NAD+ 279 
biosynthesis, by inhibition of NAD+ consumers(76), or by treatment with NAD+ precursors(26), 280 
including niacin, nicotinamide mononucleotide (NMN)(48, 107, 159), nicotinamide riboside (NR). 281 
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While overexpression of enzymes catalyzing NAD+ biosynthesis (NAMPT or NMNATs) 282 
effectively boosts NAD+ levels (54, 76), the translational potential of this approach is limited. 283 
Significant data are available to support the efficacy and translational relevance of NMN and NR 284 
treatment(177). NMN is considered an especially promising candidate as an anti-aging therapeutic 285 
approach due to its multi-targeted effect(80).  286 

Administration of NMN or NR to aged mice increases tissue NAD+ levels(100, 177, 181). The 287 
rise in NAD was detected within minutes in some studies, indicating that NMN is quickly absorbed in 288 
the gut and is either efficiently transported in the circulation and readily converted by the cells to NAD+, 289 
or, alternatively is converted to another NAD+ precursor in the liver, which then circulates to peripheral 290 
tissues, increasing cellular NAD+ levels. Recent findings support the latter view, showing that there is a 291 
significant first-pass effect and orally administered NMN and NR are readily metabolized to 292 
nicotinamide in the liver, which then can get into the circulation, increasing NAD+ levels in other organs 293 
(91). There are strong data to show that human blood NAD+ can rise as much as 2.7-fold with a single 294 
oral dose of NR and that oral NR elevates tissue NAD+ in the mouse liver with superior 295 
pharmacokinetics to those of nicotinic acid and nicotinamide(154). Additionally, single doses of 100, 296 
300 and 1,000 mg of NR were demonstrated to result in dose-dependent increases in the blood NAD+ 297 
metabolome in humans(154). Note that the doses of NAD+ precursors used in preclinical and clinical 298 
studies to reverse the adverse effects of aging are significantly higher than the Estimated Average 299 
Requirement (EAR)(70) of ~11 mg of niacin equivalents needed to prevent pellagra in humans even if 300 
allometric scaling is used.  301 

There is increasing evidence that restoration of cellular NAD+ levels by treatment with NAD+ 302 
precursors in aged mice exerts multifaceted anti-aging effects, reversing age-related dysfunction in 303 
multiple organs, including the eye(100), the skeletal muscle(62) and the brain(73). Even short-term 304 
administration of NMN or NR has been demonstrated to exert significant protecting effects in a wide 305 
range of age-related pathophysiological conditions, improving skeletal muscle energetics and 306 
function(62), protecting neuronal stem cells and increasing mouse lifespan(181). The NAD+ booster 307 
acipimox, a niacin derivative used for treatment of hyperlipidemia in type 2 diabetic patients, was also 308 
shown to improve mitochondrial function in the skeletal muscle(170). NR was also shown to exert 309 
protective effects against high-fat diet-induced metabolic abnormalities(27, 155).  310 

Importantly, chronic treatment of aged mice with NAD+ boosters was shown to improve 311 
endothelial function in the aorta (Ungvari and Tarantini, unpublished observation, 2015)(50) and in 312 
the cerebral circulation (Ungvari and Tarantini, unpublished observation, 2015). Studies are 313 
currently underway to determine whether chronic treatment with NR improves cerebral blood flow 314 
(ClinicalTrials.gov Identifier: NCT03482167) in older adults with mild cognitive impairment. More 315 
recently, treatment of aged mice with NMN was shown to reverse age-related capillary rarefaction 316 
and increase blood flow in the skeletal muscle(48), likely by increasing the angiogenic capacity of 317 
endothelial cells(21, 48). There is also evidence suggesting that in old mice NMN treatment restores 318 
fenestration of liver sinusoidal endothelial cells(66). Fenestration of liver sinusoidal endothelial 319 
cells enables the bidirectional exchange of substrates (including insulin, lipoproteins and 320 
pharmacological agents) between the blood and hepatocytes and thereby importantly contributes to 321 
metabolic homeostasis. With increasing age the frequency and diameter of fenestrations 322 
significantly decrease, likely due to age-related disruption of VEGF and NO dependent signaling 323 
