

Review

Targeting $\gamma\delta$ T cells for immunotherapies against colorectal cancerJoanna Mikulak¹, Paolo Marzano^{1,2}, Valentina Cazzetta¹, and Domenico Mavilio^{1,2,*}

The advancement of immunotherapy faces significant challenges, including extending its benefits to a growing number of patients and enhancing its efficacy across different tumor types. In this context, $\gamma\delta$ T cells emerge as particularly promising candidates owing to their distinctive biological features such as MHC-independent activation, potent cytotoxicity, and capacity to bridge innate and adaptive immunity. Recently, advanced single-cell techniques have allowed detailed $\gamma\delta$ T cell characterization in the tumor microenvironment (TME) and have emphasized their heterogeneity, mechanisms of activation, and response to immune checkpoint blockade (ICB). This review provides a comprehensive summary of recent advances in understanding $\gamma\delta$ T cells in colorectal cancer (CRC), with a particular emphasis on their prognostic and therapeutic relevance in both primary tumors and metastatic disease.

Therapeutic potential of $\gamma\delta$ T cells in cancer immunotherapy

Immunotherapy has become a cornerstone of modern oncology owing to its ability to enhance the immune responses of patients against malignant cells. Strategies such as ICB, multispecific antibody engagers (see [Glossary](#)), adoptive cell therapies, and chimeric antigen receptor (CAR)- or T cell receptor (TCR)-engineered T cells have gained increasing clinical interest. Within this landscape, $\gamma\delta$ T cells are emerging as particularly promising targets [1,2]. Their therapeutic potential stems from their unique biological features, including a highly efficient cytotoxicity machinery and the production of proinflammatory cytokines (IFN- γ , TNF) and chemokines (CCL3/5, XCL1/2) that can modulate the TME, as well as a relatively low risk of cytokine release syndrome (CRS). These cells circulate in the peripheral blood and populate multiple tissues, such as the colon mucosa, which supports their potential for therapeutic targeting in both hematological and solid malignancies. Activation of $\gamma\delta$ T cells occurs predominantly in an MHC-independent manner [3–5], which makes them ideal candidates for allogeneic strategies with a reduced risk of graft-versus-host disease (GVHD), a common limitation of $\alpha\beta$ T cell-based strategies. Importantly, this MHC-independent activation also enables $\gamma\delta$ T cells to recognize and eliminate tumor cells that have downregulated MHC, a prevalent mechanism of $\alpha\beta$ T cell-related tumor evasion. Recent evidence suggests that some $\gamma\delta$ T cells can recognize classical MHC molecules expressed by tumor cells; however, this interaction appears to be peptide-independent and occurs even in the presence of peptide-loading defects [6]. $\gamma\delta$ TCRs recognize **phosphoantigens (pAgs)** presented by **butyrophilin** molecules (BTN), the MHC-like molecule MR1, lipid-presenting CD1 family members, and the endothelial protein C receptor (EPCR) [7]. In addition, $\gamma\delta$ TCRs can bind to non-MHC-related and stress-induced molecules such as annexin A2 and the ephrin type A receptor 2 (EPHA2) [7] which are overexpressed following metabolic reprogramming of cancer cells.

A distinctive feature of $\gamma\delta$ T cells is their dual innate and adaptive immune functions. In addition to TCR-mediated recognition, they express activating receptors that are typically found on natural

Highlights

Colorectal cancer (CRC) represents a major clinical issue, with growing rates in younger patients and few effective therapies.

$\gamma\delta$ T cells in primary and metastatic CRC are highly heterogeneous and comprise functionally distinct subpopulations.

Some $\gamma\delta$ T cell phenotypes protect against tumor progression and correlate with improved survival, suggesting that they have potential prognostic value.

$\gamma\delta$ T cells respond to PD-1/PD-L1 axis inhibitors, particularly in HLA class I-negative CRC tumors.

PD-1⁺ $\gamma\delta$ T cells show a profile of tumor-reactive cells that can be reinvigorated via immune checkpoint blockade (ICB).

Combination strategies such as *in vivo* / *ex vivo* activation and expansion, adoptive transfer, genetic engineering, and ICB are now being investigated to enhance $\gamma\delta$ T cell specificity, persistence, and antitumor efficacy.

Significance

Growing evidence highlights the key role of the immune response in controlling colorectal cancer (CRC) and the need to better understand its immune evasion mechanisms to identify new therapeutic targets. $\gamma\delta$ T cells are emerging as promising candidates owing to their ability to eliminate tumor cells in an MHC-independent manner while bridging innate and adaptive immunity. Strategies such as adoptive transfer, engineered $\gamma\delta$ T cell products, and their engager-based or pharmacological activation and expansion make them particularly appealing for CRC therapy.

killer (NK) cells (e.g., NKG2D, DNAM-1, and NKp30/44/46) [8,9], which allows them to detect stress-induced ligands on tumor cells. Their cytotoxic activity also involves FAS/FASL and TRAIL/TRAIL-R pathways, as well as the CD16 (Fc_YRIII) receptor, which recognizes the Fc portion of IgG and plays a crucial role in triggering antibody-dependent cellular cytotoxicity (ADCC) [10,11]. However, the full spectrum of ligands for $\gamma\delta$ T cell activation, across both adaptive and innate pathways, remains incompletely characterized, and the crosstalk between these signaling pathways is not yet fully understood. For instance, the stress-inducible MHC class I-related molecule ULBP4 can act as a ligand for both $\gamma\delta$ TCR and NKG2D [12], revealing the multifaceted integration of innate and adaptive functions in $\gamma\delta$ T cells. Furthermore, $\gamma\delta$ T cells can prime $\alpha\beta$ T cell responses and interact with other immune cells, thereby orchestrating a cascade of antitumor responses [13].

The clinical exploitation of $\gamma\delta$ T cells requires careful consideration of their heterogeneity and functional plasticity. The main human subsets, V δ 1, V δ 2, and V δ 3, display different tissue distributions, antigen recognition patterns, and activation mechanisms (Box 1). These differences shape their interactions within the TME and influence the recognition and killing of tumor cells, and thus impact on their potential use in immunotherapy. High-resolution profiling technologies such as single-cell RNA sequencing (scRNA-seq) have substantially expanded our understanding of $\gamma\delta$ T cell biology in recent years (Box 2). In CRC, such analyses have uncovered previously unappreciated aspects of $\gamma\delta$ T cell functional states, heterogeneity, and therapeutic relevance.

This review summarizes current knowledge about $\gamma\delta$ T cells in CRC, and outlines their distribution and phenotypic and functional diversity across primary and liver metastases (LMs), alongside their prognostic significance. We then discuss $\gamma\delta$ T cell-based immunotherapeutic strategies in CRC, including ICB, modulators of $\gamma\delta$ T cell activity, and adoptive $\gamma\delta$ T cell therapies, and provide a concise overview of their therapeutic potential in this disease.

Box 1. Human $\gamma\delta$ T cell subsets

The classification of $\gamma\delta$ T cells is based on their expression of the T cell receptor δ (TCR δ) locus (*TRD*) which undergoes recombination of variable (V), diversity (D), and joining (J) segments. In humans, V δ 1, V δ 2, and V δ 3 are most commonly utilized among the eight known V δ gene segments, and these are rearranged in one of the four *TRD* J segments (J1–4). The TCR γ locus (*TRG*) also undergoes VJ recombination, but only six of the 14 *TRG* V segments are functional (V γ 2–5, V γ 8, and V γ 9) and can be recombined with five *TRG* J segments (JP1, JP, J1, JP2, and J2) to generate a diverse TCR repertoire. The V δ 2 chain preferentially pairs with the V γ 9 chain, giving rise to a semi-invariant V γ 9V δ 2 TCR repertoire which may be shared across individuals and constitutes ~90% of the total $\gamma\delta$ T cells in adult peripheral blood. Owing to their high relative abundance and accessibility, blood V γ 9V δ 2 cells have been the most extensively characterized and were the first to be translated into clinical applications [1]. V γ 9V δ 2 cells rapidly respond to phosphoantigens (pAg)s such as hydroxymethyl-but-2-enyl pyrophosphate (HMBPP) and isopentenyl pyrophosphate (IPP) that increase during microbial infection or in malignant cells triggered by metabolic stress signals. The presentation of pAg depends on butyrophilin (BTN) family members, specifically BTN3A1 and BTN2A1, that enable their binding to the V γ 9 chain [93,94] (Figure 1). In addition, the NKG2D ligand ULBP4 was reported to bind to both V γ 9V δ 2 TCR and NKG2D [12]. Although V γ 9V δ 2 cells are the most common subset among V δ 2 T cells, the rarer V γ 9^{neg}V δ 2 T cells have been also described as a more adaptive-like cell type with a more diverse TCR [95].

Non-V δ 2 $\gamma\delta$ T cells are typically enriched in tissues [96,97]. Among these, V δ 1 cells are the most abundant and, as such, have been the most extensively studied, particularly in the context of solid tumors [2]. V δ 1 cells exhibit highly individual TCR repertoires and are often marked by clonally expanded cells. In healthy human intestine and metastatic CRC (mCRC), the main V γ chains pairing with V δ 1 are V γ 4, followed by V γ 3. Although the full spectrum of human V δ 1 ligands remains poorly defined, their TCRs recognize lipid antigens presented by CD1a–d [98–102], MR1 [103], stress-induced annexin A2 [104] and EPHA [105,106], and BTN3/8 via the V γ 4 chain [48] (Figure 1). Human V δ 3 chains are CD1d-restricted [107] and can also bind to annexin A2 [104] and MR1 [108], whereas EPCR, an MHC-like phospholipid-binding molecule, is the only known human V δ 5 TCR ligand [109].

¹Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy

²Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy

*Correspondence:
domenico.mavilio@unimi.it (D. Mavilio).

