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Anna Csiszar'?, Stefano Tarantini', Andriy Yabluchanskiy', Priya Balasubramanian', Tamas

Kissl’2’3, Eszter Farkasz, Joseph A. Baur4, Zoltan Ungvari1’2’3’5’6

1) Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on
Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center,
Oklahoma City, OK

2) Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary

3) Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary

4) Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

5) Department of Pulmonology, Semmelweis University, Budapest, Hungary

6) Department of Health Promotion Sciences, Hudson College of Public Health, University of
Oklahoma Health Sciences Center, Oklahoma City, OK

Correspondence:

Zoltan Ungvari M.D., Ph.D.

Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine
University of Oklahoma Health Sciences Center

975 NE 10" Street, BRC 1311

Oklahoma City, OK 73104 USA

Email: zoltan-ungvari@ouhsc.edu

Running head: NAD boosters improve vascular function in aging



30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Abstract

Age-related alterations in endothelium and the resulting vascular dysfunction critically
contribute to a range of pathological conditions associated with old age. To rationally develop
therapies that improve vascular health and thereby increase health span and lifespan in older adults,
it will be essential to understand the cellular and molecular mechanisms contributing to vascular
aging. Pre-clinical studies in model organisms demonstrate that NAD" availability decreases with
age in multiple tissues and that supplemental NAD" precursors can ameliorate many age-related
cellular impairments. Here we provide a comprehensive overview of NAD' dependent pathways
(including the NAD" utilizing sirtuins and poly (ADP-ribose) polymerase enzymes) and the
potential consequences of endothelial NAD™ deficiency in vascular aging. The multifaceted
vasoprotective effects of treatments that reverse the age-related decline in cellular NAD" levels as
well as their potential limitations are discussed. The preventive and therapeutic potential of
NAD" intermediates as effective, clinically relevant interventions in older adults at risk for ischemic
heart disease, vascular cognitive impairment and other common geriatric conditions and diseases
that involve vascular pathologies (e.g. sarcopenia, frailty) is critically discussed. We propose that
NAD" precursors (e.g., nicotinamide riboside, nicotinamide mononucleotide, niacin) should be
considered as a critical component of combination therapies to slow the vascular aging process and
increase cardiovascular health span.

Key words: geroscience, senescence, oxidative stress, endothelial dysfunction, microcirculation
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Successful vascular aging determines lifespan and health span

Over the coming decades the average age of the population of the Western world will
continue to grow. Due to the significant increase in the average life expectancy combined with
unfavorable trends in fertility those aged >65 will become a much larger share of the population
(e.g., in the European Union rising from 19% to 29%(2)). The share of those aged >80 will increase
from 5% to 13% of the population of European Union by 2070. Similar trends will be manifested
both in Japan and the United States. The increasing fiscal strain linked to pensions, health care and
long-term care combined with the increases in the old-age dependency ratio (people aged 65 and
above relative to those aged 15 to 64; in the European Union: 29.6% in 2016, 51.2% in 2070) are
expected to be a significant challenge to the societies of each industrialized nation(64).

While aging affects physiology and pathophysiology throughout the body, the consequences
of age-related alterations of the cardiovascular system are especially relevant to the lifespans and
health spans of the populations of the developed countries. Cardiovascular and cerebrovascular
diseases are the most common cause of death among older people in these nations(1) accounting for
approximately 1/3 of all deaths at the age of 65 and nearly 2/3 at an age of 85(164). In addition,
aging-induced functional and structural alterations of the vasculature contribute to the pathogenesis
of a wide range of age-related diseases that limit health span, contributing to decreased workforce
participation, increased dependency and institutionalization in older adults. These age-related
diseases include coronary heart disease (CHD), myocardial infarction, vascular contributions to
cognitive impairment and dementia (including stroke), Alzheimer's disease, hypertension,
peripheral artery disease, sarcopenia, kidney and eye diseases(164). Aging promotes endothelial
apoptosis, impairs endothelial angiogenic capacity and promotes capillary regression(13, 36, 40,
45). A decline in capillary density ("microvascular rarefaction"(13, 142, 149, 157, 168, 169))
contributes to decreased tissue perfusion with age, which is a major contributor to mortality and
morbidity. Vascular pathologies also contribute to gait and balance disorders(57, 145, 151, 165)
promoting falls. Age-related pro-inflammatory changes in the vasculature contribute to the
pathogenesis of chronic inflammatory diseases associated with old age, including atherosclerotic
diseases (including CHD, stroke, peripheral artery disease, renal artery stenosis), osteoarthritis(6),
metabolic disease and diseases of the gastrointestinal tract. Age-related endothelial changes
promote increased coagulation and impair stem cell biology (e.g. by altering the local
microenvironment in vascular stem cell niches(81, 129)). Aging-induced dysfunction of
microvascular barrier and transport function (e.g. promoting the leakage of microbial breakdown
products to the systemic circulation) likely promotes chronic systemic low-grade sterile
inflammation and distant organ damage(135). Age-related alterations in the endothelial phenotype
alter the secretion of growth factors, chemokines and enzymes that can degrade the extracellular
matrix, likely promoting tumor progression, intravasation and cancer metastases(173). Finally,
impaired release of gaseotransmitters (including NO) from the microvessels negatively impacts
mitochondrial function and cellular bioenergetics in the skeletal muscle, the heart and the central
nervous system(105, 106).