pathways, which promote pathologic remodeling of the actin cytoskeleton and cell membrane lipid 324 
rafts(32, 72, 108). It is likely that NMN treatment exerts its protective effects on the liver sinusoidal 325 
endothelial cells by restoring endothelial NO mediation. The available evidence suggest that higher 326 
dietary niacin intake is also associated with improved vascular endothelial function in older 327 
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adults(75). Yet, niacin as add-on treatment to high dose statins in patients with established coronary 328 
artery disease does not appear to improve endothelial function(116). Consistent with the protective 329 
effects of diverse NAD+ boosters treatment of aged rodents with PARP-1 inhibitors, which should 330 
spare NAD+ (25, 28), was also shown to improve endothelial function(110-112). 331 

Mitochondrial dysfunction and elevated mitochondrial oxidative stress play a critical role in 332 
aging-induced cardiovascular dysfunction(47, 136, 161) and vascular impairment(61, 143). The 333 
mechanisms contributing to mitochondrial oxidative stress in the aged endothelium are likely 334 
multifaceted and involve a dysfunctional electron transport chain. Reduced electron flow through 335 
the electron transport chain, in particular due to aging-induced dysregulation of complex I and 336 
complex III(82), likely promotes electron leak and favors increased mtROS production. A key 337 
mechanism underlying the anti-aging action of NMN treatment is improving cellular energetics by 338 
rescuing mitochondrial function(62), at least in part, by activating sirtuin deacylases (SIRT1-339 
SIRT7; Fig. 2). Sirtuins are known to mediate beneficial anti-aging(33, 102, 174) and 340 
vasoprotective effects(36, 37, 42) of caloric restriction as well. In support of this concept, knock-341 
down of SIRT1 in aged cerebromicrovascular endothelial cells was shown to abolish the anti-342 
oxidative and mitochondrial protective effects of NMN treatment (Ungvari and Csiszar, 2018, 343 
unpublished observation). There is direct evidence that activation of SIRT1 underlies NMN-344 
induced restoration of endothelial angiogenic capacity and increased capillarization in aged 345 
mice(141). Previous studies suggest that the age-related decline in oxidative phosphorylation 346 
(OXPHOS) and/or increased mitochondrial oxidative stress may be due, at least in part, to the 347 
specific loss of mitochondrially encoded transcripts(62). In that regard it is important that NMN 348 
treatment was shown to restore expression of mitochondrial encoded OXPHOS subunits in aged 349 
mice in a SIRT1 dependent manner(62). Treatment with NR was also shown to up-regulate 350 
mitochondrial gene expression and promote mitochondrial biogenesis in the mouse skeletal 351 
muscle(27). Moreover, recent studies show that pharmacological inhibition of alpha-amino-beta-352 
carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD)(115), the enzyme that limits 353 
spontaneous cyclization of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde in the de 354 
novo NAD+ synthesis pathway, can also boosts de novo NAD+ synthesis and sirtuin 1 activity, 355 
ultimately enhancing mitochondrial function in kidney and liver(77). We posit that rescue of 356 
vascular mitochondrial function by restoring the expression of mitochondrial encoded OXPHOS 357 
subunits contributes to the vasoprotective effects of treatment with NAD boosters. These 358 
observations accord with findings from earlier studies demonstrating that many of the health 359 
benefits of SIRT1 activation are linked to improved mitochondrial function(14). Further, SIRT1-360 
activating compounds (STACs) such as resveratrol and SRT1720 have been demonstrated to exert 361 
significant vasoprotective effects in aging and models of accelerated vascular aging(30, 39, 56, 101, 362 
114, 161-163, 179) similar to NAD+ boosters, including up-regulating mitochondrial 363 
biogenesis(38), attenuating mitochondrial oxidative stress(43, 160), activating antioxidant defense 364 
mechanisms(41) and inhibiting apoptosis(114) in endothelial and vascular smooth muscle cells. 365 
STACs were also shown to increase capillary density(109), improve endothelial function and blood 366 
flow regulation(152) and prevent microvascular fragility(151) in the aged mouse brain and to exert 367 