Box 2. Exploring the γδ T cells in cancer: opportunities from single-cell RNA-sequencing (scRNA-seq) technology

Despite their potential, the study and clinical applications of γδ T cells in immunotherapy still face numerous obstacles. One of the main challenges concerns the limited understanding of the mechanisms that regulate their activation and crosstalk between signals originating from the γδTCR and innate receptors, an aspect that remains a significant gap in our current knowledge. This difficulty is largely due to their high variability and low abundance in peripheral tissues, which tends to further decrease under pathological conditions [35]. In clinical settings where access to samples and cells is limited, high-resolution single-cell analyses represent a valuable tool to investigate the heterogeneity of γδ T cells and to gain deeper insights into their functional states. Among these technologies, scRNA-seq has emerged as a key resource in cancer research because it can unravel the complexity of the TME and thus facilitate the identification of new therapeutic targets and mechanisms of immune evasion [110–112]. In recent years, several studies have used scRNA-seq to characterize γδ T cells across different tumor types and have highlighted the great potential of this approach in clarifying their role in cancer biology. Nonetheless, important challenges remain in the single-cell transcriptional analysis of these cells, including accurate cell clustering and annotation [113]. Indeed, the rarity of γδ T cells can result in their transcriptional profiles being obscured by those of more abundant and phenotypically similar populations such as CD8 T cells and natural killer (NK) cells. In this context, γδ T tumor-infiltrating lymphocytes (TILs) and their heterogeneous profile pose technical challenges for scRNA-seq analysis. In addition, a major limitation of scRNA-seq is that it only provides a snapshot of the transcriptomic cell state and does not capture the corresponding protein expression levels. As a result, important activation and memory markers that are tightly regulated post-transcriptionally or at the protein level may not be accurately predicted from transcriptomic data alone. This disconnection between mRNA and protein expression can limit the ability to infer the true functional state of γδ T cells. To address this issue, integrating scRNA-seq with complementary multimodal approaches, such as cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), combining transcriptomic and surface protein profiling, or validating key findings through flow cytometry, can provide a more comprehensive characterization of γδ T cell activation and differentiation states.

γδ T cells in CRC: modulators and prognostic indicators of disease progression

CRC is the third most commonly diagnosed malignancy and the second leading cause of cancer-related death worldwide, and its incidence is rising both among individuals under 50 years of age and in patients with advanced disease [14]. Prognosis varies widely: 5 year survival is ~90% for localized tumors but drops to 15% in metastatic CRC (mCRC) [15]. Over 25% of patients with early-stage disease progress to mCRC, and the liver represents the most frequent metastatic site owing to portal venous drainage. About 25% develop **synchronous metastatic liver disease** and an additional 20–25% develop **metachronous metastatic liver disease**. As a result, hepatic disease occurs in roughly half of all CRC patients, who also face a recurrence risk of up to 60% [16,17]. The TME in CRC is highly complex, and is shaped by the composition and functional state of immune cells which can establish both antitumor and immunosuppressive niches in primary tumors and LMs [18–20]. A deeper understanding of this TME will be crucial to accurately delineate immune dynamics and their clinical implications, and thus enable improved patient stratification and the development of effective therapies.

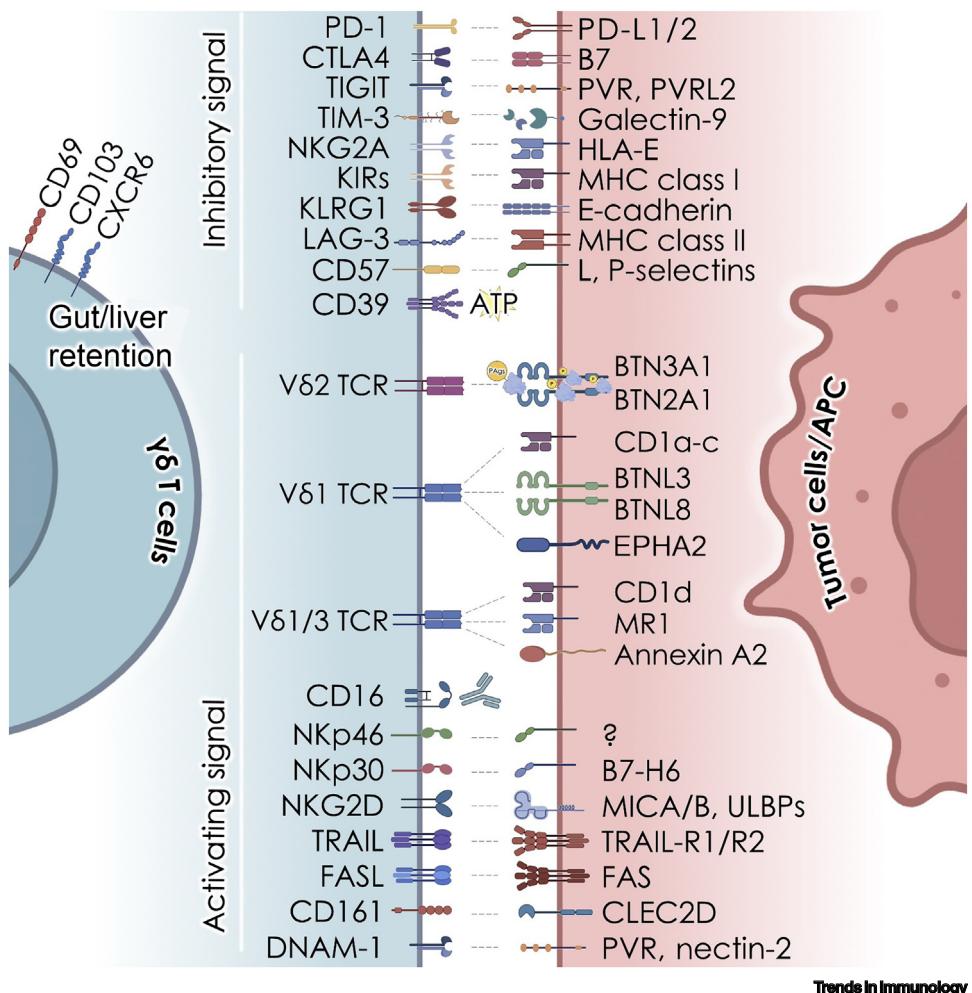
γδ T cell heterogeneity across primary and metastatic CRC

γδ T cells in CRC display a heterogeneous landscape (Figure 1). In healthy intestinal tissue, their frequency is highly variable and they account for a mean of 20–25% of intraepithelial lymphocytes [21,22]. Similar percentages are observed in peritumoral areas; however, within the tumor core, where the anatomical architecture of the intraepithelial and lamina propria compartments is disrupted, the frequency of γδ T cells is markedly reduced and represent 10% of total T cells [21,22]. In both tumors and peritumoral specimens, the predominant subset is Vδ1, followed by Vδ2 and Vδ3 [21,23–26]. Single-cell analysis of primary CRC revealed an enrichment of effector γδ T cells that express the tissue-retention markers CD103 and CD69 [21,27], as well as activating receptors including the natural cytotoxicity receptors (NCRs) NKp30 and NKp46, NKG2D, NKG7, FASL, CD16, and DNAM-1 [24–28]. Among the subsets, Vδ1 cells mainly express NKp46, TRAIL, and CD1; notably, NKp46⁺ Vδ1 cells exhibit enhanced cytotoxic potential and greater IFN-γ-responsiveness [21].

Glossary

Antibody engagers: engineered proteins that recognize specific antigens and trigger immune responses against target cells. Bispecific antibodies bind to two targets simultaneously, usually a tumor antigen and an immune effector receptor, and actively redirect immune cells to kill cancer cells. Tribodies extend this approach by engaging three targets, often one on the tumor and two on immune cells, to enhance the potency and flexibility of immune-mediated tumor elimination.

Butyrophilins (BTNs): a family of molecules involved in the regulation of γδ T cell activation through γδ T cell receptor (TCR) signaling. Specifically, BTN2A1 and BTN3A1 mediate recognition of phosphoantigens by Vγ9Vδ2 TCR cells. By contrast, BTNL3 and BTNL8 (butyrophilin-like 3/8) modulate the activation of tissue-resident Vδ1 T cells.


Consensus molecular subtypes (CMS1–4):

a classification system for colorectal cancer (CRC) based on gene expression profiles that define four subtypes, CMS1–4, according to their distinct biological features, prognostic implications, and therapeutic relevance. CMS1 is characterized by high microsatellite instability (MSI-H) and strong immune activation, CMS2 by WNT/MYC-driven epithelial tumors, CMS3 by metabolic dysregulation, and CMS4 by mesenchymal features, stromal infiltration, and poor prognosis.

Delta One T (DOT) cells: a clinical grade Vδ1 T cell product based on peripheral blood-derived Vδ1 T cells that are expanded *ex vivo* over 2–3 weeks through anti-CD3 and cytokine stimulation to induce natural cytotoxicity receptor (NCR) expression and enhance cytotoxicity against tumors.

Metachronous CRC: CRC that develops liver metastases >6 months after the initial cancer diagnosis, which reflects differences in tumor biology and treatment strategy.

Phosphoantigens (pAgs): small metabolites that specifically activate Vγ9Vδ2 T cells. They are naturally produced in cells via the mevalonate pathway by tumor cells or are derived from bacterial metabolism. Key examples include isopentenyl pyrophosphate (IPP), which activates Vγ9Vδ2 T cells via BTN3A1, and bromohydrin pyrophosphate (BrHPP), a synthetic phosphoantigen that is

Figure 1. Ligand–receptor landscape shapes $\gamma\delta$ T cell activity in colorectal cancer (CRC). Schematic representation of the key activating and inhibitory interactions that shape $\gamma\delta$ T cell function within the tumor microenvironment (TME). This overview illustrates how ligand–receptor networks in CRC may influence $\gamma\delta$ T cell activation, inhibition, and tissue retention. Markers expressed by $\gamma\delta$ T cells (shown on the left) are organized into activating (bottom: $\gamma\delta$ TCRs, CD16, NKp30/46, NKG2D, TRAIL, FASL, CD161, DNAM-1) and inhibitory (top: PD-1, CTLA-4, TIGIT, TIM-3, NKG2A, KIRs, KLRG1, LAG-3, CD57, CD39) groups, together with tissue-retention markers (CD69, CD103, CXCR6) that are characteristic of gut/liver tissue tumor-associated $\gamma\delta$ T cells. On the right, ligands expressed by tumor cells or antigen-presenting cells (APCs) are depicted, including inhibitory ligands (PD-L1/L2, B7 family members, PVR/PVRL2, galectin-9, HLA-E, MHC class I/II, E-cadherin, L/P-selectins, soluble ATP), activating/costimulatory ligands engaging both adaptive or innate receptors (BTN/BNL, CD1 isoforms, MR1, annexin A2, EPHA2, MICA/B, ULBPs, TRAIL receptors, FAS, CLEC2D), and adhesion molecules (nectin-2 and the PVR family). Abbreviations: BTN/BNL, butyrophilin/butyrophilin-like molecules; HLA-E, human leukocyte antigen E; KIRs, killer immunoglobulin-like receptors; MHC class I/II, major histocompatibility complex class I/II; TCR, T cell receptor. Figure generated with BioRender.

