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Targeting yé T cells for immunotherapies

against colorectal cancer

Joanna Mikulak !, Paolo Marzano "2, Valentina Cazzetta', and Domenico Mavilio

The advancement of immunotherapy faces significant challenges, including ex-
tending its benefits to a growing number of patients and enhancing its efficacy
across different tumor types. In this context, yd T cells emerge as particularly
promising candidates owing to their distinctive biological features such as
MHC-independent activation, potent cytotoxicity, and capacity to bridge innate
and adaptive immunity. Recently, advanced single-cell techniques have allowed
detailed yd T cell characterization in the tumor microenvironment (TME) and have
emphasized their heterogeneity, mechanisms of activation, and response to im-
mune checkpoint blockade (ICB). This review provides a comprehensive sum-
mary of recent advances in understanding yd T cells in colorectal cancer
(CRC), with a particular emphasis on their prognostic and therapeutic relevance
in both primary tumors and metastatic disease.

Therapeutic potential of y6 T cells in cancer immunotherapy

Immunotherapy has become a cornerstone of modern oncology owing to its ability to enhance
the immune responses of patients against malignant cells. Strategies such as ICB, multispecific
antibody engagers (see Glossary), adoptive cell therapies, and chimeric antigen receptor
(CAR)- or T cell receptor (TCR)-engineered T cells have gained increasing clinical interest. Within
this landscape, yo T cells are emerging as particularly promising targets [1,2]. Their therapeutic
potential stems from their unique biological features, including a highly efficient cytotoxicity ma-
chinery and the production of proinflammatory cytokines (IFN-y, TNF) and chemokines (CCL3/
5, XCL1/2) that can modulate the TME, as well as a relatively low risk of cytokine release syn-
drome (CRS). These cells circulate in the peripheral blood and populate multiple tissues, such
as the colon mucosa, which supports their potential for therapeutic targeting in both hematolog-
ical and solid malignancies. Activation of yd T cells occurs predominantly in an MHC-independent
manner [3-5], which makes them ideal candidates for allogeneic strategies with a reduced risk of
graft-versus-host disease (GVHD), a common limitation of af§ T cell-based strategies. Impor-
tantly, this MHC-independent activation also enables yd T cells to recognize and eliminate
tumor cells that have downregulated MHC, a prevalent mechanism of a3 T cell-related tumor eva-
sion. Recent evidence suggests that some yd T cells can recognize classical MHC molecules
expressed by tumor cells; however, this interaction appears to be peptide-independent and oc-
curs even in the presence of peptide-loading defects [6]. yOTCRs recognize phosphoantigens
(pAgs) presented by butyrophilin molecules (BTN), the MHC-like molecule MR1, lipid-
presenting CD1 family members, and the endothelial protein C receptor (EPCR) [7]. In addition,
yOTCRs can bind to non-MHC-related and stress-induced molecules such as annexin A2 and
the ephrin type A receptor 2 (EPHA2) [7] which are overexpressed following metabolic repro-
gramming of cancer cells.

A distinctive feature of yo T cells is their dual innate and adaptive immune functions. In addition to
TCR-mediated recognition, they express activating receptors that are typically found on natural
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Highlights

Colorectal cancer (CRC) represents a
major clinical issue, with growing rates
in younger patients and few effective
therapies.

y0 T cells in primary and metastatic CRC
are highly heterogeneous and comprise
functionally distinct subpopulations.

Some yd T cell phenotypes protect
against tumor progression and correlate
with improved survival, suggesting that
they have potential prognostic value.

yO T cells respond to PD-1/PD-L1 axis
inhibitors, particularly in HLA class I-
negative CRC tumors.

PD-1*yd T cells show a profile of tumor-
reactive cells that can be reinvigorated
via immune checkpoint blockade (ICB).

Combination strategies such as in vivo/
ex vivo activation and expansion, adop-
tive transfer, genetic engineering, and
ICB are now being investigated to en-
hance yO T cell specificity, persistence,
and antitumor efficacy.

Significance

Growing evidence highlights the key
role of the immune response in
controlling colorectal cancer (CRC)
and the need to better understand its
immune evasion mechanisms to
identify new therapeutic targets. yd T
cells are emerging as promising candi-
dates owing to their ability to eliminate
tumor cells in an MHC-independent
manner while bridging innate and
adaptive immunity. Strategies such as
adoptive transfer, engineered yo T cell
products, and their engager-based or
pharmacological activation and expan-
sion make them particularly appealing
for CRC therapy.
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killer (NK) cells (e.g., NKG2D, DNAM-1, and NKp30/44/46) [8,9], which allows them to detect
stress-induced ligands on tumor cells. Their cytotoxic activity also involves FAS/FASL and
TRAIL/TRAIL-R pathways, as well as the CD16 (FcyRlll) receptor, which recognizes the Fc por-
tion of IgG and plays a crucial role in triggering antibody-dependent cellular cytotoxicity (ADCC)
[10,11]. However, the full spectrum of ligands for yd T cell activation, across both adaptive and
innate pathways, remains incompletely characterized, and the crosstalk between these signaling
pathways is not yet fully understood. For instance, the stress-inducible MHC class |-related
molecule ULBP4 can act as a ligand for both ydTCR and NKG2D [12], revealing the multifaceted
integration of innate and adaptive functions in yd T cells. Furthermore, yd T cells can prime o3 T
cell responses and interact with other immune cells, thereby orchestrating a cascade of antitumor
responses [13].

The clinical exploitation of yo T cells requires careful consideration of their heterogeneity and
functional plasticity. The main human subsets, Vo1, V62, and V&3, display different tissue dis-
tributions, antigen recognition patterns, and activation mechanisms (Box 1). These differences
shape their interactions within the TME and influence the recognition and killing of tumor cells,
and thus impact on their potential use in immunotherapy. High-resolution profiling technologies
such as single-cell RNA sequencing (scRNA-seq) have substantially expanded our under-
standing of yd T cell biology in recent years (Box 2). In CRC, such analyses have uncovered
previously unappreciated aspects of yd T cell functional states, heterogeneity, and therapeutic
relevance.

