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间 充 质 干 细 胞 （mesenchymal stem cells，MSCs），自

Alexander Friedenstein 在 20 世纪 60 年代末初次发现以来，

一直是科学研究的主题 [1]。Spees 等 [2] 研究证明 MSCs 可能

起源于中胚层，具备分化为多种间充质组织谱系的能力，如

成骨细胞、脂肪细胞和软骨细胞，这些观察激发人们对MSCs
在修复组织方面潜在应用的兴趣。MSCs 不但能够进行自

我增殖和多向分化，还能合成并分泌多种生长因子参与机

体的免疫调节、炎症对抗等多种生理反应。MSCs 起源的外

泌体在疾病医治中发挥着重要的作用，外泌体比细胞分泌的

其他囊泡生物学特性更清晰明确，应用优势明显。人脐带间

充质干细胞 （human umbilical cord mesenchymal stem cells，
hUC-MSCs）能够在特定条件下继续增殖和分化成多种细胞

类型，较易分离培养和传代，且在多次传代和扩增后仍保持

干性 [3]。hUC-MSCs 可促进多种中枢神经系统损伤和周围

神经病变等的神经修复 [4]。本文现将 hUC- MSCs 治疗神经

病变的研究进展及作用机制进行综述。

１  hUC-MSCs 概述

hUC-MSCs 即从新生儿脐带的华通氏胶 （Wharton's 
Jelly）中分离得到的一种多能干细胞，拥有多向分化能力 [5]。

hUC-MSCs 具备伦理争议小、获取便捷及免疫原性低等优

势，逐渐成为再生医学领域的重要研究对象 [6]。hUC-MSCs
通常高表达 CD73、CD90、CD105 以及 CD13 等黏附相关分

子，而人类白细胞抗原 ABC （human leukocyte antigen-ABC，
HLA-ABC）等主要组织相容性复合体Ⅰ类分子呈低表达

水平。该类细胞不表达 CD34、CD45、CD31 等造血干细胞

标志，亦不表达 HLA-DR、HLA-DA、HLA-DP、HLA-DQ 等

MHC-Ⅱ类分子 [7]。研究显示，在丹参和 β- 巯基乙醇的诱导

下，hUC-MSCs 可上调神经相关标志物表达，包括巢蛋白、

β- 微管蛋白、神经丝蛋白以及胶质纤维酸性蛋白 [8]。生物

学特性体现在多向分化潜能和旁分泌功能上，可被诱导分
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化为成骨、软骨和脂肪细胞，甚至跨胚层分化为神经细胞或

肝细胞 [9]；hUC-MSCs 可以分泌血管内皮生长因子（vascular 
endothelial growth factor，VEGF）、肝细胞生长因子、白细胞

介素 -10 （interleukin-10，IL-10）等因子及外泌体，调控免疫

反应，促进血管生成并抑制纤维化 [10]。

hUC-MSCs 在治疗神经系统疾病时具有一定的旁

分泌调节机制 [11]。hUC-MSCs 的旁分泌作用体现在其

能够生成多种生物活性因子，例如脑源性神经营养因子 
（brain- derived neurotrophic factor，BDNF）、胰岛素样生长因

子 -1 （insulin-like growth factor-1，IGF-1）以及神经营养蛋

白 -3 （neurotrophin-3，NT-3）等，这些因子对细胞增殖有促

进作用，能减少受损细胞的凋亡，还能推动血管生成、轴突

发芽以及突触的形成。在脊髓损伤 （spinal cord injury，SCI）
进入慢性阶段，即便已经形成神经胶质疤痕，hUC-MSCs 移
植仍能在临床上带来显著的改善效果，hUC-MSCs 可以迁移