Therefore, it is critical to understand mechanisms underlying vascular aging(83) to better
predict and prevent vascular contributions to the pathogenesis of multiple diseases associated with
old age. A better mechanistic understanding of macro- and microvascular aging processes is also
critical to develop and evaluate dietary, lifestyle and pharmacological countermeasures to address
this growing health issue.

Role of oxidative stress and endothelial dysfunction in vascular aging
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Impairment of endothelium-dependent nitric oxide (NO)-mediated vasodilation
("endothelial dysfunction") is a frequently used indicator of vascular health(29, 35, 60, 120, 132).
Endothelial dysfunction associates with cardiovascular events (reviewed in(86)), is an early feature
of atherosclerotic vascular diseases, and significantly contributes to impaired microvascular
perfusion(149, 164, 167). Importantly, clinical and preclinical studies demonstrate that aging is a
major cause for endothelial dysfunction(9, 44, 51) and that beneficial effects of anti-aging
interventions are predicted by their ability to restore endothelial NO mediation in aging(36, 37, 40,
42,50, 114, 152). In many cases, the loss of NO signaling with age or disease is a direct reflection
of oxidative stress, since superoxide readily reacts with NO to generate peroxynitrite, a free radical-
containing molecule that lacks NO’s signaling ability and damages other molecules. The sources of
superoxide include mitochondrial production and NAD(P)H oxidase activation(36, 37, 44, 136,
143, 151). NO released from the vascular endothelium is a potent vasodilator, which regulates
vascular resistance and thereby tissue perfusion. In addition, endothelium-derived NO also confers
important vasoprotective, cardioprotective, anti-inflammatory and anti-aging effects. For instance, NO
was demonstrated to regulate cell division and survival, inhibit platelet aggregation and inflammatory cell
adhesion to endothelial cells, promote angiogenesis, disrupt pro-inflammatory signaling pathways, and
regulate mitochondrial function and cellular energy metabolism(149, 164, 167). Endothelial dysfunction
contributes to the pathogenesis of cardiovascular disease, stroke and hypertension, vascular
cognitive impairment and dementia, and a range of pathological conditions from erectile
dysfunction to impaired exercise tolerance in older adults(164, 167). The critical role of
endothelium-derived NO in aging is underscored by the findings that mice genetically deficient for
endothelial nitric oxide synthase (eNOS) exhibit premature vascular, metabolic, brain and cardiac
aging phenotypes associated with early mortality(89, 150), many of which can be reversed by
supplying NO through exogenous nitrite(147). The mechanisms underlying age-related endothelial
dysfunction prominently involve increased oxidative stress(5, 44, 53, 140, 164, 167). Previous
preclinical and clinical studies have tested various experimental interventions designed to attenuate
oxidative stress and interfere with oxidative stress-mediated pathways to improve endothelial

Despite these exciting studies, the molecular mechanisms that lie upstream of age-associated
increased oxidative stress remain elusive.

Key objectives of geroscience research are to understand the biology of aging and to
translate scientific insight obtained in models of aging into translationally relevant interventions
that improve late-life health, including cardiovascular health. The prevailing view in the field of
geroscience is that fundamental aging processes are causally upstream of, and the cause of, all age-
related pathologies, including cardiovascular diseases. Intervening in these fundamental cellular and
molecular processes of aging thus should provide protection against a wide range of age-related
diseases and conditions, including endothelial dysfunction. What is currently identifiable about
organismal and tissue aging is that it is a very complex process, involving diverse biological
mechanisms. However, the exact roles of fundamental cellular and molecular processes of aging in
the genesis of increased oxidative stress and consequential endothelial dysfunction in the aging
vasculature remain to be elucidated.

Role of NAD" deficiency and cellular energetic impairment in aging-induced endothelial
dysfunction

There is strong evidence that with advanced age there is decreased availability of cellular
NAD" (62, 95, 177), which may be a common contributor to aging processes across tissues and in
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evolutionarily distant organisms. In support of this theory it was demonstrated that enhancing
general health and longevity in mice(100, 181). Here we review the evidence supporting the concept
that age-related decline in [NAD] plays a critical role in vascular aging.

Biological functions of NAD"

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form nicotinamide adenine
dinucleotide phosphate (NADP) have central roles in cellular metabolism, energy production and
survival(15). Over 400 enzymes require the NAD" and NADP", predominantly to accept or donate
electrons for redox reactions. NADP is synthesized by NAD" kinase, which phosphorylates NAD".
Although both NAD and NADP participate as electron carriers in a multitude of redox reactions, they
support distinct functions. NAD" participates primarily in energy-producing reactions requiring an
electron exchange, including the catabolism of carbohydrates, fatty acids, proteins, and alcohol (e.g.
glycolysis, pyruvate-to-lactate and pyruvate-to-acetyl-CoA interconversions, B-oxidation, citric acid
cycle, and oxidative phosphorylation). NADP predominantly participates in anabolic pathways,
including the synthesis of fatty acids, cholesterol and DNA. NADP is also critical for the regeneration of
components of antioxidant systems. To support these distinct functions, mammalian cells maintain
NAD predominantly in the oxidized state to serve as oxidizing agent for catabolic reactions, whereas
NADP exists predominantly in a reduced state (NADPH) to be able to readily donate electrons for
reductive cellular biochemical reactions. The cycling of NAD and NADP between oxidized and
reduced forms in redox reactions is easily reversible, since when NAD(P)H reduces another molecule it
is re-oxidized to NAD(P)'. Thus, these coenzymes can continuously cycle between the reduced and
oxidized forms without being consumed. Altering the availability of these coenzymes, either through a
shift in the redox ratio or via changes in cellular synthesis and/or degradation of NAD(H) and NADP(H)
will likely affect the function of hundreds of NADH-dependent and NADPH-dependent enzymes.