This review summarizes current knowledge about yo T cells in CRC, and outlines their distribution
and phenotypic and functional diversity across primary and liver metastases (LMs), alongside
their prognostic significance. We then discuss yd T cell-based immunotherapeutic strategies in
CRC, including ICB, modulators of yd T cell activity, and adoptive yd T cell therapies, and provide
a concise overview of their therapeutic potential in this disease.

Box 1. Human y& T cell subsets

The classification of yo T cells is based on their expression of the T cell receptor & (TCRJ) locus (TRD) which undergoes
recombination of variable (V), diversity (D), and joining (J) segments. In humans, V&1, V&2, and V&3 are most commonly
utilized among the eight known V& gene segments, and these are rearranged in one of the four TRD J segments (J1-4).
The TCRYy locus (TRG) also undergoes VJ recombination, but only six of the 14 TRG V segments are functional (Vy2-5,
Vy8, and Vy9) and can be recombined with five TRG J segments (JP1, JP, J1, JP2, and J2) to generate a diverse TCR
repertoire. The V2 chain preferentially pairs with the Vy9 chain, giving rise to a semi-invariant Vy9vd2 TCR repertoire
which may be shared across individuals and constitutes ~90% of the total yd T cells in adult peripheral blood. Owing to
their high relative abundance and accessibility, blood Vy9Vo2 cells have been the most extensively characterized and were
the first to be translated into clinical applications [1]. Vy9Vd2 cells rapidly respond to phosphoantigens (pAgs) such as
hydroxymethy-but-2-enyl pyrophosphate (HMBPP) and isopentenyl pyrophosphate (IPP) that increase during microbial
infection or in malignant cells triggered by metabolic stress signals. The presentation of pAgs depends on butyrophilin
(BTN) family members, specifically BTN3A1 and BTN2A1, that enable their binding to the Vy9 chain [93,94] (Figure 1).
In addition, the NKG2D ligand ULBP4 was reported to bind to both Vy9vd2 TCR and NKG2D [12]. Although Vy9Vo2 cells
are the most common subset among V&2 T cells, the rarer Vy9"*9Vd2 T cells have been also described as a more
adaptive-like cell type with a more diverse TCR [95].

Non-V&2 yo T cells are typically enriched in tissues [96,97]. Among these, V1 cells are the most abundant and, as such,
have been the most extensively studied, particularly in the context of solid tumors [2]. V&1 cells exhibit highly individual TCR
repertoires and are often marked by clonally expanded cells. In healthy human intestine and metastatic CRC (mCRC), the
main Vy chains pairing with V1 are V4, followed by Vy3. Although the full spectrum of human V&1 ligands remains poorly
defined, their TCRs recognize lipid antigens presented by CD1a—d [98-102], MR1 [103], stress-induced annexin A2 [104]
and EPHA[105,106], and BTNL3/8 via the Vy4 chain [48] (Figure 1). Human V&3 chains are CD1d-restricted [107] and can
also bind to annexin A2 [104] and MR1 [108], whereas EPCR, an MHC-like phospholipid-binding molecule, is the only
known human V&5 TCR ligand [109].
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Box 2. Exploring yo T cells in cancer: opportunities from single-cell RNA-sequencing (sScRNA-seq) technology

Despite their potential, the study and clinical applications of yd T cells in immunotherapy still face numerous obstacles.
One of the main challenges concerns the limited understanding of the mechanisms that regulate their activation and
crosstalk between signals originating from the ydTCR and innate receptors, an aspect that remains a significant gap
in our current knowledge. This difficulty is largely due to their high variability and low abundance in peripheral tissues,
which tends to further decrease under pathological conditions [35]. In clinical settings where access to samples
and cells is limited, high-resolution single-cell analyses represent a valuable tool to investigate the heterogeneity of
yO T cells and to gain deeper insights into their functional states. Among these technologies, scRNA-seq has emerged
as a key resource in cancer research because it can unravel the complexity of the TME and thus facilitate the identifi-
cation of new therapeutic targets and mechanisms of immune evasion [110-112]. In recent years, several studies
have used scRNA-seq to characterize yd T cells across different tumor types and have highlighted the great potential
of this approach in clarifying their role in cancer biology. Nonetheless, important challenges remain in the single-cell
transcriptional analysis of these cells, including accurate cell clustering and annotation [113]. Indeed, the rarity of yd
T cells can result in their transcriptional profiles being obscured by those of more abundant and phenotypically similar
populations such as CD8 T cells and natural killer (NK) cells. In this context, yo T tumor-infiltrating lymphocytes (TILs)
and their heterogeneous profile pose technical challenges for scRNA-seq analysis. In addition, a major limitation of
scRNA-seq is that it only provides a snapshot of the transcriptomic cell state and does not capture the corresponding
protein expression levels. As a result, important activation and memory markers that are tightly regulated post-
transcriptionally or at the protein level may not be accurately predicted from transcriptomic data alone. This discon-
nection between mRNA and protein expression can limit the ability to infer the true functional state of yo T cells. To
address this issue, integrating scRNA-seq with complementary multimodal approaches, such as cellular indexing
of transcriptomes and epitopes by sequencing (CITE-seq), combining transcriptomic and surface protein profiling,
or validating key findings through flow cytometry, can provide a more comprehensive characterization of yo T cell
activation and differentiation states.