到损伤部位并存活，促进功能恢复。主要机制涉及旁分泌作

用，能够调节神经胶质细胞的活性，减少纤维化，增加轴突的

保存，诱导内源性细胞的增殖和分化，提升存活宿主细胞的

数量 [12]。

hUC-MSCs 在治疗神经系统疾病时也存在免疫调节机

制，Zhao 等 [13] 研究结果显示，hUC-MSCs 抑制包括 T 细胞、

B 细胞及辅助 T 细胞在内的淋巴细胞增殖，引导巨噬细胞从

促进炎症的状态转变为抑制炎症的状态。在 hUC-MSCs 移
植后，促使干扰素 γ （interferon-gamma，IFN-γ）和肿瘤坏死

因子 α （tumor necrosis factor-alpha，TNF-α）的表达水平上

升，激活糖皮质激素激活酶，将非活性的可的松转化为具有

活性的皮质醇，参与免疫调节过程 [14]。此外，还能促进抗炎

细胞因子如 IL-10 和 IL-4 的分泌，同时抑制 IL-1、TNF-α 和

IL-8 等炎症因子的释放，减低炎症反应的发生，从而加快组

织修复 [15]。

2  hUC-MSCs 与中枢神经系统疾病的关系

2.1  hUC-MSCs 和创伤性颅脑损伤 （traumatic brain injury，
TBI）

TBI 是中枢神经系统一种常见的损伤，由头部遭受暴力

引发，包括脑挫裂伤、脑出血、脑水肿和弥漫性轴索损伤等不

同类型，还存在创伤后癫痫、认知功能障碍等严重后遗症，已

成为全球性的公共卫生挑战。hUC-MSCs 及其衍生的外泌

体、线粒体通过多种机制治疗 TBI，包括经肿瘤坏死因子诱

导基因 6 蛋白调控相关信号通路抑制小胶质细胞焦亡 [16]，

激活线粒体自噬通路抑制细胞凋亡和铁死亡，减轻星形胶质

细胞增生与神经炎症，进而减少脑损伤、改善神经功能及感

觉运动功能 [17]。Shi 等  [18] 报道，经 hUC-MSCs 移植治疗后，

TBI 大鼠的神经功能获得改善，具体表现为损伤皮质区的

BDNF 等多种生长因子表达上调，同时细胞凋亡率下降。此

外，Zhu 等 [19] 通过 hUC- MSCs 移植联合生物工程材料、基

因修饰、基因沉默、药物和物理等多种手段提升综合治疗效

果。Liu 等 [20] 研究表明，采用 3D 打印技术将 BDNF 刺激的

hUC-MSCs 源性的外泌体 （BMExos）与胶原蛋白 / 壳聚糖

复合，体内实验表明，3D 打印胶原蛋白 / 壳聚糖 /BMExos 
（3D-CC-BMExos）疗法可以改善大鼠 TBI 模型中神经运动

功能和认知功能的恢复，可以促进 TBI 后病变中神经网络的

重塑，例如改善神经纤维、突触连接和髓鞘再生。hUC-MSCs
与活化的星形胶质细胞在 R-B-SPH 肽支架中共培养，可促

进前者增殖、神经元分化及更多 BDNF 分泌，利于外源细胞

神经分化和内源性神经发生，这一双细胞移植系统是 TBI 功
能性神经修复的关键，为相关细胞替代疗法提供有前景的

选择。hUC-MSCs 外泌体治疗可以改善神经功能，减少脑水

肿，减轻 TBI 后的脑损伤。Zhang 等 [21] 研究表明，外泌体的

给药抑制 TBI 诱导的细胞死亡，包括焦亡和铁死亡等方式，

外泌体激活磷酸酶和张力蛋白同源物诱导的推定激酶蛋白

1/ 帕金森蛋白 2E3 泛素连接酶 （PINK1/Parkin） 通路介导的

TBI 后线粒体自噬。然而，当前关于 hUC-MSCs 治疗 TBI 的
研究大多仍局限于实验动物模型，在临床应用中的安全性和

有效性尚未得到充分的证据支持，仍需经过更大规模且长

期的临床试验进一步评估和验证。Wang 等 [22] 研究结果证

实，hUC-MSCs 移植改善 TBI 后遗症患者的神经功能，hUC-
MSCs 移植可能成为 TBI 后遗症患者的治疗方法。

2.2  hUC-MSCs 和 缺 氧 缺 血 性 脑 病 （hypoxic ischemic 
encephalopathy，HIE）

HIE 其核心病理生理过程在于缺氧或缺血导致的葡萄

糖和氧气供应匮乏，进而引起细胞能量代谢的异常。发生的

再灌注损伤促使大量自由基的产生，这些自由基进一步加剧

脑部的代谢恶化，最终引发神经元的死亡或过度凋亡。关

于 hUC-MSCs 移植治疗在脑损伤神经修复作用和重塑方

面的具体机制，并未完全明确，但普遍认为是以下几种机制

