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Mesenchymal stem cell-derived extracellular vesicle:
a cell-free therapeutic strategy for acute lung injury

CHEN lJiawei, ZHANG Huilan

Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430030, China

Abstract: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), are
common critical conditions in clinical practice. Due to their diverse etiologies and severe conditions, more
effective treatment methods are still yet to be developed. Mesenchymal stem cell-derived extracellular vesi-
cles (MSC-EV) have advantages such as low immunogenicity and no tumorigenic risk, bringing hope for the
treatment of ALI/ARDS. This review elaborated on the mechanisms of MSC-EV in treating ALI/ARDS from
multiple aspects, including immune regulation and inflammation control, alveolar-capillary barrier, cell death
regulation, microbial clearance and antiviral activity, and mitochondrial function protection. Additionally, this
article summarized the application of exosome engineering strategies in improving therapeutic effects and dis-
cussed the current preclinical and clinical research progress. MSC-EV provide a new breakthrough for the
treatment of ALI/ARDS and have significant clinical translational value.
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Hrp, ARDS BHMIET RN 53k 40%, #Bor¢
FEH A 5 1T A D) RS SN BG4,
SN A TR R . (Al FERT T4 (mesenchymal stem
cell, MSC) ##¥]T 1968 4 Friedenstein 25 7F & #f
e, HATATEEAEBT A . IR ICHE . R
TR T A 2L55 Z R 20 b 43 B4R MSC, I 2 i
HAMREER Z im0 ihee . A R EHRE ) s
FPER, CRCh AT S R A, A
UEHEIF B MSC AT 38 2o Jifi b b Bz A 8 N BB
RS T 38 240 LI A L R 9 i 35 b s 240 i 2 1)
8507 A8 ALL 5 T R 5 RAFVER, (036 400697
G 2Bk, BIUUEEAS | e R . e

2. EEREAE, HRrCiE G TR 22
WA T 55 3 WAL, X — & BELE MSC 43 WA 1) 240 it
Ah3EUI (extracellular vesicle, EV) %% ciE, &
ALIH 18 5 U i EZE R 42

A% R MSC-EV {697 ALIVARDS (14 4Ll
JEULIE 1, 3898 MSC-EVAEF Ty . hrpfs
. AR TR S 2 I 2R S, JFA
Yy TR, S MAIMLA (exosome, Exo) # ] 4:
AR s R, WERgs B B i AR
S S RS AT SR AR, DA RS0
AR T Bt () B BL A K & R 1wl o
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1 EV#&

MSCH] /M ZFEV, {4 Exo. M (mi-
crovesicle, MV) FIT-/MA (apoptotic body, AB)
3L, o Exo S Hi M 9T P A BB ) oY 1S 2FT0 1L
22 LA I ] S 4 0 ) BE Y, ELAR R 30~150
nm; MV & i 5B B2 ) AN r= A B8, B
#£4 100~1 000 nm; AB g H 4 777 A 1 FR
FEEEH), HEA>1 000 nm™, XU EV SER {552
T MSCIEEAEYF R, WNEE SR, &
i RS ZFAYE ST, REA U 1]

(1038 TR 51 3, [R) IR LA I fo 328 D 1k N TG L
I AU A5 5 5 . MSC-EV TERKFEAE . A JH % . &
AN AT RN 8 TT R A5 22 F ALL I PR i A2 o
RAEAET, HIRYT LR R AT 5t 1 32 2k
(LA
2 EV . ALI ¥ #5377 Hul
2.1 REIETSRERE
2.1.1  Ev¥ZmmmAiAs

L I3 200 A 65 S 7 1A 1) 22 T 8 X AR
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o SR, 7€ ALUARDS R HEL A2 b, g4 i
e P 20 o B R I s, o R A AR AR A
MLPR -, B S SO b R A o R B,
Sy fiiER S AE AL P LIRS N E . A AT DA
MR8 A B i AS Ak S AN TR) RS, Y g 4 i
Ii1] M2 R AU B4 s ] D A S E . MRS It Dl A o

MSC-EV ]38 o 38 55 B w20 i v g AC S 7
I E AN AL, MR M2 S A i B A
AFE AT R, M1 S0 2 v 3R A5 g
I, I M2 B 3R] FH R D R AR A AR i 4ok A
B AR Ak o I I 4 A T A 1% BEL BT T LA 2K
P WA ) MBI Ak, Deng S5°HIE B -]
T4l (bone marrow mesenchymal stem cell,
BMSC) i ) Exo 1T LA il I 200 Jf 4% 15 fit
AR HT A 30 e 475 3 PR — 1o T I W I A 1Y)
UM R AR i AB W 7 PE 4 i 5
T~ (programmed cell death ligandl, PD) FC{A 1 Fil
53 105 240 i 7 i 7 PR i e AE T 85 11 1 (programmed
cell death protein 1, PD-1) Z[HJJAHEAEH, 7%
T35 4 LA 5 T T e B, TR TR A OC S
fitg CnC VARG 2. P R R AR M2 L), AR kA
(a7 AN