The inhibitory receptor pattern also varies between subsets: V δ 1 cells express PD-1, TIGIT, TIM-3, CD39, CTLA-4, and killer cell immunoglobulin-like receptors (KIRs), whereas V δ 2 cells are enriched in KLRG1 and NKG2A [24–26,28]. KIRs are mainly inhibitory receptors that recognize specific HLA class I alleles and mediate the so-called 'missing-self recognition' mechanism that regulates the effector response of NK cells [29]. Although KIRs have long been known to be exclusively expressed on human NK cells, their regulatory role in $\gamma\delta$ T cells has more recently been recognized [30]. Moreover, PD-1 expression in V δ 1 cells has been linked to tumor-reactive cells

designed to selectively stimulate these cells.

Synchronous CRC: refers to CRC diagnosed together with liver metastases, or when liver metastases appear within 6 months of the initial cancer diagnosis.

Tumor mutational burden (TMB): the total number of somatic mutations present in the genome of a tumor. A higher TMB is often associated with increased production of tumor-associated antigens (TAAs), which can enhance recognition by the immune system, and is correlated with a better response to immunotherapy, particularly to immune checkpoint inhibitors.

Zoledronate: a drug that inhibits farnesyl pyrophosphate synthase in the mevalonate pathway of target cells (e.g., myeloid or tumor cells), leading to the accumulation of PAgPs that trigger V γ 9V δ 2 TCR activation via BTN family members. Zoledronate is used to expand and activate V γ 9V δ 2 T cells *in vitro* and *in vivo* for cancer immunotherapy.

[31] and correlates with clinical response to ICB in CRC patients [24]. NKG2A, on the other hand, identifies a subset of 'educated' V δ 2 cells that are endowed with superior antitumor function, in terms of cytokine production and cytotoxicity, compared to their NKG2A-negative counterparts [32,33]. This increased effector potential of NKG2A $^+$ V δ T cells is tempered by inhibitory signaling upon NKG2A binding to its ligand HLA-E, which is expressed in malignant cells, and can be restored upon NKG2A blockade [32]. These findings indicate that, in CRC, distinct V δ T cell subsets are constrained by specific checkpoint ligands which limit their function. This inhibitory circuitry is intertwined with the emergence of protumorigenic V δ T cell populations such as V δ 1 cells that produce amphiregulin (AREG), an epidermal growth factor (EGF)-like ligand involved in epithelial cell proliferation. In pediatric tissues, V δ 1 cells that produce AREG are linked to tissue repair functions during early life [32]. In CRC, dysregulated AREG production by V δ 1 cells may contribute to tumor progression [33]. Indeed, binding of AREG to EGFR-expressing tumor cells can activate downstream pathways (e.g., PI3K/AKT and IKK/NF- κ B) that promote tumor cell survival and migration, as well as immune evasion through enhanced regulatory T cell (Treg) suppressive function and upregulation of PD-L1 [34,35]. Finally, although IL-17 production has long been associated with the protumorigenic activity of V δ T cells in CRC, recent scRNA-seq data have challenged this view (Box 3).

Similarly to the primary tumor, in LM lesions the mean percentage of V δ T cells is lower than in the peritumoral area (5% vs 15%), and V δ 1 cells represent the most abundant subset in both compartments [34,35]. scRNA-seq analysis of LMs identified V δ 1, V δ 2, and V δ 3 cells with a proliferative and cytotoxic profile, shaped by subset-specific activation programs. In fact, V δ 1 and V δ 3 cells displayed strong IFN- γ -driven activation, whereas V δ 2 cells adopted a type 3 profile (expression of *CCR6*, *IL23R*, and *RORC*) [36] that is linked in LMs to TNF-responsiveness [34]. Moreover, different cell subsets express the tissue-retention markers CD69 and CXCR6 which favor their persistence within the tumor, and exhibit distinct receptor signatures. Indeed, V δ 1 cells are enriched in CD16, KIRs, PD-1, and TIGIT, whereas V δ 2 cells express high levels of NKG2A and KLRG1 [34].

Prognostic value of V δ T cells in CRC progression

Tumor-infiltrating V δ T cells have been consistently associated with favorable outcomes across multiple solid tumors [37–40], and both the V δ 1 and V δ 2 subsets demonstrate clear prognostic significance [41–45]. In primary CRC, enrichment of V δ 1 cells correlates with longer 5 year disease-free survival [46], and a high frequency of NKp46 $^+$ V δ 1 cells in adjacent healthy tissue is linked to reduced disease progression [21]. BTNL-like (BTNL) molecules shape and maintain human gut-resident V δ T cells through direct V δ TCR interactions [47–50]. Reduced BTNL expression, which has been reported in CRC and inflammatory bowel disease (IBD), is associated with a decreased frequency of gut V δ T cells [49,51]. Among these molecules, BTNL3/8

Box 3. Controversial protumoral role of Th17-polarized V δ T cells in CRC

Mouse V δ T cells are important source of the proinflammatory IL-17, as shown in multiple disease models including cancer [114]. However, the proposed protumoral role of human V δ T cells in CRC, that is attributed to their production of IL-17, remains highly debated [26]. This hypothesis initially gained traction from flow cytometry studies suggesting that V δ T cells were the predominant source of IL-17 within CRC tumor tissues [115,116]. However, subsequent investigations using similar approaches have yielded conflicting results, indicating that the majority of IL-17-producing cells in CRC tissues are $\alpha\beta$ T cells [46], whereas V δ T cells predominantly produce IFN- γ [25,46]. Further insights from scRNA-seq analyses on sorted V δ T cells from CRC lesions failed to detect IL-17A transcription and showed minimal expression of canonical Th17-associated genes such as *RORC*, *IL23R*, and *CCR6* [22,26]. In addition, an integrated analysis of whole-tissue scRNA-seq datasets from 187 CRC patients across nine studies confirmed that IL-17-producing cells in both tumor and adjacent normal tissues are predominantly CD4 T cells [22]. Similarly, scRNA-seq analysis of liver metastases (LMs) from mCRC patients identified a minor subset of V δ 2 T cells with Th17 profile [34]; however, these cells lacked detectable IL-17A expression and mainly produced TNF.

heterodimers sustain the intrinsic intraepithelial CD103⁺NKp46⁺V δ 1V γ 4 subset [52]. Loss of the BTNL3/8–V δ 1 axis in CRC may weaken epithelial integrity and increase susceptibility to tumor development, consistent with findings in IBD where BTNL3/8 deficiency correlates with more severe disease [52]. Therefore, this specific axis could represent a valuable prognostic biomarker.

In LMs, elevated levels of CD69⁺V δ 1 cells predict fewer metastases and improved survival [34]. In particular, a subset of terminally differentiated effector memory (T_{EMRA}) CD69⁺V δ 1 cells can recirculate from the liver into the bloodstream while retaining transcriptional and clonal features characteristic of the LM site. Importantly, their number in blood (as detected via liquid biopsy), similarly to tumor-associated CD69⁺V δ 1 cells, is associated with a favorable prognosis. Human V δ 3 cells, although typically rare in healthy blood, represent a substantial liver population [3,53]. Similarly to V δ 1 cells, paired blood–LM scRNA-seq analyses confirm V δ 3 cell presence in both compartments, suggesting that they recirculate via the blood [34]. V δ 3 cell frequencies increase in liver inflammatory conditions [54]; although their clinical relevance in hepatic mCRC remains to be defined, their cytotoxic potential and detectability in patient blood support their potential as a prognostic marker.

Chemotherapy, that is commonly administered to mCRC patients, affects both the circulating $\gamma\delta$ T cell compartment and LMs [35]. It depletes naïve and central memory (T_{CM}) V δ 2 cells while increasing senescent CD57⁺V δ 2 T_{EMRA} cells with reduced effector function, whereas V δ 1 cells appear more resistant. These different effects reflect intrinsic variations in differentiation and effector status across $\gamma\delta$ T cell subsets, referred as 'effectiveness' [55], and suggest that preservation and recovery of these subsets after treatment may correlate with improved prognosis.