起作用。第一种机制通过移植的细胞直接分化并替代受损

细胞实现功能恢复，Hermans 等 [23] 研究显示，hUC- MSCs
具备迁移能力，当通过鼻内给药后，它们能够受到趋化因子

CXCL10 的指引，精准地迁移到缺血性损伤的区域。这一过

程中，hUC-MSCs 可能产生神经元分化，并取代那些受损的

细胞，与周围的健康细胞建立起新的联系，助力神经功能的

恢复。Donega 等 [24] 研究揭示 CXCL10 在 hUC-MSCs 向损

伤部位迁移过程中的关键作用。另一种机制是 MSCs 的分

泌作用，Jiang 等 [25] 研究表明，hUC-MSCs 具备分泌重组人

干细胞因子 （stem cell factor，SCF）等多种细胞因子的能力，

这些细胞因子作为细胞间的信号传递介质，能够参与调控细

胞增殖和决定其分化方向，并为神经细胞提供必要的营养支

持。hUC-MSCs 分泌的 BDNF，在神经保护方面发挥着更为

关键的作用。鉴于神经细胞凋亡是导致 HIE 新生儿神经功

能障碍与行为异常的核心机制 [26]，靶向抑制该过程对于改

善脑功能至关重要。细胞凋亡的过程涉及多个基因的激活、

表达与调控，其中半胱氨酸天冬氨酸特异性蛋白酶 （cysteine 
aspartate-specific protease，caspase）家族成员扮演着核心角

色，尤其是 caspase-3，它是凋亡过程中的关键执行者 [27]。Li
等 [28] 的研究表明，hUC-MSCs 具有抑制神经元凋亡的能力。
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在实验中，当 hUC-MSCs 被移植后，发现 caspase-3 基因的表

达水平下调。Cotten 等 [29] 还观察到 hUC-MSCs 能够上调抗

凋亡基因 B 细胞淋巴瘤 2 （B-cell lymphoma 2，Bcl-2）的表

达，并抑制促凋亡基因 Bcl-2 相关 X 蛋白 （Bcl-2-associated 
X protein，Bax）的表达。这些结果表明，hUC-MSCs 能够抑

制 HIE 大鼠脑细胞的凋亡，降低梗死面积和缺血性损伤。在

一项Ⅰ期临床试验中，表明 hUC- MSCs 在 HIE 新生儿中的

初步疗效，研究结果显示 hUC-MSCs 输注耐受性良好，有初

步疗效 [29]。未来研究的深化将不仅优化 hUC-MSCs 本身的

功能，更将拓宽其在 HIE 临床治疗中的应用，进而为再生医

学领域注入新的发展动力。

2.3  hUC-MSCs 和帕金森病 （Parkinson's disease，PD）

PD 是一种复杂的神经系统病症，其标志性病理变化是

黑质多巴胺能 （dupminergic，DA）神经元的丧失，这导致运

动系统功能的损害。hUC-MSCs 移植在医治 PD 方面展现

出一定的疗效，其确切的作用机制并未完全明确，主要可能

存在以下机制。首先是营养支持作用：移植后的 hUC-MSCs
可以抵达受损部位，释放多种因子，为神经系统的再生创造

有利的环境。这些 NT-3、BDNF 等保护性因子，可以促成血

管再生，发挥抗炎和抗凋亡作用，从而保护处于变性边缘的

DA 神经元。姜黄素预处理的人脐带间充质干细胞促进 SH-
SY5Y PD 细胞增殖，这可能与该细胞中粗面内质网的增加

有关，可以同时分泌许多有利于 PD 治疗的细胞因子和生

长因子 [30]。hUC-MSCs 通过多重机制促进神经修复：其产

生的细胞外基质蛋白为神经细胞提供关键的微环境支持，有

助于神经发生与功能恢复 [31]；同时，这些细胞还具有替代受

损神经元的潜力，能够直接或间接分化为所需的 DA 能神经

元。王娜等 [32] 研究表明 hUC-MSCs 在体外可分化为 DA 样

神经元，并能分泌多种具有保护作用的因子，从而发挥治疗

功能。BDNF 修饰的 hUC-MSCs 衍生的 DA 样神经元通过

分别调节 BDNF- 酪氨酸激酶受体 B （tropomyosin receptor 
kinase B，TrkB）- 磷脂酰肌醇 3- 激酶 （phosphatidylinositol3-
kinase，PI3K）/ 蛋白激酶 B （protein kinase B，AKT）信号通