MSC-EV # A 1 Z R R4 f% RNA, 7E g 4
Mtk & ¥ EZAE R . MSC-EV ¥ miR-27a-3p
el 3 2 Pt I 24 L v T A B [ M2 Y
Wk, X n] RE M of B A A% 7 «B (nuclear
factor kappa B, NF-xB) i [ X # WV K NF-xB1 &
FEVE s A BB A 51 200 f A1 4 . 38 1) % 12 miR-
150-5p ZEEWEANML, HiES ST BREEN A2
mRNA % 3'UTR BARIF M H Rk, T 8lzg 25
1% 1k 5 H B (mitogen-activated protein kinase,
MAPK) 8 F&R T, fEdE w20 i m) M2 BRI AL,
M R MSC-Exo  (human umbilical cord MSC,
hucMSC-Exo) 742 1) miR-45 1 1 1 #2 i) 37 1 15 1
4 e 3 A% 0 ) R 32F 1 B0 B e UL 3K e/
5 F1 I B (phosphoinositide 3-kinase/protein ki-
nase B, PI3K/Akt) {55l MR Ak K T [, BHL
Wr R MG S AL T, i A0 A e M2 B4R AR
miR-21-5p A B T B W5 40 M (] M2 HT % F AR AL,
H MSC-Exo B 7 RCR 5 H miR-21-5p 7K - 1 1E
MY, KBEIE 4D RNA (long non-coding RNA,

IncRNA) i 4t (5. /% . srfeAidn
9 T), ADSC-Exo K47 (1) IncRNA DLEU2
ik B EL R A ML, sk B ) 9 Y miR-106a-5p/
LXN Bl i g 40 it M2 #ie AR

AT A 3 AL T (R A ALT Y A i 1) M2
AR AL, ADSC-Exo A #il il J§ Z # (lipopolysac-
charide, LPS) J#J5 TP Z AT 1 7 196 K 4R
T35 FI NOD RS2 I FAE 25 M A DGR 1 3 (NOD-
like receptor thermal protein domain associated pro-
tein 3, NLRP3) . gasdermin D(GSDMD ) % ¥ 45 14
BRAY A, A M1 AR AR T MSC-Exo fE .3
R i 9 W A P SR RE B SR 1 (immune
responsive gene 1, IRG1) [ ZRik, 304 FE iR
(itaconic acid, ITA) #9774=, BEIMTE S MH =R
PE PRI PESE % (reactive oxygen species, ROS)
FE AR, (2 it 96 1 g 240 e ) MI2 U AR AR
212 REAFTFRALSHRKET LR

ALI/ARDS P 1% 0 3 BRARF IR I 2% 125 1) AR A I
N, P K Z2 0 50T R RIAE S 38 B T
1 T A R G 4355 2l 40 A O 4 A X i
Toll #£ 5Z 1A (toll-like receptor, TLR) . NLR &5 #& 5
PN 32 VRO 56 K e R GEmt, it B 40 i
e B S M AR TR B R BT, FH S rh M 20
RN R AL T dL 21, 1 MSC-EV 1 45 25K
B TIHROIRRR R, B/ T RAE, HEhN TR A
WA 1R IB K, IR TIBDIRE . 2 R 5%0E
AR 2 5 g, W 2 miR-146a-5p [
R R BE I 7 Z AR AR SC I 5 6, 401 NF-«B #%
155 ] NLRP3/JH T A S BE 58 1 /caspase-1
W%, W HA & (interleukin, IL)—16 F11L-18 A%
B AT miR-451 10 45 1 v A Ak B G A1
(tuberous sclerosis complex 1, TSC1), G MiFLsh
Yy EE e £ W H  (mechanistic target of rapa-
mycin, mTOR) %, M| E R0 A s s
¥ ¥ B2 M1 2 IH ¥ 2 (nuclear factor erythroid 2-
relatedfactor 2, Nrf2) Préafbim g, FiE MLl 2
ARE-1. B AL AL (superoxide dismutase,
SOD)&%, Wiz A A
2.1.3 bk m LR A A )

R4 I S 5 R PR R e R rp e
B AR —, TERRMERIERGENIER
RPN A A A A AR, AT DAE i AR A A &
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PR R )RR A A A BT BE . SR, 4R
PEMLRI I HrisE, v 20 e o B T A S skl 4t
#1407, 76 ALUARDS th, MSC-EV A 3 Bt &I
rheMRL AN R I DD REC, RIS, BRA 2 Bk
3T LIS, TR A A T L3 00s A0 i A/ 2T 24 T
2% 25 Re) — v MR A1 L SR B B (neutrophil extra-
cellular trap, NET), ‘B J&—# ) DNA FIZH K
FER Gy, AR R S A R R AR AT AR BT
5 YA LA AR AR, RIS S0 [ 4 3R R B
20 S0 2 TR AR SRR, {H NET Bt Bt
X A A A5 o Tan 51" R I MSC A7 AE I I/ T
P ]y PR AN I R, IR T CD73 Ay
S04 AT AR 5 0 1 /R T A5 R B NET 2B i
Zou 21 % B MSC-Exo 1] 1 i B il miR-127-5p
HINET B B, MMIEA% ALL; 1 Zheng 457
W N BT, 7E b PR 40 ML N CD64 J& miR-127-
5p HOHE S,