$\gamma\delta$ T cell-based immunotherapeutic approaches in CRC

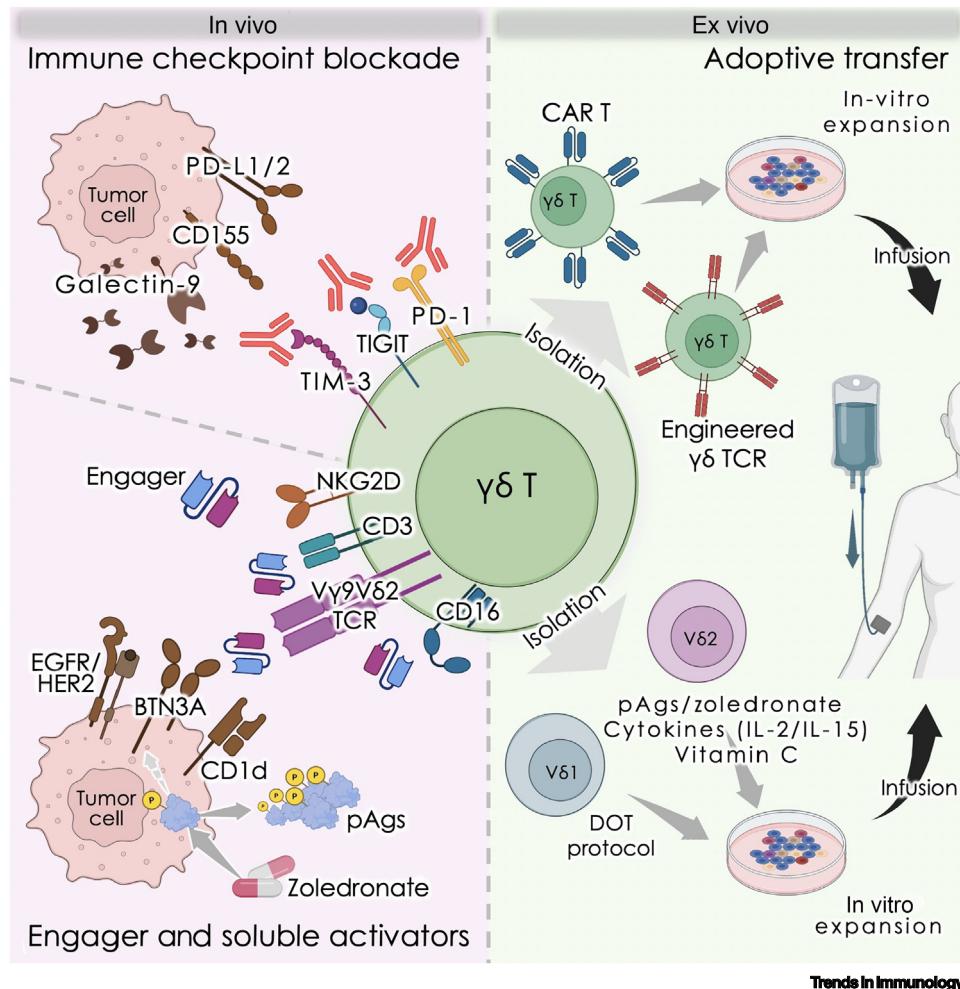
In non-metastatic CRC, treatment is primarily curative, and surgery is followed by chemotherapy [folinic acid, 5-fluorouracil, and oxaliplatin (FOLFOX), or capecitabine and oxaliplatin (CAPOX)] in high-risk patients. In mCRC, systemic chemotherapy (FOLFOX, folinic acid, 5-fluorouracil, and irinotecan (FOLFIRI), or FOLFOX plus irinotecan (FOLFOXIRI)] with bevacizumab (anti-VEGF) or cetuximab/panitumumab (anti-EGFR) antibodies is the standard of care, and surgery is feasible in only 20% of cases [56]. The marked heterogeneity of CRC complicates the selection of optimal treatment regimens. Molecular markers such as mismatch repair/microsatellite-instability (MMR/MSI) status and *RAS/BRAF* mutations are routinely used to guide therapy; however, a significant proportion of patients within these subgroups do not benefit from available treatments. Recently, the classification of CRC into four **consensus molecular subtypes (CMS1–4)**, based on intrinsic tumor biology rather than clinical endpoints, has offered the potential to better predict both prognosis and response to systemic therapy [57]; however, further studies will be necessary to support its clinical implementation.

New therapeutic strategies that have emerged over the past decade for CRC treatment include ICB, CAR-T cells, vaccines, and multimodal regimens [58]. ICB is effective in tumors with MMR-deficiency (MMR-d), MSI-high (MSI-H), and *POLE* mutations, collectively referred to here as MSI-H. These tumors exhibit a strong immunogenic profile driven by their high **tumor mutational burden (TMB)** and abundant tumor-associated antigens (TAAs), features that supported FDA approval of anti-PD-1 for first-line therapy in 2020 [59]. By contrast, limited TAA expression contributes to resistance in MMR-proficient (MMR-p) and microsatellite-stable (MSS) CRC, hereafter termed MSS tumors, which account for 95% of all mCRC cases. Nevertheless, accumulating evidence suggests that ICB and CAR-T therapies may also induce responses in MSS tumors (Box 4).

In parallel with these established approaches, $\gamma\delta$ T cells have emerged as a novel immunotherapeutic target in CRC. Their MHC-independent recognition and innate-like cytotoxicity provide a

Box 4. Emerging immunotherapeutic approaches in advanced mCRC**Evidence for immune checkpoint blockade (ICB) therapy**

Randomized controlled clinical trials in microsatellite-stable (MSS) mCRC patients are limited, and the only international randomized Phase 3 trial, LEAP-0176, revealed a less favorable outcome with anti-PD-1 versus standard of care [117]. On the other hand, recently potential clinical predictors of ICB response in MSS tumors were observed [118]. Analyses of the Phase 2 AtezoTRIBE randomized trial, which evaluated FOLFOXIRI/bevacizumab alone or in combination with anti-PD-L1, provided compelling evidence that the novel 'Immunoscore-IC' may predict the efficacy of ICB in MSS mCRC [119]. This assay, that measures the densities and spatial organization of PD-L1⁺ CD8 cells, identified ~30% of MSS tumors that were responsive to ICB, and also retained its predictive impact in patients with LMs [119,120]. In accordance, the CheckMate 9×8 Phase 2 randomized trial, that compared upfront FOLFOX/bevacizumab alone or in combination with anti-PD-1, was able to use the CD8 T cell level in MSS tumors to identify patients who derive benefit from anti-PD-1 treatment [121]. Overall, these findings highlight the need for deeper investigation of the mCRC TME to identify immune-competent niches in MSS tumors and uncover potential immunotherapeutic targets. Indeed, the AtezoTRIBE study revealed poor concordance between the Immunoscore-IC and tumor-infiltrating lymphocyte (TIL)-based tests, and provided evidence that rough evaluation of immune cells in MSS is insufficient to predict the benefit of ICB [122]. Moreover, there was poor agreement between PD-L1 expression and the response to ICB in MSS tumors [121,122]. Another aspect that requires further investigation regards the combination of ICB treatment with chemotherapy that could potentially overcome immune refractoriness by increasing the release of tumor-associated antigens (TAAs) [119,120,123].


Evidence for CAR-T cell therapy

Current preclinical evidence supports CAR-T cell therapy as a viable and potentially effective treatment for patients with CRC, also in the metastatic setting. One of the major challenges in applying CAR-T therapy to solid tumors is the identification of TAAs that allow selective targeting of cancer cells. Carcinoembryonic antigen (CEA) is one of the most clinically advanced targets in CRC that show therapeutic activity [124]. Other significant targets are guanylyl cyclase C (GUCY2C) and CD18 that have demonstrated antitumor efficacy and relevance to mCRC onset in preclinical models [125–127]. Lastly, the full-length ectodomain sequence of CD6, which binds to CD166 and CD318, was used to build CARs for CRC [128].

complementary mechanism to conventional $\alpha\beta$ T cell-based therapies. Several innovative strategies are under development to harness $\gamma\delta$ T cells in the clinic, including ICB therapies, *in vivo* and *ex vivo* activation and expansion, and CAR/ $\gamma\delta$ TCR engineering, that have potential applications in mCRC (Figure 2).

Harnessing ICB to activate $\gamma\delta$ T cells in CRC

Based on scRNA-seq analysis, $\gamma\delta$ T cells have been identified as key effectors that sustain the response to ICB in patients with MSI-H CRC and HLA class I deficiencies [24]. Responses to PD-1 therapy in these patients showed that mutations in *B2M*, that encodes an essential component of HLA class I, are associated with significant clinical benefit from PD-1 blockade. This finding suggests that immune cells beyond HLA class I-restricted cells contribute to tumor control. Further analyses indicate that PD-1 is primarily expressed on $\gamma\delta$ T cells, and the V δ 1 and V δ 3 subsets represent the predominant tumor-infiltrating $\gamma\delta$ T cell populations in these patients [24]. PD-1-expressing $\gamma\delta$ T cells also exhibit proliferation and an activated phenotype characterized by the expression of NKp46 and NKG2D. This activated profile of V δ 1 cells in MSI-H CRC is consistent with previous observations that PD-1⁺ $\gamma\delta$ T cells in MSI-H tumors coexpress activation markers such as CD103, CD38, and HLA-DR, along with effector and cytotoxic mediators (IFN- γ , granzymes, perforin) [60]. PD-1⁺ $\gamma\delta$ T cells isolated from MSI-H lesions and expanded *in vitro* demonstrate strong reactivity against CRC cells and tumor-derived organoids, highlighting their functional relevance [24]. Interestingly, their reactivity against B2M-deficient organoids, compared to wild-type organoids, suggests that loss of HLA class I may release $\gamma\delta$ T cells from inhibitory control. This is particularly relevant in the light of evidence that $\gamma\delta$ T cell activity can be negatively regulated by KIRs upon HLA class I binding [30]. On the other hand, in MSS tumors, a dysfunctional transcriptional profile of tumor-infiltrating V δ 1 cells has been associated with the expression of TIGIT – which can interact with NECTIN expressed on fibroblasts to suppress their activity [28]. Importantly, blocking this axis with an anti-TIGIT antibody partially restored the cytotoxicity of the dysfunctional V δ 1 cells.