NAD'" is also the substrate for at least four classes of enzymes important for cellular survival,
aging and normal physiological functioning. These include enzymes with mono adenosine diphosphate
(ADP)-ribosyltransferase and poly (ADP-ribose) polymerase (PARP) activities, which catalyze ADP-
ribosyl transfer reactions. NAD" is a rate-limiting co-substrate for Silent information regulator-2 (Sir2)-
like enzymes (sirtuins), which are key regulators both of pro-survival pathways and mitochondrial
function and catalyze the removal of acyl groups from acylated proteins, utilizing ADP-ribose from
NAD as an acceptor. Importantly, both NAD'-dependent PARP enzymes and sirtuins are involved in
DNA repair pathways. Finally, ADP-ribosylcyclases such as CD38, which have relevance for calcium
signaling and endothelial NO mediated vasodilation(180), also require NAD".

Biosynthesis of NAD"

In mammals, NAD" can be synthesized de novo in the cytosol from the amino acid tryptophan,
from nicotinic acid, or salvaged from nicotinamide or intermediates containing this moiety (Fig. 1). In
the first step of the de novo pathway, tryptophan is converted into N-formylkynurenine by either of two
different enzymes: tryptophan-2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO). TDO is
critical for NAD" biosynthesis in liver, whereas IDO is expressed in many extrahepatic tissues,
including endothelial cells(19) and is known to be upregulated in response to inflammatory cytokines.
N-formylkynurenine is converted into kynurenine by formamidase. Kynurenine is metabolized in one of
two ways: one pathway yields kynurenic acid, whereas the other yields 3-hydroxykynurenine and
quinolinic acid, precursors of NAD".
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The Preiss-Handler and NAD" salvage pathways recycle components of NAD" that are taken up
from food or released by biochemical reactions that break down NAD'. Three vitamin precursors
containing a pyridine base that are used in these pathways are nicotinic acid (NA), nicotinamide (Nam)
and nicotinamide riboside (NR) (Fig. 1). These compounds are termed vitamin B3 or niacin (although
niacin may also refer to nicotinic acid specifically). NAD" synthesis from nicotinamide requires two
steps: nicotinamide is first converted into nicotinamide mononucleotide (NMN) by nicotinamide
phosphoribosyltransferase (NAMPT)(69), then the production of NAD" from NMN and ATP is
catalyzed by nicotinamide mononucleotide adenylyltransferases (NMNATSs). NMNATI is a nuclear
enzyme, NMNAT?2 is located in the cytosol and Golgi apparatus, while NMNAT3 is located in the
mitochondria in most cell types(76). NAMPT is considered the rate-limiting component in this NAD"
biosynthesis pathway(123). In the Preiss—Handler pathway, NA is converted into NA mononucleotide
(NaMN) by the addition of ribose-phosphate (from phosphoribosyl pyrophosphate by nicotinic acid
phosphoribosyltransferase [NAPRT]). NaMN is then converted into NA adenine dinucleotide (NaAD)
by NMNATS, and lastly into NAD" the presence of ATP and ammonia by NAD synthase. In mammals,
which lack nicotinamidase, NA seems to be derived primarily from extracellular sources. Exogenously
administered NA has been demonstrated to be a good precursor of NAD biosynthesis, significantly
increasing tissue NAD" levels(34, 71, 90) in addition to its better-known effect a lipid lowering agent
via direct inhibition of triglyceride synthesis and decreasing secretion of VLDL and LDL particles from
hepatocytes(74). Important for the present review is that treatment with niacin is associated with
improved endothelial function(126). NR and nicotinic acid riboside are converted to NMN and
nicotinic acid mononucleotide (NaMN), respectively, by nicotinamide riboside kinase 1 (NRK1) and
NRK2(15, 16, 121).

Despite the presence of the de novo pathway, the NAD" salvage pathway is essential in
mammals: a lack of niacin in the diet results in significant decline in tissue NAD'(122) and mice
lacking NAMPT constitutively are not viable(124). Even with an intact salvage pathway, the lack of
niacin in the diet causes the severe vitamin deficiency disease pellagra(84), which is characterized by
dermatitis, diarrhea, dementia and ultimately death. Data derived from the 1995 Continuing Survey of
Food Intakes by Individuals indicate that in the United States the greatest contribution to the niacin
intake of the adult population comes from mixed dishes high in meat, fish, or poultry, enriched and
wholegrain breads and fortified cereals(70). Fish, such as tuna (niacin content: 18.4 mg/100 g), sardines
((3)) and salmon (niacin content: 7.8 mg/100 g), as well as chicken meat (niacin content: 13.9 mg/100
g) and liver (niacin content: 11 mg/100 g) are relatively rich in NAD" precursors. One of the best food
sources of niacin is yeast (niacin content: 40.2 mg/100 g)(4). Milk and milk products also contain NAD"
precursors (60% as nicotinamide, 40% as NR)(156), although the niacin content in them is significantly
lower relative to aforementioned food items (niacin content in milk: 0.089 mg/100 g). Several food
items contain particularly high concentrations of NMN, including edamame, avocado and
broccoli(100).