yd T cells in CRC: modulators and prognostic indicators of disease progression
CRC is the third most commonly diagnosed malignancy and the second leading cause of cancer-
related death worldwide, and its incidence is rising both among individuals under 50 years of age
and in patients with advanced disease [14]. Prognosis varies widely: 5 year survival is ~90% for
localized tumors but drops to 15% in metastatic CRC (mCRC) [15]. Over 25% of patients with
early-stage disease progress to mCRC, and the liver represents the most frequent metastatic
site owing to portal venous drainage. About 25% develop synchronous metastatic liver
disease and an additional 20-25% develop metachronous metastatic liver disease. As
result, hepatic disease occurs in roughly half of all CRC patients, who also face a recurrence
risk of up to 60% [16,17]. The TME in CRC is highly complex, and is shaped by the composition
and functional state of immune cells which can establish both antitumor and immunosuppressive
niches in primary tumors and LMs [18-20]. A deeper understanding of this TME will be crucial to
accurately delineate immune dynamics and their clinical implications, and thus enable improved
patient stratification and the development of effective therapies.

yO T cell heterogeneity across primary and metastatic CRC

yo T cells in CRC display a heterogeneous landscape (Figure 1). In healthy intestinal tissue, their
frequency is highly variable and they account for a mean of 20-25% of intragpithelial ymphocytes
[21,22]. Similar percentages are observed in peritumoral areas; however, within the tumor core,
where the anatomical architecture of the intraepithelial and lamina propria compartments is
disrupted, the frequency of yd T cells is markedly reduced and represent 10% of total T cells
[21,22]. In both tumors and peritumoral specimens, the predominant subset is Vo1, followed
by Vo2 and Va3 [21,23-26]. Single-cell analysis of primary CRC revealed an enrichment of effec-
tor yo T cells that express the tissue-retention markers CD103 and CD69 [21,27], as well as ac-
tivating receptors including the natural cytotoxicity receptors (NCRs) NKp30 and NKp46,
NKG2D, NKG7, FASL, CD16, and DNAM-1 [24-28]. Among the subsets, Vo1 cells mainly ex-
press NKp46, TRAIL, and CD1; notably, NKp46™ Vo1 cells exhibit enhanced cytotoxic potential
and greater IFN-y-responsiveness [21].
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Glossary

Antibody engagers: engineered
proteins that recognize specific antigens
and trigger immune responses against
target cells. Bispecific antibodies bind to
two targets simultaneously, usually a
tumor antigen and an immune effector
receptor, and actively redirect immune
cells to kill cancer cells. Tribodies extend
this approach by engaging three targets,
often one on the tumor and two on
immune cells, to enhance the potency
and flexibility of immune-mediated tumor
elimination.

Butyrophilins (BTNs): a family of
molecules involved in the regulation of yo
T cell activation through yo T cell
receptor (TCR) signaling. Specifically,
BTN2A1 and BTN3A1 mediate
recognition of phosphoantigens by
Vy9Vd2 TCR cells. By contrast, BTNL3
and BTNLS8 (butyrophilin-like 3/8)
modulate the activation of tissue-
resident Vo1 T cells.

Consensus molecular subtypes
(CMS1-4): a classification system for
colorectal cancer (CRC) based on gene
expression profiles that define four
subtypes, CMS1-4, according to their
distinct biological features, prognostic
implications, and therapeutic relevance.
CMSH1 is characterized by high
microsatellite instability (MSI-H) and
strong immune activation, CMS2 by
WNT/MYC-driven epithelial tumors,
CMS3 by metabolic dysregulation, and
CMS4 by mesenchymal features,
stromal infiltration, and poor prognosis.
Delta One T (DOT) cells: a clinical
grade Vo1 T cell product based on
peripheral blood-derived Vo1 T cells that
are expanded ex vivo over 2-3 weeks
through anti-CD3 and cytokine
stimulation to induce natural cytotoxicity
receptor (NCR) expression and enhance
cytotoxicity against tumors.
Metachronous CRC: CRC that
develops liver metastases >6 months
after the initial cancer diagnosis, which
reflects differences in tumor biology and
treatment strategy.

Phosphoantigens (pAgs): small
metabolites that specifically activate
VyOVd2 T cells They are naturally
produced in cells via the mevalonate
pathway by tumor cells or are derived
from bacterial metabolism. Key
examples include isopentenyl
pyrophosphate (IPP), which activates
VyOVd2 T cells via BTN3A1, and
bromohydrin pyrophosphate (BrHPP), a
synthetic phosphoantigen that is
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Figure 1. Ligand-receptor landscape shapes yo T cell activity in colorectal cancer (CRC). Schematic
representation of the key activating and inhibitory interactions that shape yd T cell function within the tumor
microenvironment (TME). This overview illustrates how ligand-receptor networks in CRC may influence yd T cell activation,
inhibition, and tissue retention. Markers expressed by yo T cells (shown on the left) are organized into activating (bottom:
yOTCRs, CD16, NKp30/46, NKG2D, TRAIL, FASL, CD161, DNAM-1) and inhibitory (top: PD-1, CTLA-4, TIGIT, TIM-3,
NKG2A, KIRs, KLRG1, LAG-3, CD57, CD39) groups, together with tissue-retention markers (CD69, CD103, CXCR®) that
are characteristic of gut/liver tissue tumor-associated yo T cells. On the right, ligands expressed by tumor cells or antigen-
presenting cells (APCs) are depicted, including inhibitory ligands (PD-L1/L2, B7 family members, PVR/PVRL2, galectin-9,
HLA-E, MHC class I/ll, E-cadherin, L/P-selectins, soluble ATP), activating/costimulatory ligands engaging both adaptive or
innate receptors (BTN/BTNL, CD1 isoforms, MR1, annexin A2, EPHA2, MICA/B, ULBPs, TRAIL receptors, FAS,
CLEC2D), and adhesion molecules (nectin-2 and the PVR family). Abbreviations: BTN/BTNL, butyrophilin/butyrophilin-like
molecules; HLA-E, human leukocyte antigen E; KIRs, killer immunoglobulin-like receptors; MHC class I/Il, major
histocompatibility complex class I/Il; TCR, T cell receptor. Figure generated with BioRender.