Figure 2. Immunotherapeutic strategies to exploit $\gamma\delta$ T cells in colorectal cancer (CRC). Schematic representation of key immunotherapeutic targets and strategies to exploit $\gamma\delta$ T cells in CRC. The figure is divided into two main panels, illustrating the *in vivo* (left panel) and *ex vivo* (right panel) approaches that represent alternative strategies to exploit the intrinsic antitumor activity of $\gamma\delta$ T cells. *In vivo* strategies include $\gamma\delta$ T cell activation mediated by immune checkpoint blockade (ICB) that targets major immune checkpoints relevant to CRC, such as PD-1, CTLA4, TIGIT, and TIM-3. In addition, *in vivo* approaches include the use of bispecific antibodies designed to engage $\gamma\delta$ TCRs, with most studies focused on the V γ 9V δ 2 subset. These antibodies can simultaneously target activating receptors, including CD3, NKG2D, and CD16, as well as tumor-associated molecules such as EGFR, HER2, CD1d, and B7M3A, and thereby enhance the specificity and efficacy of $\gamma\delta$ T cell-mediated cytotoxicity. Furthermore, *in vivo* stimulation can involve phosphoantigen (pAg)-dependent activation of V γ 9V δ 2 cells, where pAgs can be produced by tumor cells or induced pharmacologically using drugs such as zoledronate. *Ex vivo* strategies focus on the isolation, activation, and expansion of $\gamma\delta$ T cells outside the patient. Cells obtained from autologous or allogeneic sources are then expanded *in vitro* using protocols tailored to specific subsets. For V δ 1 cells, DOT-based protocols are used whereas V δ 2 cells are expanded using pAgs or zoledronate. These expanded cells are then reinfused into patients, either directly or following genetic modifications such as CAR engineering or $\gamma\delta$ TCR modifications. Abbreviations: CAR, chimeric antigen receptor; DOT, Delta One T cells; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; TCR, T cell receptor. Figure generated with BioRender.

Recent findings showed that MSI-H and MSS CRC cells can coexist in the same TME [61,62], a phenomenon with important biological and therapeutic implications. In particular, preclinical studies demonstrated that immune responses directed against the MSI-H component can extend to neighboring MSS cells within the same tumor niche, and both $\gamma\delta$ T cells and CD8 T cells

contribute to this antitumor activity [63]. These observations strengthen the notion that the mixed TME may provide an exploitable therapeutic opportunity by leveraging the higher immunogenicity of the MSI-H component to also sensitize surrounding MSS cells.

It is now widely accepted that, in MSI-H tumors, a high TMB represents the main driver of immune activation rather than direct upregulation of immune checkpoint expression. Building on this concept, several studies are exploring strategies to convert MSS tumors, that are typically refractory to immune responses, into immunologically 'hot' tumors by inducing hypermutation and enhancing responsiveness to ICB-based therapies [64]. Along these lines, treatment with the alkylating agent temozolomide (TMZ) has been investigated in several independent Phase 2 trials in patients with MSS CRC [65,66]. These studies demonstrated that TMZ can induce tumor hypermutation and potentially sensitize the cells to ICB; however, this approach requires further validation. The involvement of $\gamma\delta$ T cells in this context warrants particular attention because drug-induced TMB does not necessarily correlate with antigen presentation via MHC class I. Therefore, $\gamma\delta$ T cells, through their MHC-independent recognition mechanisms, may play a central role in mediating antitumor immune responses under these conditions. Moreover, comparative bulk and single-cell RNA-seq analyses between MSI-H and MSS tumors revealed increased infiltration of $V\delta 1$ T cells in MSI-H, along with higher expression of effector mediators such as IFN- γ , granulysin, and PD-1 [28]. Moreover, CMS1 tumors, which are enriched for MSI-H status, exhibit higher $\gamma\delta$ T cell infiltration compared to the CMS2–4 types [67]. Thus, such treatment may not only enhance $\gamma\delta$ T cell activation but also promote their increased infiltration into the tumor. It is also important to note that TMZ-resistant $\gamma\delta$ T cells have been developed for the adoptive cell therapy of high-grade gliomas [68].

Among the inhibitory receptors not yet established as therapeutic targets in the clinic, TIM-3 may play a relevant role in regulating $\gamma\delta$ T cell function against CRC cells. High TIM-3 expression on $\gamma\delta$ T cells has been observed both in primary CRC lesions and in peripheral blood, and was significantly associated with TNM (tumor size, lymph node involvement, metastasis) stage and tumor volume [69,70]. Moreover, TIM-3 has been shown to significantly impair the cytotoxic activity of $V\gamma 9V\delta 2$ T cells against CRC cells through an ERK1/2-dependent mechanism [69]. As mentioned earlier, NKG2A, that is constitutively expressed on $V\delta 2$ T cells, also warrants further investigation, and several studies are underway to evaluate its potential clinical use [33]. To maximize ICB efficacy in $\gamma\delta$ T cells, combined checkpoint targeting may represent a more effective strategy. **Delta One T (DOT)** cells are a clinical grade $V\delta 1$ cell product generated through a 3 week TCR- and cytokine-based expansion protocol which induces *de novo* NCR expression and enhances cytotoxic activity [71,72]. This product demonstrated synergistic inhibitory interactions of TIGIT and PD-1 when tested against both MSI-H and MSS CRC lines [73,74]. Regarding $V\delta 2$ cells, combined ICB treatment has not been sufficiently explored. However, in patients with leukemia, $V\delta 2$ cells coexpressing TIM-3 and PD-1 exhibited significantly reduced effector functions, which were restored by TIM-3 blockade alone or in combination with PD-1, whereas anti-PD-1 treatment alone had no significant effect [75].

Engagers and other *in vivo* modulators of $\gamma\delta$ T cell activity

Antibody engagers, which combine a tumor-recognition domain with a T cell engagement domain, are designed to recruit and activate cytotoxic T cells. Building on substantial progress with conventional T cells, recent efforts have focused on developing engagers for $\gamma\delta$ T cell activation, although most studies so far have primarily involved $V\delta 2$ cells. A bispecific construct targeting both $V\gamma 9$ and EGFR [76] – which is overexpressed in ~60–80% of CRC cases – was shown to engage $V\gamma 9V\delta 2$ T cells *in vitro* and triggered IFN- γ and TNF production as well as induced the lysis of EGFR⁺ CRC lines carrying *KRAS* or *BRAF* mutations. This activation was

independent of the cell mutational status or variations in the $\text{V}\gamma 9\text{V}\delta 2$ cell receptor sequence. Comparable effects were observed *in vivo* [76]. Furthermore, the companies Acepodia and LAVA Therapeutics have developed engagers that link $\text{V}\gamma 9$ to EGFR [1,71]. Other engagers include HER2-targeting tribodies [(HER2)₂ × $\text{V}\gamma 9$, or (HER2)₂ × CD16] as well as a bispecific $\text{V}\gamma 9$ /CD3 molecule (GAB) that have been tested in solid tumors [77–79]. In prostate cancer, bispecific constructs are under evaluation that simultaneously target $\text{V}\gamma 9$ and prostate-specific membrane antigen (PMSA) that is highly expressed on tumor cells [1]. Additional targets such as CD1d, CD40, and CD123, as well as anti- $\text{V}\gamma 9$ bispecific approaches, have also been tested [1,80,81], confirming the potential of $\gamma\delta$ T cell engagers [1]. Another area of investigation involves the development of NKG2D-targeted antibodies. For instance, bispecific engagers using NKG2D binders to retarget immune cells toward HER2-positive malignant cells showed enhanced cytotoxicity [82]. Given the role of BTN3A molecules in $\text{V}\gamma 9\text{V}\delta 2$ T cell activation, ImCheck Therapeutics has developed a specific anti-BTN3A-agonist antibody that is capable of driving $\text{V}\gamma 9\text{V}\delta 2$ T cell activation, and this is currently being tested in Phase 1/2 dose-escalation trials in advanced solid tumors (NCT05307874, NCT05307874).

Administration of natural or synthetic pAgs, such as the bromohydrin pyrophosphate (BrHPP), has also been tested to promote $\text{V}\gamma 9\text{V}\delta 2$ T cell expansion *in vivo* in solid tumors, including CRC [83]. Although this approach proved to be safe and well-tolerated, it showed poor pharmacokinetics *in vivo* [1]. Likewise, drugs such as **zoledronate**, which causes intracellular pAg accumulation in tumor cells, have shown limited efficacy despite favorable safety profile, likely due to $\text{V}\gamma 9\text{V}\delta 2$ cell exhaustion from chronic stimulation. In this context, recent studies have demonstrated that encapsulation of zoledronate in spherical polymeric nanoparticles can enhance its permeability and retention at the tumor site [84]. These nano-formulated zoledronate particles can be taken up by CRC cells, tumor spheroids, and autologous tumor organoids, and subsequently promote $\text{V}\delta 2$ cell-mediated cytotoxicity. If proven effective, $\gamma\delta$ T cell engagers could offer a potent and cost-effective immunotherapy compared to more complex and expensive approaches such as CAR- $\gamma\delta$ T cell therapies. However, to overcome TME immunosuppression, combining them with ICB may be necessary to maximize their therapeutic potential.

Adaptive $\gamma\delta$ T cell-based therapy in CRC

$\gamma\delta$ T cell-based immunotherapies have largely focused on the adoptive transfer of *ex vivo* expanded cells in both autologous and allogeneic settings. In particular, the allogeneic setting is especially interesting because $\gamma\delta$ T cells mediate independent of MHC-antigen presentation tumor killing. This provide an alternative to $\alpha\beta$ T cell-mediated recognition of tumors that evade $\alpha\beta$ T cell cytotoxicity while maintaining a low risk of GVHD and CRS. Most clinical efforts have concentrated on $\text{V}\gamma 9\text{V}\delta 2$ cells, which can be easily isolated from peripheral blood and efficiently expanded *in vitro* using pAgs. Over the past two decades, several clinical studies have evaluated the safety and efficacy of infusing activated and expanded *in vitro* $\text{V}\gamma 9\text{V}\delta 2$ cells into cancer patients. In a small non-randomized exploratory adoptive-cell therapy trial involving six patients with mCRC, autologous $\text{V}\gamma 9\text{V}\delta 2$ cells were expanded with zoledronate and IL-2 over an 8 week period [85]. During treatment, both the percentage and absolute number of $\text{V}\gamma 9\text{V}\delta 2$ cells increased and remained stable long after the final infusion. Notably, these cells displayed higher *ex vivo* expression of IFN- γ and CD107a compared to their $\text{V}\gamma 9^-$ cell counterparts. Similarly, a proof-of-concept study in 25 patients with advanced solid tumors, including one CRC patient [86], showed that $\gamma\delta$ T cells expanded with zoledronate and IL-2 could be safely reinfused and restored effector $\gamma\delta$ T cell numbers without causing severe toxicity. Moreover, a Phase 1 single-arm study, including three patients with CRC, demonstrated the safety and feasibility of adoptive transfer of *ex vivo* expanded autologous $\text{V}\gamma 9\text{V}\delta 2$ cells [87]. Interestingly, a novel method for expanding $\text{V}\gamma 9\text{V}\delta 2$ cells was developed that used stimulation with zoledronate, IL-2, IL-15,

and vitamin C to generate cells with improved proliferation capacity and cytotoxicity [88]. When tested in a Phase 1 single-arm clinical trial in 132 patients with late-stage solid tumors in an allogeneic setting, these expanded $\gamma\delta$ V δ 2 cells prolonged survival in 18 patients with advanced lung or liver cancer who received five or more infusions.