similar vasoprotective effects in non-human primate models as well(18, 96). Future studies should 368 
determine whether NAD+ boosters also confer similar vascular health benefits. In addition to sirtuin-369 
mediated effects, because mitochondrial ATP production and membrane potential require NAD as an 370 
essential coenzyme, restoring an optimal NAD/NADH ratio itself should also promote efficient 371 
mitochondrial function in vascular cells.  372 

 373 
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Perspectives 374 
 Taken together, progress in geroscience research investigating the role of fundamental aging 375 
processes in the development of age-related chronic diseases(55, 79, 94, 130), including 376 
cardiovascular pathologies has been rapid in recent years(10, 46, 52, 55, 85, 98, 104, 117, 164), 377 
from both the basic science and the clinical perspectives. The field of vascular aging research 378 
matured and expanded when researchers started to apply breakthrough discoveries in 379 
biogerontology to the development of new therapeutic strategies to prevent/reverse age-related 380 
pathologic functional and phenotypic alterations of blood vessels. In particular, NAD+ boosting 381 
strategies were shown to confer multifaceted health benefits in aging, including potential 382 
translationally relevant vasoprotective effects. However, understanding the cellular and molecular 383 
mechanisms by which age-related NAD+ deficiency contribute to age-related vascular pathologies, 384 
elucidating the exact mechanisms by which NAD+ boosting strategies exert their anti-aging 385 
vascular effects and translating the preclinical findings to the clinics remain a substantial challenge 386 
and an active area of research with numerous open questions. 387 
 It remains unclear what downstream mechanisms mediate the beneficial vascular effects of 388 
NAD+ boosters. In addition to the role of established NAD+ biosynthetic pathways new research 389 
may reveal new aspects of NAD+ metabolism, including novel pathways that utilize NAD+ (e.g. 390 
NAD+ addition to RNAs(76)) that contribute to the biological effects of NAD+ boosters in the aged 391 
vasculature.  392 

Although NMN and NR have been tested in diverse disease models, no side-by-side 393 
comparisons have been conducted between NMN and NR in the context of macrovascular and 394 
microvascular aging. Future pharmacological and nutraceutical strategies to rescue vascular NAD+ 395 
levels in aging will also need to take into account the limited oral bioavailability of NR and NMN 396 
as well as the tissue-specificity of important pathways in NAD+ metabolism(91). Further, a recent 397 
meta-analysis of all randomized studies that compared niacin with placebo, either alone or in 398 
combination with statin treatment or other treatments that lower low-density lipoprotein cholesterol 399 
levels also showed that niacin does not affect significantly all-cause mortality rates and does not 400 
lower the risk of cardiovascular mortality, nonfatal myocardial infarction, stroke, or the need for 401 
revascularization(58). With that regard, studies aimed at understanding the differential biological 402 
effects of treatment with niacin, NMN and NR will be highly informative.   403 
 Compartmentalization of NAD+ biosynthesis is also not well understood. Subcellular 404 
compartments (e.g. the nucleus, cytosol, and mitochondria) appear to express distinct pathways to 405 
synthesize NAD+(176). However, it is not clear what the relevance of this spatial organization is, 406 
given that individual enzymes appear to be dispensable in most cases(24, 175) and tracer studies 407 
suggest that intact NAD+ can move between the cytosol and mitochondria(49). It is presently 408 
unclear how NAD+ intermediates are transported across cell membranes and shared among different 409 
subcellular compartments in endothelial cells. Novel isotope-tracer methods to analyze NAD 410 
synthesis-breakdown fluxes have been developed(91), which could be adapted to study endothelial 411 
cell-specific NAD+ metabolism.  412 
 In 2009 Imai and coworkers proposed an interesting concept, named the “NAD World,” 413 
which implicated NAD+ metabolism and SIRT1 in systemic regulation of mammalian aging and 414 
longevity(67). Since then the concept has evolved and now NMN is hypothesized to function as a 415 