The inhibitory receptor pattern also varies between subsets: Vo1 cells express PD-1, TIGIT, TIM-
3, CD39, CTLA-4, and Killer cell immunoglobulin-like receptors (KIRs), whereas Vo2 cells are
enriched in KLRG1 and NKG2A [24-26,28]. KIRs are mainly inhibitory receptors that recognize
specific HLA class | alleles and mediate the so-called 'missing-self recognition' mechanism that
regulates the effector response of NK cells [29]. Although KIRs have long been known to be ex-
clusively expressed on human NK cells, their regulatory role in yo T cells has more recently been
recognized [30]. Moreover, PD-1 expression in Vo1 cells has been linked to tumor-reactive cells
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designed to selectively stimulate these
cells.

Synchronous CRC: refers to CRC
diagnosed together with liver
metastases, or when liver metastases
appear within 6 months of the initial
cancer diagnosis.

Tumor mutational burden (TMB): the
total number of somatic mutations
present in the genome of a tumor. A
higher TMB is often associated with
increased production of tumor-
associated antigens (TAAs), which can
enhance recognition by the immune
system, and is correlated with a better
response to immunotherapy, particularly
to immune checkpoint inhibitors.
Zoledronate: a drug that inhibits
farnesyl pyrophosphate synthase in the
mevalonate pathway of target cells
(e.g., myeloid or tumor cells), leading to
the accumulation of PAgs that trigger
Vy9Vd2 TCR activation via BTN family
members. Zoledronate is used to
expand and activate VyoVo2 T cells

in vitro and in vivo for cancer
immunotherapy.
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[31] and correlates with clinical response to ICB in CRC patients [24]. NKG2A, on the other hand,
identifies a subset of 'educated' Vo2 cells that are endowed with superior antitumor function, in
terms of cytokine production and cytotoxicity, compared to their NKG2A-negative counterparts
[32,33]. This increased effector potential of NKG2A* yd T cells is tempered by inhibitory signaling
upon NKG2A binding to its ligand HLA-E, which is expressed in malignant cells, and can be re-
stored upon NKG2A blockade [32]. These findings indicate that, in CRC, distinct yo T cell subsets
are constrained by specific checkpoint ligands which limit their function. This inhibitory circuitry is
intertwined with the emergence of protumorigenic yd T cell populations such as Vo1 cells that
produce amphiregulin (AREG), an epidermal growth factor (EGF)-like ligand involved in epithelial
cell proliferation. In pediatric tissues, Vo1 cells that produce AREG are linked to tissue repair func-
tions during early life [32]. In CRC, dysregulated AREG production by V&1 cells may contribute to
tumor progression [33]. Indeed, binding of AREG to EGFR-expressing tumor cells can activate
downstream pathways (e.g., PISBK/AKT and IKK/NF-kB) that promote tumor cell survival and
migration, as well as immune evasion through enhanced regulatory T cell (Treg) suppressive
function and upregulation of PD-L1 [34,35]. Finally, although IL-17 production has long been as-
sociated with the protumor activity of yd T cells in CRC, recent scRNA-seq data have challenged
this view (Box 3).

Similarly to the primary tumor, in LM lesions the mean percentage of yd T cells is lower than in the
peritumoral area (5% vs 15%), and V&1 cells represent the most abundant subset in both
compartments [34,35]. scBRNA-seq analysis of LMs identified Vo1, Vd2, and V33 cells with a
proliferative and cytotoxic profile, shaped by subset-specific activation programs. In fact, Vo1
and Va3 cells displayed strong IFN-y-driven activation, whereas Vo2 cells adopted a type 3 profile
(expression of CCR6, IL23R, and RORC) [36] that is linked in LMs to TNF-responsiveness [34].
Moreover, different cell subsets express the tissue-retention markers CD69 and CXCR6 which
favor their persistence within the tumor, and exhibit distinct receptor signatures. Indeed, Vo1
cells are enriched in CD16, KIRs, PD-1, and TIGIT, whereas V52 cells express high levels of
NKG2A and KLRG1 [34].

Prognostic value of yd T cells in CRC progression

Tumor-infiltrating yO T cells have been consistently associated with favorable outcomes across
multiple solid tumors [37-40], and both the V&1 and V&2 subsets demonstrate clear prognostic
significance [41-45]. In primary CRC, enrichment of Vo1 cells correlates with longer 5 year
disease-free survival [46], and a high frequency of NKp46*Vo1 cells in adjacent healthy tissue is
linked to reduced disease progression [21]. BTN-like (BTNL) molecules shape and maintain
human gut-resident yd T cells through direct ydTCR interactions [47-50]. Reduced BTNL ex-
pression, which has been reported in CRC and inflammatory bowel disease (IBD), is associated
with a decreased frequency of gut yo T cells [49,51]. Among these molecules, BTNL3/8

Box 3. Controversial protumoral role of Th17-polarized yo T cells in CRC

Mouse y0 T cells are important source of the proinflammatory IL-17, as shown in multiple disease models including cancer
[114]. However, the proposed protumoral role of human yd T cells in CRC, that is attributed to their production of IL-17,
remains highly debated [26]. This hypothesis initially gained traction from flow cytometry studies suggesting that yd T cells
were the predominant source of IL-17 within CRC tumor tissues [115,116]. However, subsequent investigations using
similar approaches have yielded conflicting results, indicating that the majority of IL-17-producing cells in CRC tissues
are of3 T cells [46], whereas yd T cells predominantly produce IFN-y [25,46]. Further insights from scRNA-seq analyses
on sorted yo T cells from CRC lesions failed to detect IL-17A transcription and showed minimal expression of canonical
Th17-associated genes such as RORC, IL23R, and CCR6 [22,26]. In addition, an integrated analysis of whole-tissue
scRNA-seq datasets from 187 CRC patients across nine studies confirmed that IL-17-producing cells in both tumor
and adjacent normal tissues are predominantly CD4 T cells [22]. Similarly, ScCRNA-seq analysis of liver metastases (LMs)
from mCRC patients identified a minor subset of Vo2 T cells with Th17 profile [34]; however, these cells lacked detectable
IL-17A expression and mainly produced TNF.
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heterodimers sustain the intrinsic intragpithelial CD103"NKp46"Vo1Vy4 subset [52]. Loss of the
BTNL3/8-Vd1 axis in CRC may weaken epithelial integrity and increase susceptibility to tumor
development, consistent with findings in IBD where BTNL3/8 deficiency correlates with more se-
vere disease [52]. Therefore, this specific axis could represent a valuable prognostic biomarker.