Although most $\gamma\delta$ T cell-based strategies have focused on $\gamma\delta$ V δ 2 cells, V δ 1 cells have also produced encouraging results. Following isolation from peripheral blood and expansion using phytohemagglutinin (PHA) and IL-7, V δ 1 cells exhibited potent *in vitro* cytolytic activity against both adherent and sphere-forming human CRC cells, and effectively suppressed tumor growth in a CRC xenograft model [89]. Supporting these findings, in a murine model of mCRC generated by orthotopic implantation of human HT29 cells, cytomegalovirus (CMV)-induced V δ 1 cells inhibited both primary tumor growth and metastatic spread [90]. Moreover, DOT cells showed efficacy against both MSI-H and MSS CRC lines, as well as against patient-derived organoids [73,74].

Beyond adoptive transfer, engineered $\gamma\delta$ T cells are a promising complementary approach, as described in several recent reviews [1,71,91,92]. Multiple studies have reported the feasibility of transducing $\gamma\delta$ T cells with different CAR constructs to generate CAR- $\gamma\delta$ T cells with enhanced cytotoxicity. Additional strategies exploit tumor-reactive $\alpha\beta$ T cells engineered to express $\gamma\delta$ TCR. These CAR- $\gamma\delta$ T cells and $\gamma\delta$ TCR-modified cells are currently being tested in Phase 1/2, single-arm, dose-escalation clinical trials for refractory solid tumors (NCT06150885, NCT05302037, NCT04864054, NCT04502082, NCT04634357). None of these studies specifically target CRC, except for an allogeneic CAR- $\gamma\delta$ T cell product directed against NKG2D ligand that was evaluated in patients with various solid tumors including CRC (NCT04107142). Nevertheless, advances in expansion and engineering protocols for V δ 1 and V δ 2 cells, together with growing evidence of safety and potent antitumor efficacy, encourage future trials in CRC patients.

Concluding remarks

Immunotherapy has improved outcomes for some CRC patients but its efficacy remains limited in advanced disease and LM. $\gamma\delta$ T cells are emerging as promising effectors owing to their MHC-independent CRC recognition and ability to enhance the response to ICB in $\alpha\beta$ T cell-resistant settings. Innovative strategies to exploit their antitumor potential include engager molecules, *ex vivo* expansion and infusion of autologous or allogeneic $\gamma\delta$ T cells, and CAR- $\gamma\delta$ / $\gamma\delta$ TCR-engineered cells to boost their specificity, persistence, and cytotoxicity. Although many of these approaches have not yet been tested in CRC, preclinical and clinical data from other tumors suggest that $\gamma\delta$ T cell-based therapies could improve outcomes in CRC. However, to fully exploit this potential, several issues must be clarified (see [Outstanding questions](#)). A more comprehensive understanding is needed of how innate and adaptive $\gamma\delta$ T cell programs contribute to antitumor immunity in the CRC TME, which specific ligands are recognized, particularly by V δ 1 cells, and how tumor-reactive $\gamma\delta$ T cells can be phenotypically defined, clonally tracked, and selectively expanded for therapy. It also remains unclear how these therapies can be integrated with conventional treatments to maximize efficacy. Finally, robust biomarkers will be necessary to guide patient selection and predict response or resistance to $\gamma\delta$ T cell-based interventions.

Author contributions

J.M. developed and wrote the review. P.M. and V.C. contributed to manuscript preparation. D.M. critically reviewed and revised the manuscript. All authors contributed to the article and approved the final version.

Acknowledgments

This study was supported by the Italian Ministry of Health (PNRR-POC-2023-12377143 to DM) and by the 'Ricerca Corrente' grant of the IRCCS Humanitas Research Hospital. This study was also supported by the intramural research program of the

Outstanding questions

How do innate and adaptive $\gamma\delta$ T cell programs mediate antitumor activity in CRC, and how do they interact?

Which ligands are specifically recognized by CRC-infiltrating $\gamma\delta$ T cells, particularly V δ 1 subsets, and how does the TME influence this recognition?

What are the key phenotypic, transcriptional, and clonal features of tumor-reactive $\gamma\delta$ T cells in CRC, and how can these subsets be isolated and expanded for therapy?

Which strategies best integrate $\gamma\delta$ T cell-based therapies with standard treatments to maximize clinical benefit?

Which biomarkers can guide patient selection and predict response or resistance to $\gamma\delta$ T cell-directed immunotherapies in CRC?

Fondazione Humanitas per la Ricerca and the University of Milan awarded to D.M. The publication fee for this work was covered by the Italian Ministry of Health's 'Ricerca Corrente' funding to the IRCCS Humanitas Research Hospital. P.M. is the recipient a fellowship from the PhD program of Experimental Medicine at the University of Milan. This study was funded by the Italian Association for Cancer Research (AIRC) via a fellowship to V.C.

Declaration of interests

The authors declare no competing interests.

References

1. Hayday, A. *et al.* (2024) Cancer immunotherapy by gammadelta T cells. *Science* 386, eabg7248
2. Costa, G.P. *et al.* (2023) Therapeutic avenues for gammadelta T cells in cancer. *J. Immunother. Cancer* 11, e007955
3. Hunter, S. *et al.* (2018) Human liver infiltrating gammadelta T cells are composed of clonally expanded circulating and tissue-resident populations. *J. Hepatol.* 69, 654–665
4. Davey, M.S. *et al.* (2017) Clonal selection in the human Vdelta1 T cell repertoire indicates gammadelta TCR-dependent adaptive immune surveillance. *Nat. Commun.* 8, 14760
5. Silva-Santos, B. and Mensurado, S. (2023) Gammadelta T cells maintain sensitivity to immunotherapy in MHC-I-deficient tumors. *Nat. Immunol.* 24, 387–388
6. Deseke, M. and Prinz, I. (2020) Ligand recognition by the gammadelta TCR and discrimination between homeostasis and stress conditions. *Cell. Mol. Immunol.* 17, 914–924
7. Song, Y. *et al.* (2022) Targeting cytokine signals to enhance gammadelta T cell-based cancer immunotherapy. *Front. Immunol.* 13, 914839
8. Silva-Santos, B. and Strid, J. (2018) Working in 'NK mode': natural killer group 2 member D and natural cytotoxicity receptors in stress-surveillance by gammadelta T cells. *Front. Immunol.* 9, 851
9. Sebestyen, Z. *et al.* (2020) Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. *Nat. Rev. Drug Discov.* 19, 169–184
10. Chitazde, G. *et al.* (2017) The ambiguous role of gammadelta T lymphocytes in antitumor immunity. *Trends Immunol.* 38, 668–678
11. Tawfik, D. *et al.* (2019) TRAIL-receptor 4 modulates gammadelta T cell-cytotoxicity toward cancer cells. *Front. Immunol.* 10, 2044
12. Kong, Y. *et al.* (2009) The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. *Blood* 114, 310–317
13. Chan, K.F. *et al.* (2022) Gammadelta T cells in the tumor microenvironment – interactions with other immune cells. *Front. Immunol.* 13, 894315
14. Siegel, R.L. *et al.* (2023) Colorectal cancer statistics, 2023. *CA Cancer J. Clin.* 73, 233–254
15. Rumpold, H. *et al.* (2020) Prediction of mortality in metastatic colorectal cancer in a real-life population: a multicenter explorative analysis. *BMC Cancer* 20, 1149
16. Wang, J. *et al.* (2020) Metastatic patterns and survival outcomes in patients with stage IV colon cancer: a population-based analysis. *Cancer Med.* 9, 361–373
17. Bredt, L.C. and Rachid, A.F. (2014) Predictors of recurrence after a first hepatectomy for colorectal cancer liver metastases: a retrospective analysis. *World J. Surg. Oncol.* 12, 391
18. Li, J. *et al.* (2022) Tumor microenvironment shapes colorectal cancer progression, metastasis, and treatment responses. *Front. Med. (Lausanne)* 9, 869010
19. Galindo-Pumarino, C. *et al.* (2021) Tumor microenvironment in metastatic colorectal cancer: the arbitrator in patients' outcome. *Cancers (Basel)* 13, 1130
20. Mikulak, J. *et al.* (2019) Hepatic natural killer cells: organ-specific sentinels of liver immune homeostasis and physiopathology. *Front. Immunol.* 10, 946
21. Mikulak, J. *et al.* (2019) NKP46-expressing human gut-resident intraepithelial Vdelta1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. *JCI Insight* 4, e125884
22. Reis, B.S. *et al.* (2022) TCR-Vgammadelta usage distinguishes protumor from antitumor intestinal gammadelta T cell subsets. *Science* 377, 276–284
23. Corsale, A.M. *et al.* (2023) Gammadelta T cells and their clinical application in colon cancer. *Front. Immunol.* 14, 1098847
24. de Vries, N.L. *et al.* (2023) Gammadelta T cells are effectors of immunotherapy in cancers with HLA class I defects. *Nature* 613, 743–750
25. Rodin, W. *et al.* (2024) Gammadelta T cells in human colon adenocarcinomas comprise mainly Vdelta1, Vdelta2, and Vdelta3 cells with distinct phenotype and function. *Cancer Immunol. Immunother.* 73, 174
26. Ran, R. *et al.* (2024) Systematic analysis of human colorectal cancer scRNA-seq revealed limited pro-tumoral IL-17 production potential in gamma delta T cells. *Neoplasia* 58, 101072
27. Noble, A. *et al.* (2022) Altered immunity to microbiota, B cell activation and depleted gammadelta/resident memory T cells in colorectal cancer. *Cancer Immunol. Immunother.* 71, 2619–2629
28. Stary, V. *et al.* (2024) Dysfunctional tumor-infiltrating Vdelta1⁺ T lymphocytes in microsatellite-stable colorectal cancer. *Nat. Commun.* 15, 6949
29. Polidoro, M.A. *et al.* (2020) Tumor microenvironment in primary liver tumors: a challenging role of natural killer cells. *World J. Gastroenterol.* 26, 4900–4918
30. Niu, C. *et al.* (2018) Decitabine inhibits gamma delta T cell cytotoxicity by promoting KIR2DL2/3 expression. *Front. Immunol.* 9, 617
31. Lien, S.C. *et al.* (2024) Tumor reactive gammadelta T cells contribute to a complete response to PD-1 blockade in a Merkel cell carcinoma patient. *Nat. Commun.* 15, 1094
32. Cazzetta, V. *et al.* (2021) NKG2A expression identifies a subset of human Vdelta2 T cells exerting the highest antitumor effector functions. *Cell Rep.* 37, 109871
33. Cazzetta, V. *et al.* (2023) NKG2A immune checkpoint in Vdelta2 T cells: emerging application in cancer immunotherapy. *Cancers (Basel)* 15, 1264
34. Bruni, E. *et al.* (2022) Intrahepatic CD69⁺Vdelta1 T cells recirculate in the blood of patients with metastatic colorectal cancer and limit tumor progression. *J. Immunother. Cancer* 10, e004579
35. Bruni, E. *et al.* (2019) Chemotherapy accelerates immunosenescence and functional impairments of Vdelta2^{pos} T cells in elderly patients affected by liver metastatic colorectal cancer. *J. Immunother. Cancer* 7, 347
36. Tan, L. *et al.* (2021) A fetal wave of human type 3 effector gammadelta cells with restricted TCR diversity persists into adulthood. *Sci. Immunol.* 6, eabf0125
37. Wang, J. *et al.* (2017) Tumor-infiltrating gammadelta T cells predict prognosis and adjuvant chemotherapeutic benefit in patients with gastric cancer. *Oncoimmunology* 6, e1353858
38. Lu, H. *et al.* (2020) High abundance of intratumoral gammadelta T cells favors a better prognosis in head and neck squamous cell carcinoma: a bioinformatic analysis. *Front. Immunol.* 11, 573920
39. Zakeri, N. *et al.* (2022) Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. *Nat. Commun.* 13, 1372
40. Gentles, A.J. *et al.* (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. *Nat. Med.* 21, 938–945
41. Wu, Y. *et al.* (2019) An innate-like Vdelta1⁺ gammadelta T cell compartment in the human breast is associated with remission in triple-negative breast cancer. *Sci. Transl. Med.* 11, eaax9364
42. Gherardin, N.A. *et al.* (2021) Gammadelta T cells in Merkel cell carcinomas have a proinflammatory profile prognostic of patient survival. *Cancer Immunol. Res.* 9, 612–623