It should be noted that niacin intake in the adult population in the United States is generous in
comparison with the Estimated Average Requirement (EAR)(70). For instance, the median intake by
adult women is 17 to 20 mg of niacin, which exceeds the Estimated Average Requirement of 11 mg of
niacin equivalents needed to prevent pellagra. The Boston Nutritional Status Survey reported that
people over age 60 in this cohort has a median niacin intake of 21 mg/day for men and 17 mg/day for
women(70). Niacin intake from supplements is also significant. Over one third of adults participating in
the National Health and Nutrition Examination Survey (1999-2000) reported taking a multivitamin
dietary supplement containing niacin in the previous month(119). Data from the Boston Nutritional
Status Survey indicates that in elderly individuals taking supplements, the fiftieth percentile of
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supplemental niacin intake was 20 mg for men and 30 mg for women(70). Of note, supplements
containing up to about 400 mg of niacin are available without a prescription. It should also be noted
that nicotinic acid has been also used as a lipid lowering agent since the 1970s, based on its inhibitory
effect of triglyceride synthesis, accelerated intracellular hepatic apo B degradation and the decreased
secretion of VLDL and LDL particles.

Endothelial cells abundantly express the enzymes required to metabolize NAD" precursors
(Csiszar and Ungvari, unpublished observation 2018), suggesting that endothelial NAD" levels are
likely to be responsive to exogenously administration or dietary intake of NAD" precursors. For a more
extensive review on the biosynthesis of NAD", the reader is directed to references(15, 76).

Mechanisms of age-related decline in cellular NAD" levels

NAD" concentration decreases in multiple tissues over the course of normal aging. Although
the dispersion of endothelial cells within a given tissue makes it difficult to measure their NAD"
pools directly in situ, studies on endothelial cells isolated from the brains of young and aged
animals provide evidence that [NAD'] also falls in the endothelial compartment (Tarantini, Csiszar
and Ungvari, submitted, 2019).

The mechanisms underlying the age-related decline in [NAD'] are likely multifaceted(127)
and may include decreased expression of nicotinamide phosphorybosyltransferase (NAMPT; which
catalyzes the rate limiting step in the biosynthesis of NAD")(178), increased utilization of NAD" by
activated poly (ADP-ribose) polymerase (PARP-1)(110), and increased activity and expression of
the NADase CD38 (23, 146) (Fig. 2). The functional relevance of these pathways is shown by the
findings that genetic depletion of NAMPT and/or pharmacological inhibition of NAMPT (by the
inhibitor FK866) decreases cellular NAD" levels and mimic aspects of the aging phenotype in
endothelial cells(171), skeletal muscle(131) and neuronal cells(138, 139). PARP-1 is a constitutive
factor of the DNA damage surveillance network. In aged cells PARP-1 is activated in response to
DNA damage induced by increased oxidative/nitrative stress. PARP-1 cleaves NAD" and transfers
the resulting ADP-ribose moiety onto target nuclear proteins and onto subsequent polymers of
ADP-ribose, depleting cellular NAD" pools in the process. There is evidence that in human tissues
(skin samples) advanced aging results in increased DNA damage, which correlates with increased
PARP activity and decreased NAD' levels(95). Importantly, genetic depletion(11) and/or
pharmacological inhibition of PARP-1 were shown to increase tissue NAD" levels in rodent models
of accelerated aging. Pharmacological inhibition of PARP-1 was also shown to improve endothelial
function in aged rodents(110-112). Two recent studies demonstrated that the expression and activity
of the NADase CD38 increase with age, and that blocking CD38 activity is sufficient to increase
[NAD] and prevent the age-related decline in multiple tissues including skeletal muscle, liver and
adipose tissue(23, 146). Endothelial cells are known to express CD38 and CD38-mediated NAD"
depletion in this cell type has been linked to loss of eNOS mediated NO generation(22, 125).

In addition to the intrinsic effects of age, cardiovascular risk factors that promote
accelerated vascular aging result in cellular NAD" depletion. Accordingly, there is evidence linking
high fat diet-induced obesity(27, 59), high homocysteine levels(20), diabetes(133, 134) to a decline
in cellular NAD" levels, which would likely contribute to endothelial dysfunction.

Anti-aging effects of treatment with NAD" boosters

Cellular NAD" levels can be increased by up-regulating the enzymes involved in NAD"
biosynthesis, by inhibition of NAD" consumers(76), or by treatment with NAD" precursors(26),
including niacin, nicotinamide mononucleotide (NMN)(48, 107, 159), nicotinamide riboside (NR).
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While overexpression of enzymes catalyzing NAD™ biosynthesis (NAMPT or NMNATS)
effectively boosts NAD" levels (54, 76), the translational potential of this approach is limited.
Significant data are available to support the efficacy and translational relevance of NMN and NR
treatment(177). NMN is considered an especially promising candidate as an anti-aging therapeutic
approach due to its multi-targeted effect(80).