In LMs, elevated levels of CD69*Vd1 cells predict fewer metastases and improved survival [34]. In
particular, a subset of terminally differentiated effector memory (Teyvra) CDB9*VOT cells can recircu-
late from the liver into the bloodstream while retaining transcriptional and clonal features characteristic
of the LM site. Importantly, their number in blood (as detected via liquid biopsy), similarly to tumor-
associated CD69*Vo1 cells, is associated with a favorable prognosis. Human Vo3 cells, although
typically rare in healthy blood, represent a substantial liver population [3,53]. Similarly to Vo1 cells,
paired blood-LLM scRNA-seq analyses confirm Vo3 cell presence in both compartments, suggesting
that they recirculate via the blood [34]. VO3 cell frequencies increase in liver inflammatory conditions
[54]; although their clinical relevance in hepatic mCRC remains to be defined, their cytotoxic potential
and detectability in patient blood support their potential as a prognostic marker.

Chemotherapy, that is commonly administered to mCRC patients, affects both the circulating yo
T cell compartment and LMs [35]. It depletes naive and central memory (Toy) VO2 cells while in-
creasing senescent CD577Vd2 Tevra cells with reduced effector function, whereas Vo1 cells ap-
pear more resistant. These different effects reflect intrinsic variations in differentiation and effector
status across yO T cell subsets, referred as 'effectorness' [55], and suggest that preservation and
recovery of these subsets after treatment may correlate with improved prognosis.

yd T cell-based immunotherapeutic approaches in CRC

In non-metastatic CRC, treatment is primarily curative, and surgery is followed by chemotherapy
[folinic acid, 5-fluorouracil, and oxaliplatin (FOLFOX), or capecitabine and oxaliplatin (CAPOX)] in
high-risk patients. In mCRC, systemic chemotherapy (FOLFOX,; folinic acid, 5-fluorouracil, and ir-
inotecan (FOLFIRI), or FOLFOX plus irinotecan (FOLFOXIRI)] with bevacizumab (anti-VEGF) or
cetuximab/panitumumab (anti-EGFR) antibodies is the standard of care, and surgery is feasible
in only 20% of cases [56]. The marked heterogeneity of CRC complicates the selection of optimal
treatment regimens. Molecular markers such as mismatch repair/microsatellite-instability (MMR/
MSI) status and RAS/BRAF mutations are routinely used to guide therapy; however, a significant
proportion of patients within these subgroups do not benefit from available treatments. Recently,
the classification of CRC into four consensus molecular subtypes (CMS1—4), based on intrin-
sic tumor biology rather than clinical endpoints, has offered the potential to better predict both
prognosis and response to systemic therapy [57]; however, further studies will be necessary to
support its clinical implementation.

New therapeutic strategies that have emerged over the past decade for CRC treatment include ICB,
CAR-T cells, vaccines, and multimodal regimens [58]. ICB is effective in tumors with MMR-deficiency
(MMR-d), MSI-high (MSI-H), and POLE mutations, collectively referred to here as MSI-H. These tu-
mors exhibit a strong immunogenic profile driven by their high tumor mutational burden (TMB)
and abundant tumor-associated antigens (TAAS), features that supported FDA approval of anti-
PD-1 for first-line therapy in 2020 [59]. By contrast, limited TAA expression contributes to resistance
in MMR-proficient (MMR-p) and microsatellite-stable (MSS) CRC, hereafter termed MSS tumors,
which account for 95% of all MCRC cases. Nevertheless, accumulating evidence suggests that
ICB and CAR-T therapies may also induce responses in MSS tumors (Box 4).

In parallel with these established approaches, yo T cells have emerged as a novel immunothera-
peutic target in CRC. Their MHC-independent recognition and innate-like cytotoxicity provide a
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Box 4. Emerging immunotherapeutic approaches in advanced mCRC
Evidence for immune checkpoint blockade (ICB) therapy

Randomized controlled clinical trials in microsatellite-stable (MSS) mCRC patients are limited, and the only international
randomized Phase 3 trial, LEAP-0176, revealed a less favorable outcome with anti-PD-1 versus standard of care [117].
On the other hand, recently potential clinical predictors of ICB response in MSS tumors were observed [118]. Analyses
of the Phase 2 AtezoTRIBE randomized trial, which evaluated FOLFOXIRI/bevacizumab alone or in combination with
anti-PD-L1, provided compelling evidence that the novel 'Immunoscore-IC' may predict the efficacy of ICB in MSS mCRC
[119]. This assay, that measures the densities and spatial organization of PD-L1* CD8 cells, identified ~30% of MSS tu-
mors that were responsive to ICB, and also retained its predictive impact in patients with LMs [119,120]. In accordance,
the CheckMate 9x8 Phase 2 randomized trial, that compared upfront FOLFOX/bevacizumab alone or in combination with
anti-PD-1, was able to use the CD8 T cell level in MSS tumors to identify patients who derive benefit from anti-PD-1 treatment
[121]. Overall, these findings highlight the need for deeper investigation of the mCRC TME to identify immune-competent
niches in MSS tumors and uncover potential immunotherapeutic targets. Indeed, the AtezoTRIBE study revealed poor con-
cordance between the Immunoscore-IC and tumor-infiltrating lymphocyte (TIL)-based tests, and provided evidence that
rough evaluation of immune cells in MSS s insufficient to predict the benefit of ICB [122]. Moreover, there was poor agree-
ment between PD-L1 expression and the response to ICB in MSS tumors [121,122]. Another aspect that requires further
investigation regards the combination of ICB treatment with chemotherapy that could potentially overcome immune refrac-
toriness by increasing the release of tumor-associated antigens (TAAs) [119,120,123].