路和热休克蛋白 60- Toll 样受体 4/ 髓样分化因子 88 信号

通路，通过神经保护和抗神经炎症改善 PD 大鼠阿扑吗啡诱

导的对侧旋转行为。hUC-MSCs 在诱导 DA 神经元时具有

谱系特异性分子密码，并强调 hUC-MSCs 在 PD 细胞替代疗

法潜力的独特优势。此外还存在免疫调节作用，病理学研究

在 PD 患者脑内观察到，小胶质细胞在炎症诱导下发生增殖

与激活，而 hUC-MSCs 能够抑制这种增殖效应，并降低小胶

质细胞对促炎因子的生成。在 PD 患者的大脑中检测到促

炎细胞因子水平升高，如 TNF-α 和 IFN-γ 等。Zhang 等 [33] 的

一项研究中，将 hUC-MSCs 外泌体注射到 6- 羟基多巴胺诱

导的帕金森病大鼠模型中，发现外泌体被大脑患侧的 DA 神

经元和小胶质细胞吸收，修复黑质体 - 纹状体多巴胺系统损

伤并抑制小胶质细胞活化。该实验通过高通量 microRNA 
测序和蛋白质光谱测序进一步确定 hUC-MSCs 外泌体治

疗的潜在靶点。这些研究结果表明，hUC-MSCs 的免疫调节

和抗炎作用在 PD 的医治中具备一定作用。Zhao 等 [34] 的一

项整合 MSCs 移植治疗 PD 的临床试验数据表明，干细胞移

植是 PD 的有效疗法，并受移植的细胞类型和移植后有效性

持续时间的影响，同时 hUC-MSCs 是移植治疗的有效细胞来

源，现有研究已证实其移植治疗效果至少可稳定维持 12 个

月。然而，由于目前针对患者的长期监测 （超过 1 年）相关

研究较为有限，其长期疗效与潜在影响仍有待进一步探索。

因此长期有效性仍然未知。

3  hUC-MSCs 与周围神经疾病的关系

3.1  hUC-MSCs 和 SCI
SCI 因其高发病率和致残率，给患者个人和社会带来极

大的负担，其治疗和康复问题已成为医学研究中的重大挑

战 [35]。在众多干细胞疗法中，hUC-MSCs 移植被视为修复受

损脊髓的一种极具前景的治疗手段。然而，虽然 hUC- MSCs
在 SCI 医治中的运用潜力巨大，但其具体的神经修复机制并

未完全明白，已有研究揭示 3 个方面。首先，hUC-MSCs 可
以分泌多种因子保护神经元，促成残留神经元的轴突再生和

突触构成，并推进 SCI 区域的血管形成。Cai 等 [36] 的研究显

示 hUC-MSCs 分泌的肝细胞生长因子通过磷酸化 AKT/ 叉
头框蛋白 O3a 抑制神经元细胞凋亡，从而修复 SCI。Xiao
等 [37] 的体外研究还证实，hUC-MSCs 起源的外泌体通过携

带 miR-29b-3p 进入 SCI 神经元并沉默磷酸酶和张力蛋白

同源物激活 PI3K/AKT 通路，从而减少神经元细胞凋亡。Li
等 [38] 的研究表明 IL-4 预激活的 hUC-MSCs 来源的外泌体

富含 miR-21-5p，可通过调控巨噬细胞极化、缓解 SCI 后炎

症反应并促进神经修复，其在调节炎症反应的同时减少细胞

凋亡，为 SCI 治疗提供新思路。其次，hUC-MSCs 可以改善

SCI 的微环境，减轻炎症反应。Wang 等 [39] 的研究发现，在

慢性 SCI 治疗中，植入胶原支架和 hUC-MSCs 促进神经丝

和 β- 微管蛋白 - Ⅲ 阳性的神经和髓鞘再生，在病变区域诱导

β- 微管蛋白 - Ⅲ 阳性神经元的产生，阻断病变区域外的星形

胶质细胞生长，为神经再生提供有益的微环境。Na 等 [40] 的

研究则发现，hUC-MSCs 移植治疗在 SCI 大鼠模型中可以

下调核苷酸结合寡聚化结构域样受体家族 pyrin 结构域包

含蛋白 3 表达，缓解炎症反应，改善免疫微环境，并通过抑

制丝裂原活化蛋白激酶激活的蛋白激酶 2 的磷酸化水平挽

救 SCI。Li 等 [41] 的研究还发现，用 IL-4 激活 hUC- MSCs，
随后收获它们的外泌体，这种 hUC-MSCs 来源的外泌体富

含 miR-21- 5p，这在改变巨噬细胞极化、减轻 SCI 后的炎症

反应和促进恢复方面发挥关键作用。最后，hUC-MSCs 具
有多向分化的潜能，能够分化为神经元和少突胶质细胞，从

而促成轴突再生、髓鞘化和重建神经环路。Yang 等 [42] 的研

究还发现，免疫荧光染色证实，一些给药的 hUC-MSCs 整合

到脊髓实质中，分化为星形胶质细胞和少突胶质细胞，但未

分化为神经元，还可以观察到星形胶质细胞增生减少、髓鞘

再生增加和神经元再生。此外，hUC-MSCs 还能够释放含

有生物活性效应的外泌体及囊泡，这些分子能够促进神经轴
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突再生、抑制瘢痕生成和促进血管再生。这些作用共同发