systemic signaling molecule that participates in inter-tissue communications among three key 416 
tissues, namely, the hypothalamus, adipose tissue, and skeletal muscle, for regulation of aging 417 
processes and longevity control(68). The concept implies that the hypothalamus is a high-order 418 
control center of systemic aging processes and that inter-tissue communication between the adipose 419 
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tissue, skeletal muscle and the hypothalamus, mediated by circulating factors (including myokines 420 
and adipokines), comprises a critical feedback loop.  Importantly, transport and uptake of 421 
circulating NMN as well as inter-tissue communication via circulating factors depends on the 422 
function of the (micro)vasculature. Endothelial cells also express key components of pathways 423 
involved in NAD+ biosynthesis and degradation (including PARP-1 and CD38). Additionally, 424 
SIRT-1 is known to regulate several aspects of endothelial function, including angiogenesis, 425 
vasodilatory function. Further, NMN appears to significantly impact the function and phenotype of 426 
endothelial cells in aging. Thus, it would be interesting to incorporate in the model the function and 427 
age-related changes of the microvascular endothelial cells and consider the role endothelial cells 428 
(which represent the largest endocrine organ) in systemic regulation of aging within the framework 429 
of the NAD World.  430 
  When translating the protective effects of NAD+ boosting strategies into clinical benefits 431 
several challenges should be considered, including the side effect profiles of such treatments. 432 
Treatment with L-tryptophan is known to cause a range of unwanted side effects (belching and gas, 433 
blurred vision, diarrhea, dizziness, drowsiness, dry mouth, headache, heartburn), including the 434 
potentially severe eosinophilia-myalgia syndrome (for which it was recalled from the market in 435 
1990). Niacin treatment can cause a flushing reaction(17) as well as gastrointestinal side effects, 436 
and liver problems and may promote impaired glucose tolerance(99, 128) at high doses (e.g. ~3 437 
g/day nicotinic acid). Adverse effects (nausea, vomiting, and signs of liver toxicity) have been 438 
reported at nicotinamide intakes of 3 g/day (118) and intakes of nicotinic acid of 1.5 g/day(97). The 439 
niacin derivative lipid lowering agent acipimox (Olbetam) also causes flushing and gastrointestinal 440 
side effects in 10% of the patients. Individuals with liver disease, diabetes mellitus and alcoholism 441 
are more susceptible to the adverse effects of excess niacin intake. Unlike other NAD+ boosters, 442 
Nam has the capacity to exert end-product inhibition on SIRT1 deacetylase activity, which may 443 
result in unwanted side effects as well. Importantly, chronic administration of NMN resulted in no 444 
apparent toxicity in mice(100). Similarly, chronic treatment of laboratory mice with NR for 5–6 445 
months(63), 10 months(181) or 12 months(158) was not associated with any obvious toxic adverse 446 
effects. It is promising that small-scale clinical studies with NR treatment have not reported adverse 447 
effects in humans(154). A small randomized, placebo-controlled, crossover clinical trial of NR 448 
supplementation (2x500 mg/day for 2x6 weeks) in older adults(93) also reported no major adverse 449 
effects. Nevertheless, subsequent clinical trials on larger cohorts should carefully monitor adverse 450 
events associated with NMN and NR treatment. It is expected that soon reliable information will be 451 
available on the pharmacokinetics, dosing and side effect profiles of NMN and NR treatments in 452 
older adults. Multiple clinical studies are ongoing, investigating the effects of treatment with NAD+ 453 
boosters in humans, including the effects of NMN on metabolic health in women 454 
(ClinicalTrials.gov Identifier: NCT03151239). Ongoing clinical trials with NR treatment include 455 
studies to investigate the effects of NR on mitochondrial biogenesis and mitochondrial function 456 
(ClinicalTrials.gov Identifier: NCT03432871 and NCT02835664). Importantly, many of the NAD+ 457 
precursors are considered vitamins and are widely available to the public as dietary supplements. 458 