Administration of NMN or NR to aged mice increases tissue NAD" levels(100, 177, 181). The
rise in NAD was detected within minutes in some studies, indicating that NMN is quickly absorbed in
the gut and is either efficiently transported in the circulation and readily converted by the cells to NAD",
or, alternatively is converted to another NAD" precursor in the liver, which then circulates to peripheral
tissues, increasing cellular NAD" levels. Recent findings support the latter view, showing that there is a
significant first-pass effect and orally administered NMN and NR are readily metabolized to
nicotinamide in the liver, which then can get into the circulation, increasing NAD" levels in other organs
(91). There are strong data to show that human blood NAD" can rise as much as 2.7-fold with a single
oral dose of NR and that oral NR elevates tissue NAD' in the mouse liver with superior
pharmacokinetics to those of nicotinic acid and nicotinamide(154). Additionally, single doses of 100,
300 and 1,000 mg of NR were demonstrated to result in dose-dependent increases in the blood NAD"
metabolome in humans(154). Note that the doses of NAD" precursors used in preclinical and clinical
studies to reverse the adverse effects of aging are significantly higher than the Estimated Average
Requirement (EAR)(70) of ~11 mg of niacin equivalents needed to prevent pellagra in humans even if
allometric scaling is used.

There is increasing evidence that restoration of cellular NAD" levels by treatment with NAD"
precursors in aged mice exerts multifaceted anti-aging effects, reversing age-related dysfunction in
multiple organs, including the eye(100), the skeletal muscle(62) and the brain(73). Even short-term
administration of NMN or NR has been demonstrated to exert significant protecting effects in a wide
range of age-related pathophysiological conditions, improving skeletal muscle energetics and
function(62), protecting neuronal stem cells and increasing mouse lifespan(181). The NAD" booster
acipimox, a niacin derivative used for treatment of hyperlipidemia in type 2 diabetic patients, was also
shown to improve mitochondrial function in the skeletal muscle(170). NR was also shown to exert
protective effects against high-fat diet-induced metabolic abnormalities(27, 155).

Importantly, chronic treatment of aged mice with NAD" boosters was shown to improve
endothelial function in the aorta (Ungvari and Tarantini, unpublished observation, 2015)(50) and in
the cerebral circulation (Ungvari and Tarantini, unpublished observation, 2015). Studies are
currently underway to determine whether chronic treatment with NR improves cerebral blood flow
(ClinicalTrials.gov Identifier: NCT03482167) in older adults with mild cognitive impairment. More
recently, treatment of aged mice with NMN was shown to reverse age-related capillary rarefaction
and increase blood flow in the skeletal muscle(48), likely by increasing the angiogenic capacity of
endothelial cells(21, 48). There is also evidence suggesting that in old mice NMN treatment restores
fenestration of liver sinusoidal endothelial cells(66). Fenestration of liver sinusoidal endothelial
cells enables the bidirectional exchange of substrates (including insulin, lipoproteins and
pharmacological agents) between the blood and hepatocytes and thereby importantly contributes to
metabolic homeostasis. With increasing age the frequency and diameter of fenestrations
significantly decrease, likely due to age-related disruption of VEGF and NO dependent signaling
pathways, which promote pathologic remodeling of the actin cytoskeleton and cell membrane lipid
rafts(32, 72, 108). It is likely that NMN treatment exerts its protective effects on the liver sinusoidal
endothelial cells by restoring endothelial NO mediation. The available evidence suggest that higher
dietary niacin intake is also associated with improved vascular endothelial function in older
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adults(75). Yet, niacin as add-on treatment to high dose statins in patients with established coronary
artery disease does not appear to improve endothelial function(116). Consistent with the protective
effects of diverse NAD" boosters treatment of aged rodents with PARP-1 inhibitors, which should
spare NAD" (25, 28), was also shown to improve endothelial function(110-112).