Evidence for CAR-T cell therapy

Current preclinical evidence supports CAR-T cell therapy as a viable and potentially effective treatment for patients with CRC,
also in the metastatic setting. One of the major challenges in applying CAR-T therapy to solid tumors is the identification of
TAAs that allow selective targeting of cancer cells. Carcinoembryonic antigen (CEA) is one of the most clinically advanced
targets in CRC that show therapeutic activity [124]. Other significant targets are guanylyl cyclase C (GUCY2C) and CD18 that
have demonstrated antitumor efficacy and relevance to mMCRC onset in preclinical models [125-127]. Lastly, the full-length
ectodomain sequence of CDB, which binds to CD166 and CD318, was used to build CARs for CRC [128].

complementary mechanism to conventional afs T cell-based therapies. Several innovative strate-
gies are under development to harness yo T cells in the clinic, including ICB therapies, in vivo
and ex vivo activation and expansion, and CAR/y&TCR engineering, that have potential applica-
tions in MCRC (Figure 2).

Harnessing ICB to activate yo T cells in CRC

Based on scRNA-seq analysis, yd T cells have been identified as key effectors that sustain the
response to ICB in patients with MSI-H CRC and HLA class | deficiencies [24]. Responses to
PD-1 therapy in these patients showed that mutations in B2M, that encodes an essential compo-
nent of HLA class |, are associated with significant clinical benefit from PD-1 blockade. This find-
ing suggests that immune cells beyond HLA class I-restricted cells contribute to tumor control.
Further analyses indicate that PD-1 is primarily expressed on yd T cells, and the V&1 and V&3
subsets represent the predominant tumor-infiltrating yd T cell populations in these patients
[24]. PD-1-expressing yd T cells also exhibit proliferation and an activated phenotype character-
ized by the expression of NKp46 and NKG2D. This activated profile of Vo1 cells in MSI-H CRC is
consistent with previous observations that PD-1* yd T cells in MSI-H tumors coexpress activation
markers such as CD103, CD38, and HLA-DR, along with effector and cytotoxic mediators (IFN-y,
granzymes, perforin) [60]. PD-1* yd T cells isolated from MSI-H lesions and expanded in vitro
demonstrate strong reactivity against CRC cells and tumor-derived organoids, highlighting their
functional relevance [24]. Interestingly, their reactivity against B2M-deficient organoids, com-
pared to wild-type organoids, suggests that loss of HLA class | may release yo T cells from inhib-
itory control. This is particularly relevant in the light of evidence that yd T cell activity can be
negatively regulated by KIRs upon HLA class | binding [30]. On the other hand, in MSS tumors,
a dysfunctional transcriptional profile of tumor-infiltrating V&1 cells has been associated with
the expression of TIGIT — which can interact with NECTIN expressed on fibroblasts to suppress
their activity [28]. Importantly, blocking this axis with an anti-TIGIT antibody partially restored the
cytotoxicity of the dysfunctional Vo1 cells.
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Figure 2. Immunotherapeutic strategies to exploit yo T cells in colorectal cancer (CRC). Schematic representation
of key immunotherapeutic targets and strategies to exploit yd T cells in CRC. The figure is divided into two main panels,
illustrating the in vivo (left panel) and ex vivo (right panel) approaches that represent alternative strategies to exploit the
intrinsic antitumor activity of yo T cells. In vivo strategies include yd T cell activation mediated by immune checkpoint
blockade (ICB) that targets major immune checkpoints relevant to CRC, such as PD-1, CTLA4, TIGIT, and TIM-3. In
addition, in vivo approaches include the use of bispecific antibodies designed to engage ydTCRs, with most studies
focused on the Vy9Vd2 subset. These antibodies can simultaneously target activating receptors, including CD3, NKG2D,
and CD16, as well as tumor-associated molecules such as EGFR, HER2, CD1d, and B7M3A, and thereby enhance the
specificity and efficacy of yo T cell-mediated cytotoxicity. Furthermore, in vivo stimulation can involve phosphoantigen
(PAg)-dependent activation of Vy9Vd2 cells, where pAgs can be produced by tumor cells or induced pharmacologically
using drugs such as zoledronate. Ex vivo strategies focus on the isolation, activation, and expansion of yo T cells outside
the patient. Cells obtained from autologous or allogeneic sources are then expanded in vitro using protocols tailored to
specific subsets. For Vo1 cells, DOT-based protocols are used whereas V02 cells are expanded using pAgs or
zoledronate. These expanded cells are then reinfused into patients, either directly or following genetic modifications such
as CAR engineering or ydTCR modifications. Abbreviations: CAR, chimeric antigen receptor; DOT, Delta One T cells;
EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; TCR, T cell receptor. Figure
generated with BioRender.

Recent findings showed that MSI-H and MSS CRC cells can coexist in the same TME [61,62], a
phenomenon with important biological and therapeutic implications. In particular, preclinical stud-
ies demonstrated that immune responses directed against the MSI-H component can extend to
neighboring MSS cells within the same tumor niche, and both yd T cells and CD8 T cells
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contribute to this antitumor activity [63]. These observations strengthen the notion that the mixed
TME may provide an exploitable therapeutic opportunity by leveraging the higher immunogenicity
of the MSI-H component to also sensitize surrounding MSS cells.