挥抗炎、抗凋亡作用，促进 SCI 的恢复。Wang 等 [43] 的研究

则发现，将 miR-199a-3p/145-5p 转移到 SCI 大鼠神经元中的

外泌体影响酪氨酸受体激酶 A （tropomyosin receptor kinase 
A，TrkA）泛素化并促进神经生长因子 /TrkA 信号通路，表

明 hUC-MSC 衍生的外泌体可能是一种有前途的 SCI 治疗

策略。Wang 等 [44] 的关于 MSCs 移植治疗 SCI 临床疗效的

Meta 分析结果显示，MSCs 移植改善 SCI 后的运动、感觉和

日常生活，hUC-MSCs 是最有效的细胞来源，鞘内注射是最

佳移植方法。Akhlaghpasand等 [45]的一项随访期为 12 个月的

Ⅰ期临床试验中，同种异体 hUC- MSCs 来源的外泌体鞘内

给药对亚急性 SCI 是安全的，这种疗法可能与患者的潜在临

床和功能改善有关。但在这方面，需要未来具有足够功效更

大规模的 Ⅱ / Ⅲ 期临床试验。

4  挑战与未来

hUC-MSCs 治疗神经损伤领域取得进展，这得益于干细

胞制备技术的不断革新，如无血清培养体系的优化和 3D 生

物打印支架的应用 [46]，体外诱导分化方法的持续改进，例如

通过小分子化合物 SB431542 联合骨形态发生蛋白 4 可高

效诱导神经方向分化 [47]。在移植技术方面，经鼻黏膜递送

等新型移植途径的开发有效规避血脑屏障的限制 [48]。重要的

是，联合治疗策略展现出巨大潜力，如将 MSCs 负载于透明

质酸 - 明胶水凝胶中可延缓细胞凋亡并增强迁移能力，与雷

帕霉素联用可通过调控哺乳动物雷帕霉素靶蛋白通路改善

缺血性脑损伤修复 [49]，而基因工程改造的过表达 BDNF 的

hUC-MSCs 则能促进突触可塑性 [50]。展望未来，该领域研究

将着重推进 hUC-MSCs 技术的标准化建设，包括建立统一的

GMP 生产标准和细胞鉴定流程；深入探索 hUC-MSCs 外泌

体中长链非编码 RNA 肺腺癌转移相关转录本 1 对少突胶质

细胞分化的调控机制及 Wnt/β- 连环蛋白通路在神经突触重

塑中的作用 [51]；同时通过开展多中心随机对照临床试验和

开发纳米荧光标记等活体追踪技术，加速研究成果向临床转

化，最终实现神经损伤治疗的新突破。

hUC-MSCs 治疗神经病变有一定局限性。首先，

hUC- MSCs 在移植后面临存活率低、归巢能力不足的问题。

Chen 等 [52] 的研究表明，移植后的 hUC-MSCs 在病变神经

组织中的滞留率通常不足 10 ﹪，且易因局部缺血、炎症或

免疫微环境导致凋亡。此外，血脑屏障的存在进一步限制

hUC- MSCs 向中枢神经系统有效迁移，影响其对脑或脊髓病

变的治疗效果 [53]。Liu 等 [54] 的研究观察到移植后细胞以旁

分泌作用为主，而非直接替代受损神经元，这可能导致治疗

效果的不稳定性。尽管 hUC-MSCs 具有低免疫原性，是移

植治疗的优质细胞来源，但其移植仍存在一定的免疫排斥风

险与异质性问题。Kang 等 [55] 的研究表明，异体 hUC-MSCs
移植可能引发宿主免疫反应，尤其在重复注射或免疫抑制微

环境不足的场景下，该风险更易显现。此外，hUC-MSCs 移
植长期安全性与致瘤性存在争议，尽管 hUC-MSCs 的致瘤

风险低于胚胎干细胞，但其长期安全性数据仍有限。动物实

验显示，部分移植细胞可能滞留于非靶器官（如肺、肝），潜在

副作用尚不明确 [56]。同时 hUC-MSCs 的作用机制尚未完全

阐明，尤其是旁分泌效应 （如外泌体、BDNF）与直接细胞替

代的贡献比例 [57]。未来可能需要结合生物材料支架、基因

修饰或药物协同策略以增强疗效。
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