Mitochondrial dysfunction and elevated mitochondrial oxidative stress play a critical role in
aging-induced cardiovascular dysfunction(47, 136, 161) and vascular impairment(61, 143). The
mechanisms contributing to mitochondrial oxidative stress in the aged endothelium are likely
multifaceted and involve a dysfunctional electron transport chain. Reduced electron flow through
the electron transport chain, in particular due to aging-induced dysregulation of complex I and
complex III(82), likely promotes electron leak and favors increased mtROS production. A key
mechanism underlying the anti-aging action of NMN treatment is improving cellular energetics by
rescuing mitochondrial function(62), at least in part, by activating sirtuin deacylases (SIRTI-
SIRT7; Fig. 2). Sirtuins are known to mediate beneficial anti-aging(33, 102, 174) and
vasoprotective effects(36, 37, 42) of caloric restriction as well. In support of this concept, knock-
down of SIRT1 in aged cerebromicrovascular endothelial cells was shown to abolish the anti-
oxidative and mitochondrial protective effects of NMN treatment (Ungvari and Csiszar, 2018,
unpublished observation). There is direct evidence that activation of SIRTI1 underlies NMN-
induced restoration of endothelial angiogenic capacity and increased capillarization in aged
mice(141). Previous studies suggest that the age-related decline in oxidative phosphorylation
(OXPHOS) and/or increased mitochondrial oxidative stress may be due, at least in part, to the
specific loss of mitochondrially encoded transcripts(62). In that regard it is important that NMN
treatment was shown to restore expression of mitochondrial encoded OXPHOS subunits in aged
mice in a SIRTI dependent manner(62). Treatment with NR was also shown to up-regulate
mitochondrial gene expression and promote mitochondrial biogenesis in the mouse skeletal
muscle(27). Moreover, recent studies show that pharmacological inhibition of alpha-amino-beta-
carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD)(115), the enzyme that limits
spontaneous cyclization of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde in the de
novo NAD" synthesis pathway, can also boosts de novo NAD" synthesis and sirtuin 1 activity,
ultimately enhancing mitochondrial function in kidney and liver(77). We posit that rescue of
vascular mitochondrial function by restoring the expression of mitochondrial encoded OXPHOS
subunits contributes to the vasoprotective effects of treatment with NAD boosters. These
observations accord with findings from earlier studies demonstrating that many of the health
benefits of SIRT1 activation are linked to improved mitochondrial function(14). Further, SIRT1-
activating compounds (STACs) such as resveratrol and SRT1720 have been demonstrated to exert
significant vasoprotective effects in aging and models of accelerated vascular aging(30, 39, 56, 101,
114, 161-163, 179) similar to NAD' boosters, including up-regulating mitochondrial
biogenesis(38), attenuating mitochondrial oxidative stress(43, 160), activating antioxidant defense
mechanisms(41) and inhibiting apoptosis(114) in endothelial and vascular smooth muscle cells.
STACs were also shown to increase capillary density(109), improve endothelial function and blood
flow regulation(152) and prevent microvascular fragility(151) in the aged mouse brain and to exert
similar vasoprotective effects in non-human primate models as well(18, 96). Future studies should
determine whether NAD" boosters also confer similar vascular health benefits. In addition to sirtuin-
mediated effects, because mitochondrial ATP production and membrane potential require NAD as an
essential coenzyme, restoring an optimal NAD/NADH ratio itself should also promote efficient
mitochondrial function in vascular cells.
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Perspectives

Taken together, progress in geroscience research investigating the role of fundamental aging
processes in the development of age-related chronic diseases(55, 79, 94, 130), including
from both the basic science and the clinical perspectives. The field of vascular aging research
matured and expanded when researchers started to apply breakthrough discoveries in
biogerontology to the development of new therapeutic strategies to prevent/reverse age-related
pathologic functional and phenotypic alterations of blood vessels. In particular, NAD" boosting
strategies were shown to confer multifaceted health benefits in aging, including potential
translationally relevant vasoprotective effects. However, understanding the cellular and molecular
mechanisms by which age-related NAD" deficiency contribute to age-related vascular pathologies,
elucidating the exact mechanisms by which NAD' boosting strategies exert their anti-aging
vascular effects and translating the preclinical findings to the clinics remain a substantial challenge
and an active area of research with numerous open questions.

It remains unclear what downstream mechanisms mediate the beneficial vascular effects of
NAD" boosters. In addition to the role of established NAD" biosynthetic pathways new research
may reveal new aspects of NAD" metabolism, including novel pathways that utilize NAD" (e.g.
NAD" addition to RNAs(76)) that contribute to the biological effects of NAD" boosters in the aged
vasculature.

Although NMN and NR have been tested in diverse disease models, no side-by-side
comparisons have been conducted between NMN and NR in the context of macrovascular and
microvascular aging. Future pharmacological and nutraceutical strategies to rescue vascular NAD"
levels in aging will also need to take into account the limited oral bioavailability of NR and NMN
as well as the tissue-specificity of important pathways in NAD+ metabolism(91). Further, a recent
meta-analysis of all randomized studies that compared niacin with placebo, either alone or in
combination with statin treatment or other treatments that lower low-density lipoprotein cholesterol
levels also showed that niacin does not affect significantly all-cause mortality rates and does not
lower the risk of cardiovascular mortality, nonfatal myocardial infarction, stroke, or the need for
revascularization(58). With that regard, studies aimed at understanding the differential biological
effects of treatment with niacin, NMN and NR will be highly informative.

Compartmentalization of NAD" biosynthesis is also not well understood. Subcellular
compartments (e.g. the nucleus, cytosol, and mitochondria) appear to express distinct pathways to
synthesize NAD"(176). However, it is not clear what the relevance of this spatial organization is,
given that individual enzymes appear to be dispensable in most cases(24, 175) and tracer studies
suggest that intact NAD" can move between the cytosol and mitochondria(49). It is presently
unclear how NAD" intermediates are transported across cell membranes and shared among different
subcellular compartments in endothelial cells. Novel isotope-tracer methods to analyze NAD
synthesis-breakdown fluxes have been developed(91), which could be adapted to study endothelial
cell-specific NAD " metabolism.

In 2009 Imai and coworkers proposed an interesting concept, named the “NAD World,”
which implicated NAD" metabolism and SIRT1 in systemic regulation of mammalian aging and
longevity(67). Since then the concept has evolved and now NMN is hypothesized to function as a
systemic signaling molecule that participates in inter-tissue communications among three key
tissues, namely, the hypothalamus, adipose tissue, and skeletal muscle, for regulation of aging
processes and longevity control(68). The concept implies that the hypothalamus is a high-order
control center of systemic aging processes and that inter-tissue communication between the adipose
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tissue, skeletal muscle and the hypothalamus, mediated by circulating factors (including myokines
and adipokines), comprises a critical feedback loop. Importantly, transport and uptake of
circulating NMN as well as inter-tissue communication via circulating factors depends on the
function of the (micro)vasculature. Endothelial cells also express key components of pathways
involved in NAD" biosynthesis and degradation (including PARP-1 and CD38). Additionally,
SIRT-1 is known to regulate several aspects of endothelial function, including angiogenesis,
vasodilatory function. Further, NMN appears to significantly impact the function and phenotype of
endothelial cells in aging. Thus, it would be interesting to incorporate in the model the function and
age-related changes of the microvascular endothelial cells and consider the role endothelial cells
(which represent the largest endocrine organ) in systemic regulation of aging within the framework
of the NAD World.