New studies should also determine which pharmacological strategies aiming to boost cellular NAD+ 459 
levels by inhibiting degradation of NAD+ would be the most appropriate for vasoprotection in older 460 
adults. Several PARP inhibitors are currently available or are undergoing clinical trials for 461 
oncologic indications. One important consideration is that PARP inhibitors are potentially 462 
genotoxic, which may limit their use in patients with non-oncologic diseases. 463 
 The effects of an initial study using longer treatment with NR (2x500 mg/day, for 6 weeks) 464 
on endothelium-dependent dilation and arterial stiffness (ClinicalTrials.gov Identifier: 465 



12 
 

NCT02921659) was recently reported (93). However, the results on the effects of NR on 466 
endothelial function and vascular health were inconclusive. While NR was found to elicit small 467 
decreases in blood pressure and somewhat reduce aortic stiffness, it did not improve endothelium-468 
dependent, flow-mediated dilation of brachial arteries(93). However, this initial clinical trial had 469 
important limitations, which necessitates targeted follow-up studies with fewer outcomes based on 470 
two-sided statistical inference to confirm the effects of NR treatment on vascular health. It is 471 
becoming evident that in addition to testing the effects of NAD+ boosters in healthy adults 472 
exhibiting near-normal vascular function, future investigations should also include older patients 473 
with cardiovascular and metabolic diseases characterized by significantly impaired endothelial 474 
function. Additional research is also needed to develop sensitive NAD+ quantification methods, 475 
preferably assessing the entire NAD+ metabolome in relevant tissues, that could be used in the 476 
clinical setting to evaluate treatment efficiency(31).  477 
 Research over the past two decades has broadened our view of the multi-factorial nature and 478 
heterogeneity of cellular aging processes(78) that contribute to age-related cardiovascular 479 
pathologies(164). Furthermore, there is considerable cross talk between signaling pathways 480 
involved in the vascular aging process. With age multiple regulatory and homeostatic mechanisms 481 
become dysfunctional and impairment of these compensatory mechanisms significantly decrease 482 
cellular resilience to other stressors as well. Due to the complexity of age-related physiological 483 
dysfunction there is a strong scientific rationale for pursuing multiple targets to delay 484 
cardiovascular aging. To rationally develop 'anti-aging' interventions that target multiple steps in 485 
the vascular aging process will likely require a combination therapy approach. Future studies should 486 
explore how NAD boosting strategies can be combined with selective inhibitors of other cellular 487 
pathways involved in the aging process (e.g., mTOR) and determine the dose-limiting toxicities of 488 
such combination targeted therapies. 489 
 Finally, understanding of NAD+ depletion in smooth muscle cell pathophysiology is also a 490 
promising area for research. There is evidence that NAD+ levels affect vascular smooth muscle 491 
cells contractility and impact structural integrity of the vascular wall(65). For example, vascular 492 
smooth muscle-specific Nampt-deficient mice exhibit an ~40% reduction in aortic NAD+ , which 493 
appears to promote pathogenesis of aortic aneurysms(172). It will be interesting to determine 494 
whether treatment with NAD+ boosters can reverse/prevent alterations in vascular structure and 495 
function, which are secondary to aging-induced phenotypic changes in smooth muscle cells(136, 496 
137, 144, 151, 153, 165).      497 

Collectively, we are entering a new era of vascular aging research and it will change the way 498 
we approach prevention and treatment of age-related cardiovascular pathologies. Pharmaceutical 499 
companies that prepare for this paradigm shift will realize tremendous benefits for years to come. 500 
NAD+ boosting therapeutic strategies have the potential to delay/reverse age-associated 501 
physiological decline in the cardiovascular system and therefore, we predict that they will be useful 502 
components in future anti-aging treatment protocols for prevention of aging-related diseases and 503 
extension of cardiovascular health span.  504 
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 1118 