Itis now widely accepted that, in MSI-H tumors, a high TMB represents the main driver of immune
activation rather than direct upregulation of immune checkpoint expression. Building on this con-
cept, several studies are exploring strategies to convert MSS tumors, that are typically refractory
to immune responses, into immunologically ‘hot' tumors by inducing hypermutation and enhanc-
ing responsiveness to ICB-based therapies [64]. Along these lines, treatment with the alkylating
agent temozolomide (TMZ) has been investigated in several independent Phase 2 trials in patients
with MSS CRC [65,66]. These studies demonstrated that TMZ can induce tumor hypermutation
and potentially sensitize the cells to ICB; however, this approach requires further validation. The
involvement of yo T cells in this context warrants particular attention because drug-induced
TMB does not necessarily correlate with antigen presentation via MHC class I. Therefore, yo T
cells, through their MHC-independent recognition mechanisms, may play a central role in medi-
ating antitumor immune responses under these conditions. Moreover, comparative bulk and
single-cell RNA-seq analyses between MSI-H and MSS tumors revealed increased infiltration of
Vo1 T cells in MSI-H, along with higher expression of effector mediators such as IFN-vy,
granulysin, and PD-1 [28]. Moreover, CMS1 tumors, which are enriched for MSI-H status, exhibit
higher yd T cell infiltration compared to the CMS2-4 types [67]. Thus, such treatment may not
only enhance yd T cell activation but also promote their increased infiltration into the tumor. It is
also important to note that TMZ-resistant yd T cells have been developed for the adoptive cell
therapy of high-grade gliomas [68].

Among the inhibitory receptors not yet established as therapeutic targets in the clinic, TIM-3 may
play a relevant role in regulating vy T cell function against CRC cells. High TIM-3 expression on yd
T cells has been observed both in primary CRC lesions and in peripheral blood, and was signifi-
cantly associated with TNM (tumor size, lymph node involvement, metastasis) stage and tumor
volume [69,70]. Moreover, TIM-3 has been shown to significantly impair the cytotoxic activity of
VyoOVa2 T cells against CRC cells through an ERK1/2-dependent mechanism [69]. As mentioned
earlier, NKG2A, that is constitutively expressed on Vo2 T cells, also warrants further investigation,
and several studies are underway to evaluate its potential clinical use [33]. To maximize ICB effi-
cacy in yo T cells, combined checkpoint targeting may represent a more effective strategy. Delta
One T (DOT) cells are a clinical grade Vo1 cell product generated through a 3 week TCR- and
cytokine-based expansion protocol which induces de novo NCR expression and enhances
cytotoxic activity [71,72]. This product demonstrated synergistic inhibitory interactions of TIGIT
and PD-1 when tested against both MSI-H and MSS CRC lines [73,74]. Regarding V&2 cells,
combined ICB treatment has not been sufficiently explored. However, in patients with leukemia,
Vo2 cells coexpressing TIM-3 and PD-1 exhibited significantly reduced effector functions, which
were restored by TIM-3 blockade alone or in combination with PD-1, whereas anti-PD-1 treat-
ment alone had no significant effect [75].

Engagers and other in vivo modulators of yd T cell activity

Antibody engagers, which combine a tumor-recognition domain with a T cell engagement do-
main, are designed to recruit and activate cytotoxic T cells. Building on substantial progress
with conventional T cells, recent efforts have focused on developing engagers for yd T cell activa-
tion, although most studies so far have primarily involved V&2 cells. A bispecific construct
targeting both Vy9 and EGFR [76] — which is overexpressed in ~60-80% of CRC cases — was
shown to engage Vy9Vo2 T cells in vitro and triggered IFN-y and TNF production as well as
induced the lysis of EGFR* CRC lines carrying KRAS or BRAF mutations. This activation was
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independent of the cell mutational status or variations in the Vy9Vod2 cell receptor sequence.
Comparable effects were observed in vivo [76]. Furthermore, the companies Acepodia and
LAVA Therapeutics have developed engagers that link Vy9 to EGFR [1,71]. Other engagers in-
clude HER2-targeting tribodies [[HER2), x Vy9, or (HER2), x CD16] as well as a bispecific
Vy9/CD3 molecule (GAB) that have been tested in solid tumors [77-79]. In prostate cancer,
bispecific constructs are under evaluation that simultaneously target Vy9 and prostate-specific
membrane antigen (PMSA) that is highly expressed on tumor cells [1]. Additional targets such
as CD1d, CD40, and CD123, as well as anti-Vy9 bispecific approaches, have also been tested
[1,80,81], confirming the potential of yd T cell engagers [1]. Another area of investigation involves
the development of NKG2D-targeted antibodies. For instance, bispecific engagers using NKG2D
binders to retarget immune cells toward HER2-positive malignant cells showed enhanced cyto-
toxicity [82]. Given the role of BTN3A molecules in Vy9Vd2 T cell activation, ImCheck Therapeu-
tics has developed a specific anti-BTN3A-agonist antibody that is capable of driving Vy9Vvd2 T
cell activation, and this is currently being tested in Phase 1/2 dose-escalation trails in advanced
solid tumors (NCT05307874, NCT05307874).

Administration of natural or synthetic pAgs, such as the bromohydrin pyrophosphate (BrHPP),
has also been tested to promote Vy9Vo2 T cell expansion in vivo in solid tumors, including
CRC [83]. Although this approach proved to be safe and well-tolerated, it showed poor pharma-
cokinetics in vivo [1]. Likewise, drugs such as zoledronate, which causes intracellular pAg accu-
mulation in tumor cells, have shown limited efficacy despite favorable safety profile, likely due to
Vy9Vd2 cell exhaustion from chronic stimulation. In this context, recent studies have demon-
strated that encapsulation of zoledronate in spherical polymeric nanoparticles can enhance its
permeability and retention at the tumor site [84]. These nano-formulated zoledronate particles
can be taken up by CRC cells, tumor spheroids, and autologous tumor organoids, and subse-
quently promote V02 cell-mediated cytotoxicity. If proven effective, ydo T cell engagers could
offer a potent and cost-effective immunotherapy compared to more complex and expensive ap-
proaches such as CAR-yd T cell therapies. However, to overcome TME immunosuppression,
combining them with ICB may be necessary to maximize their therapeutic potential.