When translating the protective effects of NAD" boosting strategies into clinical benefits
several challenges should be considered, including the side effect profiles of such treatments.
Treatment with L-tryptophan is known to cause a range of unwanted side effects (belching and gas,
blurred vision, diarrhea, dizziness, drowsiness, dry mouth, headache, heartburn), including the
potentially severe eosinophilia-myalgia syndrome (for which it was recalled from the market in
1990). Niacin treatment can cause a flushing reaction(17) as well as gastrointestinal side effects,
and liver problems and may promote impaired glucose tolerance(99, 128) at high doses (e.g. ~3
g/day nicotinic acid). Adverse effects (nausea, vomiting, and signs of liver toxicity) have been
reported at nicotinamide intakes of 3 g/day (118) and intakes of nicotinic acid of 1.5 g/day(97). The
niacin derivative lipid lowering agent acipimox (Olbetam) also causes flushing and gastrointestinal
side effects in 10% of the patients. Individuals with liver disease, diabetes mellitus and alcoholism
are more susceptible to the adverse effects of excess niacin intake. Unlike other NAD" boosters,
Nam has the capacity to exert end-product inhibition on SIRT1 deacetylase activity, which may
result in unwanted side effects as well. Importantly, chronic administration of NMN resulted in no
apparent toxicity in mice(100). Similarly, chronic treatment of laboratory mice with NR for 5-6
months(63), 10 months(181) or 12 months(158) was not associated with any obvious toxic adverse
effects. It is promising that small-scale clinical studies with NR treatment have not reported adverse
effects in humans(154). A small randomized, placebo-controlled, crossover clinical trial of NR
supplementation (2x500 mg/day for 2x6 weeks) in older adults(93) also reported no major adverse
effects. Nevertheless, subsequent clinical trials on larger cohorts should carefully monitor adverse
events associated with NMN and NR treatment. It is expected that soon reliable information will be
available on the pharmacokinetics, dosing and side effect profiles of NMN and NR treatments in
older adults. Multiple clinical studies are ongoing, investigating the effects of treatment with NAD"
boosters in humans, including the effects of NMN on metabolic health in women
(ClinicalTrials.gov Identifier: NCT03151239). Ongoing clinical trials with NR treatment include
studies to investigate the effects of NR on mitochondrial biogenesis and mitochondrial function
(ClinicalTrials.gov Identifier: NCT03432871 and NCT02835664). Importantly, many of the NAD"
precursors are considered vitamins and are widely available to the public as dietary supplements.
New studies should also determine which pharmacological strategies aiming to boost cellular NAD"
levels by inhibiting degradation of NAD" would be the most appropriate for vasoprotection in older
adults. Several PARP inhibitors are currently available or are undergoing clinical trials for
oncologic indications. One important consideration is that PARP inhibitors are potentially
genotoxic, which may limit their use in patients with non-oncologic diseases.

The effects of an initial study using longer treatment with NR (2x500 mg/day, for 6 weeks)
on endothelium-dependent dilation and arterial stiffness (ClinicalTrials.gov Identifier:
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NCT02921659) was recently reported (93). However, the results on the effects of NR on
endothelial function and vascular health were inconclusive. While NR was found to elicit small
decreases in blood pressure and somewhat reduce aortic stiffness, it did not improve endothelium-
dependent, flow-mediated dilation of brachial arteries(93). However, this initial clinical trial had
important limitations, which necessitates targeted follow-up studies with fewer outcomes based on
two-sided statistical inference to confirm the effects of NR treatment on vascular health. It is
becoming evident that in addition to testing the effects of NAD" boosters in healthy adults
exhibiting near-normal vascular function, future investigations should also include older patients
with cardiovascular and metabolic diseases characterized by significantly impaired endothelial
function. Additional research is also needed to develop sensitive NAD" quantification methods,
preferably assessing the entire NAD" metabolome in relevant tissues, that could be used in the
clinical setting to evaluate treatment efficiency(31).

Research over the past two decades has broadened our view of the multi-factorial nature and
heterogeneity of cellular aging processes(78) that contribute to age-related cardiovascular
pathologies(164). Furthermore, there is considerable cross talk between signaling pathways
involved in the vascular aging process. With age multiple regulatory and homeostatic mechanisms
become dysfunctional and impairment of these compensatory mechanisms significantly decrease
cellular resilience to other stressors as well. Due to the complexity of age-related physiological
dysfunction there is a strong scientific rationale for pursuing multiple targets to delay
cardiovascular aging. To rationally develop 'anti-aging' interventions that target multiple steps in
the vascular aging process will likely require a combination therapy approach. Future studies should
explore how NAD boosting strategies can be combined with selective inhibitors of other cellular
pathways involved in the aging process (e.g., mMTOR) and determine the dose-limiting toxicities of
such combination targeted therapies.