Figure legends 1119 

 1120 
Figure 1. Schematic representation of de novo and salvage pathways for NAD+ biosynthesis. The 1121 
figure summarizes the key features of both the de novo pathway whereby L-tryptophan is metabolized 1122 
to NAD+ and the salvage pathway whereby NAD+ is synthesized from the NAD+ precursors nicotinic 1123 
acid (NA), nicotinamide riboside (NR) and nicotinamide (Nam). The de novo biosynthesis of NAD+ 1124 
starts from L-tryptophan (Trp) which is enzymatically converted in a series of reactions to quinolinic 1125 
acid (QA). QA is converted by quinolinate phosphoribosyltransferase (QPRT) to nicotinic acid 1126 
mononucleotide (NaMN), which is then converted to nicotinic acid adenine dinucleotide (NAAD) by 1127 
nicotinamide mononucleotide adenylyltransferase (NMNAT) enzymes. NAD synthase (NADS) 1128 
generates NAD+ by the amidation of NAAD. In the salvage pathway nicotinamide mononucleotide 1129 
(NMN) is synthesized from Nam by the rate-limiting enzyme, nicotinamide phosphoribosyltransferase 1130 
(NAMPT). NMN is also synthesized from nicotinamide riboside (NR) via phosphorylation by NR 1131 
kinase (NRK). NMN is converted into NAD+ by NMNATs. NA, the other substrate of the NAD+ 1132 
salvage pathway, is converted by nicotininc acid phosphoribosyltransferase (NAPRT) to nicotinic acid 1133 
mononucleotide (NaMN), which is then converted into nicotinic acid adenine dinucleotide (NaAD) by 1134 
NMNATs, and lastly into NAD by NADS. Multiple enzymes break-down NAD+ to produce NAM and 1135 
ADP-ribosyl moiety, including sirtuins and Poly (ADP-ribose) polymerase-1 and -2 (PARP-1/2). NMN 1136 
is a substrate of ectoenzyme CD73, with generation of NR. IDO: indoleamine 2,3-deoxygenase; KAT: 1137 
Kynurenine aminotransferase; KMO: kynurenine 3-monooxygenase; 3-OHKyn: 3-hydroxyl 1138 
kynurenine; 3-HAA: 3-Hydroxyanthanillic acid; 3-HAO: 3-hydroxyanthranilate-3,4-dioxygenase; 1139 
QPRT: Quinolinate phosphoribosyltransferase;   1140 
 1141 
  1142 
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 1143 
Figure 2. Role of NAD+ deficiency in aging-induced endothelial dysfunction. Aging-induced 1144 
mechanisms contributing to an age-related decline in NAD+ content may include up-regulation of 1145 
pathways consuming NAD+ (PARP1 activation, CD38) and decreased biosynthesis of NAD+ (e.g. due 1146 
to down-regulation of nicotinamide phosphoribosyltransferase [NAMPT]). PARP-1 is a key NAD+‐1147 
consuming enzyme competing with sirtuins for NAD+ availability. In aging increased DNA damage 1148 
results in nuclear PARP-1 activation, lowering NAD+ availability. The consequences of age-related 1149 
NAD+ depletion in endothelial cells include decreased activation of sirtuins (SIRT1,2,6 and 7 in the 1150 
nucleus, SIRT3,4 and 5 in mitochondria and SIRT1 and 2 in the cytosol), which contribute to 1151 
dysregulation of mitochondrial biogenesis, impaired mitochondrial energetics, increased mitochondrial 1152 
production of reactive oxygen species (mtROS), up-regulation of NOX oxidases, decreased eNOS 1153 
activity and impaired bioavailability of NO, increased activity of NfKB-driven pro-inflammatory 1154 
pathways, down-regulation of pro-survival and stress resilience pathways and pathways involved in 1155 
angiogenesis. Decreased NAD+ supply also alter NADH levels and synthesis of NADP/NADPH, 1156 
contributing to age-related changes in a wide range of NADH and NADPH dependent catabolic and 1157 
anabolic pathways as well as impairment of NADP(H) dependent regeneration of antioxidant systems 1158 
(e.g. GSH). These changes impair endothelium-dependent vasodilation, promote inflammation, 1159 
decrease capillarization and tissue blood flow and impair transport and barrier function of the 1160 
endothelial cells. The multifaceted impairment of microvascular endothelial function contributes 1161 
significantly to the age-related dysfunction of multiple organs. Yellow arrows highlight potential targets 1162 
for intervention to rescue the function of the NAD+/SIRT-1 axis in aged endothelial cells. These anti-1163 
aging interventions include rescuing NAD+ levels by treatment with NAD+ precursors (NR, NMN), 1164 
pharmacological inhibition of NAD+ utilizing PARP-1 activation or treatment with sirtuin activating 1165 
molecules (STACS).     1166 
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