Adaptive yo T cell-based therapy in CRC

yo T cell-based immunotherapies have largely focused on the adoptive transfer of ex vivo ex-
panded cells in both autologous and allogeneic settings. In particular, the allogeneic setting is es-
pecially interesting because yd T cells mediate independent of MHC-antigen presentation tumor
killing. This provide an alternative to af3 T cell-mediated recognition of tumors that evade a3 T cell
cytotoxicity while maintaining a low risk of GVHD and CRS. Most clinical efforts have concen-
trated on Vy9Vd2 cells, which can be easily isolated from peripheral blood and efficiently ex-
panded in vitro using pAgs. Over the past two decades, several clinical studies have evaluated
the safety and efficacy of infusing activated and expanded in vitro Vy9Vd2 cells into cancer pa-
tients. In a small non-randomized exploratory adoptive-cell therapy trial involving six patients
with mCRC, autologous Vy9Vd2 cells were expanded with zoledronate and IL-2 over an 8
week period [85]. During treatment, both the percentage and absolute number of Vy9Va2 cells
increased and remained stable long after the final infusion. Notably, these cells displayed higher
ex vivo expression of IFN-y and CD107a compared to their Vy9™ cell counterparts. Similarly, a
proof-of-concept study in 25 patients with advanced solid tumors, including one CRC patient
[86], showed that yo T cells expanded with zoledronate and IL-2 could be safely reinfused and
restored effector yd T cell numbers without causing severe toxicity. Moreover, a Phase 1
single-arm study, including three patients with CRC, demonstrated the safety and feasibility of
adoptive transfer of ex vivo expanded autologous Vy9Vd2 cells [87]. Interestingly, a novel method
for expanding Vy9Vd2 cells was developed that used stimulation with zoledronate, IL-2, IL-15,
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and vitamin C to generate cells with improved proliferation capacity and cytotoxicity [88]. When
tested in a Phase 1 single-arm clinical trial in 132 patients with late-stage solid tumors in an allo-
geneic setting, these expanded Vy9Vd2 cells prolonged survival in 18 patients with advanced
lung or liver cancer who received five or more infusions.

Although most yo T cell-based strategies have focused on Vy9Vo2 cells, Vo1 cells have also pro-
duced encouraging results. Following isolation from peripheral blood and expansion using phyto-
hemagglutinin (PHA) and IL-7, V&1 cells exhibited potent in vitro cytolytic activity against both
adherent and sphere-forming human CRC cells, and effectively suppressed tumor growth in a
CRC xenograft model [89]. Supporting these findings, in a murine model of MCRC generated by
orthotopic implantation of human HT29 cells, cytomegalovirus (CMV)-induced Vo1 cells inhibited
both primary tumor growth and metastatic spread [90]. Moreover, DOT cells showed efficacy
against both MSI-H and MSS CRC lines, as well as against patient-derived organoids [73,74].

Beyond adoptive transfer, engineered yo T cells are a promising complementary approach, as
described in several recent reviews [1,71,91,92]. Multiple studies have reported the feasibility of
transducing yo T cells with different CAR constructs to generate CAR-yd T cells with enhanced
cytotoxicity. Additional strategies exploit tumor-reactive a3 T cells engineered to express
yOTCR. These CAR-yd T cells and ydTCR-modified cells are currently being tested in Phase 1/
2, single-arm, dose-escalation clinical trials for refractory solid tumors (NCT06150885,
NCT05302037, NCT04864054, NCT04502082, NCT04634357). None of these studies specif-
ically target CRC, except for an allogeneic CAR-yd T cell product directed against NKG2D ligand
that was evaluated in patients with various solid tumors including CRC (NCT04107142). Never-
theless, advances in expansion and engineering protocols for Vo1 and Vo2 cells, together with
growing evidence of safety and potent antitumor efficacy, encourage future trials in CRC patients.

Concluding remarks

Immunotherapy has improved outcomes for some CRC patients but its efficacy remains limited in
advanced disease and LM. yd T cells are emerging as promising effectors owing to their MHC-
independent CRC recognition and ability to enhance the response to ICB in af3 T cell-resistant
settings. Innovative strategies to exploit their antitumor potential include engager molecules,
ex vivo expansion and infusion of autologous or allogeneic yd T cells, and CAR-yd/ydTCR-
engineered cells to boost their specificity, persistence, and cytotoxicity. Although many of
these approaches have not yet been tested in CRC, preclinical and clinical data from other tumors
suggest that yo T cell-based therapies could improve outcomes in CRC. However, to fully exploit
this potential, several issues must be clarified (see Outstanding questions). A more comprehen-
sive understanding is needed of how innate and adaptive yd T cell programs contribute to antitu-
mor immunity in the CRC TME, which specific ligands are recognized, particularly by Vo1 cells,
and how tumor-reactive yo T cells can be phenotypically defined, clonally tracked, and selectively
expanded for therapy. It also remains unclear how these therapies can be integrated with conven-
tional treatments to maximize efficacy. Finally, robust biomarkers will be necessary to guide pa-
tient selection and predict response or resistance to yd T cell-based interventions.
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Outstanding questions

How do innate and adaptive yo T cell
programs mediate antitumor activity in
CRC, and how do they interact?

Which ligands are specifically recognized
by CRC-infiltrating yo T cells, particularly
Vo1 subsets, and how does the TME in-
fluence this recognition?

What are the key phenotypic,
transcriptional, and clonal features of
tumor-reactive yd T cells in CRC, and
how can these subsets be isolated
and expanded for therapy?

Which strategies best integrate ydo T
cell-based therapies with standard
treatments to maximize clinical benefit?

Which biomarkers can guide patient
selection and predict response or
resistance to yd T cell-directed immu-
notherapies in CRC?
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