43. Wu, Y. *et al.* (2022) A local human Vdelta1 T cell population is associated with survival in nonsmall-cell lung cancer. *Nat. Can.* 3, 696–709

44. Nguyen, S. *et al.* (2022) Vdelta2 T cells are associated with favorable clinical outcomes in patients with bladder cancer and their tumor reactivity can be boosted by BCG and zoledronate treatments. *J. Immunother. Cancer* 10, e004880

45. He, W. *et al.* (2022) Hepatocellular carcinoma-infiltrating gammadelta T cells are functionally defected and alloigenic Vdelta2⁺ gammadelta T cell can be a promising complement. *Clin. Transl. Med.* 12, e800

46. Meraviglia, S. *et al.* (2017) Distinctive features of tumor-infiltrating gammadelta T lymphocytes in human colorectal cancer. *Oncimmunology* 6, e1347742

47. Vantourout, P. *et al.* (2018) Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing gammadelta T cell biology. *Proc. Natl. Acad. Sci. U. S. A.* 115, 1039–1044

48. Melandri, D. *et al.* (2018) The gammadeltaTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. *Nat. Immunol.* 19, 1352–1365

49. Suzuki, T. *et al.* (2023) Beta-catenin drives butyrophilin-like molecule loss and gammadelta T-cell exclusion in colon cancer. *Cancer Immunol. Res.* 11, 1137–1155

50. Willcox, C.R. *et al.* (2019) Butyrophilin-like 3 directly binds a human Vgamma4⁺ T cell receptor using a modality distinct from clonally-restricted antigen. *Immunity* 51, 813–825

51. Lebrero-Fernandez, C. *et al.* (2016) Altered expression of butyrophilin (BTN) and BTN-like (BTNL) genes in intestinal inflammation and colon cancer. *Immun. Inflamm. Dis.* 4, 191–200

52. Dart, R.J. *et al.* (2023) Conserved gammadelta T cell selection by BTNL proteins limits progression of human inflammatory bowel disease. *Science* 381, eadh0301

53. Kenna, T. *et al.* (2004) Distinct subpopulations of gamma delta T cells are present in normal and tumor-bearing human liver. *Clin. Immunol.* 113, 56–63

54. Hammerich, L. and Tacke, F. (2014) Role of gamma-delta T cells in liver inflammation and fibrosis. *World J. Gastrointest. Pathophysiol.* 5, 107–113

55. Terzoli, S. *et al.* (2024) Expansion of memory Vdelta2 T cells following SARS-CoV-2 vaccination revealed by temporal single-cell transcriptomics. *NPJ Vaccines* 9, 33

56. Benson, A.B. *et al.* (2024) Colon cancer, version 3.2024, NCCN Clinical Practice Guidelines in Oncology. *J. Natl. Compr. Cancer Netw.* 22, e240029

57. Ten Hoom, S. *et al.* (2022) Clinical value of consensus molecular subtypes in colorectal cancer: a systematic review and meta-analysis. *J. Natl. Cancer Inst.* 114, 503–516

58. Cornista, A.M. *et al.* (2023) Colorectal cancer immunotherapy: state of the art and future directions. *Gastro Hep Adv.* 2, 1103–1119

59. Andre, T. *et al.* (2020) Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. *N. Engl. J. Med.* 383, 2207–2218

60. de Vries, N.L. *et al.* (2020) High-dimensional cytometric analysis of colorectal cancer reveals novel mediators of antitumour immunity. *Gut* 69, 691–703

61. Tachon, G. *et al.* (2018) Heterogeneity of mismatch repair defect in colorectal cancer and its implications in clinical practice. *Eur. J. Cancer* 95, 112–116

62. Greenberg, A. *et al.* (2020) Geographic heterogeneity for mismatch repair proteins is associated with defects in DNA repair. *Isr. Med. Assoc. J.* 22, 32–36

63. Amadio, V. *et al.* (2023) Genetic and pharmacological modulation of DNA mismatch repair heterogeneous tumors promotes immune surveillance. *Cancer Cell* 41, 196–209

64. Willis, J.A. and Overman, M.J. (2022) Inducing hypermutability to promote anti-PD-1 therapy response. *Cancer Discov.* 12, 1612–1614

65. Morano, F. *et al.* (2022) Temozolomide followed by combination with low-dose ipilimumab and nivolumab in patients with microsatellite-stable, O6-methylguanine-DNA methyltransferase-silenced metastatic colorectal cancer: the MAYA trial. *J. Clin. Oncol.* 40, 1562–1573

66. Crisafulli, G. *et al.* (2022) Temozolomide treatment alters mismatch repair and boosts mutational burden in tumor and blood of colorectal cancer patients. *Cancer Discov.* 12, 1656–1675

67. Karpinski, P. *et al.* (2017) Immunological landscape of consensus clusters in colorectal cancer. *Oncotarget* 8, 105299–105311

68. Lamb, L.S. *et al.* (2021) A combined treatment regimen of MGMT-modified gammadelta T cells and temozolomide chemotherapy is effective against primary high grade gliomas. *Sci. Rep.* 11, 21133

69. Li, X. *et al.* (2020) Tim-3 suppresses the killing effect of Vgamma9Vdelta2 T cells on colon cancer cells by reducing perforin and granzyme B expression. *Exp. Cell Res.* 386, 111719

70. Yu, L. *et al.* (2023) Tumor-infiltrating gamma delta T-cells reveal exhausted subsets with remarkable heterogeneity in colorectal cancer. *Int. J. Cancer* 153, 1684–1697

71. Mensurado, S. *et al.* (2023) The emerging roles of gammadelta T cells in cancer immunotherapy. *Nat. Rev. Clin. Oncol.* 20, 178–191

72. Almeida, A.R. *et al.* (2016) Delta One T cells for immunotherapy of Chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof of concept. *Clin. Cancer Res.* 22, 5795–5804

73. Blanco-Dominguez, R. *et al.* (2025) Dual modulation of cytotoxic and checkpoint receptors tunes the efficacy of adoptive Delta One T cell therapy against colorectal cancer. *Nat. Can.* 6, 1056–1072

74. Blanco-Dominguez, R. and Mensurado, S. (2025) How could gammadelta T cells change the treatment landscape for colorectal cancers? *Immunotherapy* 17, 967–970

75. Wu, K. *et al.* (2020) Vdelta2 T cell subsets, defined by PD-1 and TIM-3 expression, present varied cytokine responses in acute myeloid leukemia patients. *Int. Immunopharmacol.* 80, 106122

76. de Bruin, R.C.G. *et al.* (2017) A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vgamma9Vdelta2-T cells. *Oncimmunology* 7, e1375641

77. Oberg, H.H. *et al.* (2018) Trobody [(HER2)₂ × CD16] is more effective than trastuzumab in enhancing gammadelta T cell and natural killer cell cytotoxicity against HER2-expressing cancer cells. *Front. Immunol.* 9, 814