Finally, understanding of NAD" depletion in smooth muscle cell pathophysiology is also a
promising area for research. There is evidence that NAD+ levels affect vascular smooth muscle
cells contractility and impact structural integrity of the vascular wall(65). For example, vascular
smooth muscle-specific Nampt-deficient mice exhibit an ~40% reduction in aortic NAD+ , which
appears to promote pathogenesis of aortic aneurysms(172). It will be interesting to determine
whether treatment with NAD+ boosters can reverse/prevent alterations in vascular structure and
function, which are secondary to aging-induced phenotypic changes in smooth muscle cells(136,
137, 144, 151, 153, 165).

Collectively, we are entering a new era of vascular aging research and it will change the way
we approach prevention and treatment of age-related cardiovascular pathologies. Pharmaceutical
companies that prepare for this paradigm shift will realize tremendous benefits for years to come.
NAD" boosting therapeutic strategies have the potential to delay/reverse age-associated
physiological decline in the cardiovascular system and therefore, we predict that they will be useful
components in future anti-aging treatment protocols for prevention of aging-related diseases and
extension of cardiovascular health span.
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Figure legends

Figure 1. Schematic representation of de novo and salvage pathways for NAD" biosynthesis. The
figure summarizes the key features of both the de novo pathway whereby L-tryptophan is metabolized
to NAD+ and the salvage pathway whereby NAD+ is synthesized from the NAD+ precursors nicotinic
acid (NA), nicotinamide riboside (NR) and nicotinamide (Nam). The de novo biosynthesis of NAD+
starts from L-tryptophan (Trp) which is enzymatically converted in a series of reactions to quinolinic
acid (QA). QA is converted by quinolinate phosphoribosyltransferase (QPRT) to nicotinic acid
mononucleotide (NaMN), which is then converted to nicotinic acid adenine dinucleotide (NAAD) by
nicotinamide mononucleotide adenylyltransferase (NMNAT) enzymes. NAD synthase (NADS)
generates NAD+ by the amidation of NAAD. In the salvage pathway nicotinamide mononucleotide
(NMN) is synthesized from Nam by the rate-limiting enzyme, nicotinamide phosphoribosyltransferase
(NAMPT). NMN is also synthesized from nicotinamide riboside (NR) via phosphorylation by NR
kinase (NRK). NMN is converted into NAD" by NMNATSs. NA, the other substrate of the NAD"
salvage pathway, is converted by nicotininc acid phosphoribosyltransferase (NAPRT) to nicotinic acid
mononucleotide (NaMN), which is then converted into nicotinic acid adenine dinucleotide (NaAD) by
NMNATS, and lastly into NAD by NADS. Multiple enzymes break-down NAD+ to produce NAM and
ADP-ribosyl moiety, including sirtuins and Poly (ADP-ribose) polymerase-1 and -2 (PARP-1/2). NMN
is a substrate of ectoenzyme CD73, with generation of NR. IDO: indoleamine 2,3-deoxygenase; KAT:
Kynurenine aminotransferase; KMO: kynurenine 3-monooxygenase; 3-OHKyn: 3-hydroxyl
kynurenine; 3-HAA: 3-Hydroxyanthanillic acid; 3-HAO: 3-hydroxyanthranilate-3,4-dioxygenase;
QPRT: Quinolinate phosphoribosyltransferase;
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Figure 2. Role of NAD" deficiency in aging-induced endothelial dysfunction. Aging-induced
mechanisms contributing to an age-related decline in NAD" content may include up-regulation of
pathways consuming NAD" (PARP1 activation, CD38) and decreased biosynthesis of NAD" (e.g. due
to down-regulation of nicotinamide phosphoribosyltransferase [NAMPT]). PARP-1 is a key NAD'-
consuming enzyme competing with sirtuins for NAD" availability. In aging increased DNA damage
results in nuclear PARP-1 activation, lowering NAD" availability. The consequences of age-related
NAD" depletion in endothelial cells include decreased activation of sirtuins (SIRT1,2,6 and 7 in the
nucleus, SIRT3,4 and 5 in mitochondria and SIRT1 and 2 in the cytosol), which contribute to
dysregulation of mitochondrial biogenesis, impaired mitochondrial energetics, increased mitochondrial
production of reactive oxygen species (mtROS), up-regulation of NOX oxidases, decreased eNOS
activity and impaired bioavailability of NO, increased activity of NfKB-driven pro-inflammatory
pathways, down-regulation of pro-survival and stress resilience pathways and pathways involved in
angiogenesis. Decreased NAD" supply also alter NADH levels and synthesis of NADP/NADPH,
contributing to age-related changes in a wide range of NADH and NADPH dependent catabolic and
anabolic pathways as well as impairment of NADP(H) dependent regeneration of antioxidant systems
(e.g. GSH). These changes impair endothelium-dependent vasodilation, promote inflammation,
decrease capillarization and tissue blood flow and impair transport and barrier function of the
endothelial cells. The multifaceted impairment of microvascular endothelial function contributes
significantly to the age-related dysfunction of multiple organs. Yellow arrows highlight potential targets
for intervention to rescue the function of the NAD"/SIRT-1 axis in aged endothelial cells. These anti-
aging interventions include rescuing NAD" levels by treatment with NAD" precursors (NR, NMN),
pharmacological inhibition of NAD" utilizing PARP-1 activation or treatment with sirtuin activating
molecules (STACS).
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