78. Oberg, H.H. *et al.* (2014) Novel bispecific antibodies increase gammadelta T-cell cytotoxicity against pancreatic cancer cells. *Cancer Res.* 74, 1349–1360

79. van Diest, E. *et al.* (2021) Gamma delta TCR anti-CD3 bispecific molecules (GABs) as novel immunotherapeutic compounds. *J. Immunother. Cancer* 9, e003850

80. Lameris, R. *et al.* (2023) A bispecific T cell engager recruits both type 1 NKT and Vgamma9Vdelta2-T cells for the treatment of CD1d-expressing hematological malignancies. *Cell Rep. Med.* 4, 100961

81. Ganesan, R. *et al.* (2021) Selective recruitment of gammadelta T cells by a bispecific antibody for the treatment of acute myeloid leukemia. *Leukemia* 35, 2274–2284

82. Pfeifer Serrahima, J. *et al.* (2024) Bispecific killer cell engagers employing species cross-reactive NKG2D binders redirect human and murine lymphocytes to ErbB2/HER2-positive malignancies. *Front. Immunol.* 15, 1457887

83. Bennouna, J. *et al.* (2010) Phase I study of bromohydin pyrophosphate (BHPP, IPH 1101), a Vgamma9Vdelta2 T lymphocyte agonist in patients with solid tumors. *Cancer Immunol. Immunother.* 59, 1521–1530

84. Di Mascolo, D. *et al.* (2019) Nanoformulated zoledronic acid boosts the Vdelta2 T cell immunotherapeutic potential in colorectal cancer. *Cancers (Basel)* 12, 104

85. Izumi, T. *et al.* (2013) Ex vivo characterization of gammadelta T-cell repertoire in patients after adoptive transfer of Vgamma9Vdelta2 T cells expressing the interleukin-2 receptor beta-chain and the common gamma-chain. *Cytotherapy* 15, 481–491

86. Noguchi, A. *et al.* (2011) Zoledronate-activated Vgamma9gammadelta T cell-based immunotherapy is feasible and restores the impairment of gammadelta T cells in patients with solid tumors. *Cytotherapy* 13, 92–97

87. Nicol, A.J. *et al.* (2011) Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. *Br. J. Cancer* 105, 778–786
88. Xu, Y. *et al.* (2021) Allogeneic Vgamma9Vdelta2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. *Cell. Mol. Immunol.* 18, 427–439
89. Wu, D. *et al.* (2015) Ex vivo expanded human circulating Vdelta1 gammadeltaT cells exhibit favorable therapeutic potential for colon cancer. *Oncimmunology* 4, e992749
90. Devaud, C. *et al.* (2013) Anti-metastatic potential of human Vdelta1⁺ gammadelta T cells in an orthotopic mouse xenograft model of colon carcinoma. *Cancer Immunol. Immunother.* 62, 1199–1210
91. Wang, L. *et al.* (2025) Prospects for gammadelta T cells and chimeric antigen receptor gammadelta T cells in cancer immunotherapy. *Front. Immunol.* 16, 1554541
92. Ganapathy, T. *et al.* (2023) CAR gammadelta T cells for cancer immunotherapy. Is the field more yellow than green? *Cancer Immunol. Immunother.* 72, 277–286
93. Hsiao, C.C. *et al.* (2022) Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. *Cell. Chem. Biol.* 29, 985–995 e985
94. Rigau, M. *et al.* (2020) Butyrophilin 2A1 is essential for phosphoantigen reactivity by gammadelta T cells. *Science* 367
95. Davey, M.S. *et al.* (2018) The human Vdelta2⁺ T-cell compartment comprises distinct innate-like Vgamma9⁺ and adaptive Vgamma9⁻ subsets. *Nat. Commun.* 9, 1760
96. Clark, B.L. and Thomas, P.G. (2020) A cell for the ages: human gammadelta T cells across the lifespan. *Int. J. Mol. Sci.* 21, 8903
97. Vantourout, P. and Hayday, A. (2013) Six-of-the-best: unique contributions of gammadelta T cells to immunology. *Nat. Rev. Immunol.* 13, 88–100
98. Wegrecki, M. *et al.* (2022) Atypical sideways recognition of CD1a by autoreactive gammadelta T cell receptors. *Nat. Commun.* 13, 3872
99. Reijneveld, J.F. *et al.* (2020) Human gammadelta T cells recognize CD1b by two distinct mechanisms. *Proc. Natl. Acad. Sci. U. S. A.* 117, 22944–22952
100. Roy, S. *et al.* (2016) Molecular analysis of lipid-reactive Vdelta1 gammadelta T cells identified by CD1c tetramers. *J. Immunol.* 196, 1933–1942
101. Uldrich, A.P. *et al.* (2013) CD1d-lipid antigen recognition by the gammadelta TCR. *Nat. Immunol.* 14, 1137–1145
102. Luoma, A.M. *et al.* (2013) Crystal structure of Vdelta1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human gammadelta T cells. *Immunity* 39, 1032–1042
103. Le Nours, J. *et al.* (2019) A class of gammadelta T cell receptors recognize the underside of the antigen-presenting molecule MR1. *Science* 366, 1522–1527
104. Marlin, R. *et al.* (2017) Sensing of cell stress by human gammadelta TCR-dependent recognition of annexin A2. *Proc. Natl. Acad. Sci. U. S. A.* 114, 3163–3168
105. Harly, C. *et al.* (2021) Human gammadelta T cell sensing of AMPK-dependent metabolic tumor reprogramming through TCR recognition of EphA2. *Sci. Immunol.* 6, eaba9010
106. Hudecek, R. *et al.* (2021) Blocking of EphA2 on endometrial tumor cells reduces susceptibility to vdelta1 gamma-delta T-cell-mediated killing. *Front. Immunol.* 12, 752646
107. Mangan, B.A. *et al.* (2013) CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vdelta3 T cells. *J. Immunol.* 191, 30–34
108. Rice, M.T. *et al.* (2021) Recognition of the antigen-presenting molecule MR1 by a Vdelta3⁺ gammadelta T cell receptor. *Proc. Natl. Acad. Sci. U. S. A.* 118, e2110288118
109. Willcox, C.R. *et al.* (2012) Cytomegalovirus and tumor stress surveillance by binding of a human gammadelta T cell antigen receptor to endothelial protein C receptor. *Nat. Immunol.* 13, 872–879
110. Du, Q. *et al.* (2024) Unravelling immune microenvironment features underlying tumor progression in the single-cell era. *Cancer Cell Int.* 24, 143
111. Quek, C. *et al.* (2024) Single-cell spatial multiomics reveals tumor microenvironment vulnerabilities in cancer resistance to immunotherapy. *Cell Rep.* 43, 114392
112. Huang, D. *et al.* (2023) Advances in single-cell RNA sequencing and its applications in cancer research. *J. Hematol. Oncol.* 16, 98
113. Ng, J.W.K. and Cheung, A.M.S. (2024) Gammadelta T-cells in human malignancies: insights from single-cell studies and analytical considerations. *Front. Immunol.* 15, 1438962
114. Lopes, N. and Silva-Santos, B. (2021) Functional and metabolic dichotomy of murine gammadelta T cell subsets in cancer immunity. *Eur. J. Immunol.* 51, 17–26
115. Wu, P. *et al.* (2014) GammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. *Immunity* 40, 785–800
116. Hu, G. *et al.* (2017) Tumor-infiltrating CD39⁺gammadelta Tregs are novel immunosuppressive T cells in human colorectal cancer. *Oncimmunology* 6, e1277305
117. Kawazoe, A. *et al.* (2024) Lenvatinib plus pembrolizumab versus standard of care for previously treated metastatic colorectal cancer: final analysis of the randomized, open-label, Phase III LEAP-017 Study. *J. Clin. Oncol.* 42, 2918–2927
118. Mlecnik, B. *et al.* (2016) Integrative analyses of colorectal cancer show immunoScore is a stronger predictor of patient survival than microsatellite instability. *Immunity* 44, 698–711
119. Antoniotti, C. *et al.* (2022) Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial. *Lancet Oncol.* 23, 876–887
120. Antoniotti, C. *et al.* (2025) Liver metastases do not predict resistance to the addition of atezolizumab to first-line FOLFOXIRI plus bevacizumab in proficient MMR metastatic colorectal cancer: a secondary analysis of the AtezoTRIBE study. *ESMO Open* 10, 104135
121. Lenz, H.-J. *et al.* (2024) Modified FOLFOX6 plus bevacizumab with and without nivolumab for first-line treatment of metastatic colorectal cancer: phase 2 results from the Checkmate 9X8 randomized clinical trial. *J. Immunother. Cancer* 12, e008409
122. Moretto, R. *et al.* (2023) Dissecting tumor lymphocyte infiltration to predict benefit from immune-checkpoint inhibitors in metastatic colorectal cancer: lessons from the AtezoTRIBE study. *J. Immunother. Cancer* 11, e006633
123. Cremolini, C. *et al.* (2020) Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE): a multicentre, open-label, phase 3, randomised, controlled trial. *Lancet Oncol.* 21, 497–507
124. Zhang, C. *et al.* (2017) Phase I escalating-dose trial of CAR-T therapy targeting CEA⁺ metastatic colorectal cancers. *Mol. Ther.* 25, 1248–1258
125. Li, M. *et al.* (2023) CD318 is a target of chimeric antigen receptor T cells for the treatment of colorectal cancer. *Clin. Exp. Med.* 23, 2409–2419
126. Alajati, A. *et al.* (2020) CDCP1 overexpression drives prostate cancer progression and can be targeted *in vivo*. *J. Clin. Invest.* 130, 2435–2450
127. Magee, M.S. *et al.* (2018) Human GUCY2C-targeted chimeric antigen receptor (CAR)-expressing T cells eliminate colorectal cancer metastases. *Cancer Immunol. Res.* 6, 509–516
128. He, S. *et al.* (2023) CD166-specific CAR-T cells potently target colorectal cancer cells. *Transl. Oncol.* 27, 101575