22 ffiA—EHNEREEE

ALT g FRRE 5 A2 I 960 — 6 20 145 e s e 38
A NARSNE SR VEA R AT, 1B i —
B MAE 5 ] BERARYT ALLIYA S0EAE

Az o7 B D) e Y AR 7 MR SR A ML 2R i B0 )
= N AR TR i 4 (R I M RN ) SE
LPS {2 1 il Jili G 1 /8 PN B2 4E L (pulmonary mi-
crovascular endothelial cell, PMVEC) H 5% 4 246
-1 (zonula occludens-1, ZO-1) F1 ZO-5 1y F ik,
Jig 105~ & i oA YR %) 40 i 4 € 9t ADSC (adi-pose-
derived stemcell, ADSC)-sEV REA MK & X —728 4k,
JF B A] 8 2 A [T MZ B A% R (microRNA,
miRNA) BRFE A2 I H ™, F-Nlah & A 7EH
Mg b A A, H AR X T 4
P Z AR R R OGS, AR . 1T
For3d, LPS Al F-WLgh & H R G sl 4q L h
BRI JJLF4E, W 725 2 4 o8 4 it 1] R
B, S BN R B R R A T . REARA R
T M4 A B ZR -1 mRNA B 56 nT A& 52 fili 6 40 1l 4
WENE, 5SS R B MSC-MV 1] i CD44
PPN 4 2R -1 mRNA S8, 000G
G4 TR Vil 7 A -2 A2 A 3 B A1 UL Bl B R AT
4eIe . B ZO MELMHE B E A RIL, iR
YR A M 2R R e . T A AR K I (hepato-

cyte growth factor, HGF) &5 N B¢ i i M AH ¢ 1)
KEESY T, MSC-MV #4 ) HGF mRNA j# % &
N B2 40 M S B0 S D RE I HGF 2R, LW E-45
FHEE A Ml occludin 3k, HumAMuE &4z, JFmEl
N R 4B R T, AR MSC-Exo (human pla-
cental MSC-Exo, HPMSC-Exo) ] ifi i miR-148a-
3p ELHEEA ] RHO A OGS Hh SR e i 1 3Rk R i
S0 1 4 R 20 L T B ) e s (b F-WLsh 2R
HZEAEL, B8 2z0-1)"; BMSC-Exo il it miR-150
i CD34 (M4 588 PEprEY ) ME-S5F5 81,
R AR A 95 s BMSC-Exo i3 A | iz 40
o G B B SZ R CSA By £ ik, i i s
Hippo i % % . A F YAP I* ¥ claudin-1. occlu-
din, ZO-1 F1 E-%5 %k 8 H & B KF, I I
-,

I FZ 4388 (epithelial sodium channel, ENAC)
JERIE b B 20 R R A DGR R F, T
it b R A M A TR v, R A s S R R S
75 1 A ACAR DT T it 7K e EE WA i, el e 7 T 3
JOG R b ) BB A AR R B S ¥ . BMISC-sEV 1Y
miR-34c ] LUFE S PR 45 & I S E AL & & T8 2R
1) CUERICY), S InBEiR fb %) PBK/AKt 2 11, M
11 3% 5% LPS #I #ill /5 ENaC y i 3% 3 i5; miR-
199a-3p W AT e 38 128 18 15 Big 2475 3 0 I SR BE A
F—ao (tumor necrosis factor-a, TNF-a) N TZ 5
ENAC Ay 52,

Ak, Shah %A, HAmRIIEAEK
K F—B A2 /4R Runt A 5G4 7 - 1 p66 WE 7 MSC-
EV WA 5 ARDS 8 I S A AF R4, TRER
M T IZ R BV 38 i 42 3 P Bz 200 3 5 Rl Y
T B3 275 PR DR A A B 3 e e e PR T A 43 A
2.3 AR TERERE

AL F 5 Z A st T- I, G
-, RFE. BT, BRSBTS, XEEESEToIE A
AMLAE ALL I B o o5 8 2207, i8R
I7 BV AE I 05
2.3.1 MSC-EV # 4t /8 =4E A

0 0 T — Pl = AR AR A BRSBTS 5K
FEALTHY, P8 T4 MR ROS R4 405 40 5 3+
BN J8 L 40 f ™ A2 1 2 ROS, i 23 30
FERPERGE, WIS P 20 B R T2 B 2 1
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WA A, S 2rb MR 20 6 35 T A 38 8 0
J'&, e i K B

MSC-EV #] il i F 8 TLR4 F1 NF-kB 7K *F ifij
VA B R A3 W, v R i A8 P R A
FT, PRI RS, WFE BMSC-EV Hi 4%
FE 55 1R K7 miR-191 7] LUE i B3 5T M G
F1405 1 (death-associated protein kinase 1, DAPK1)
mRNA 254 BH I Bt B2, © % DAPK W] 3E
NF-«B i #%, MR #F 485 S 8 722, MSC-EV
38 33 JE ¥ PI3K/Akt i i K AR TR A, Bl
1 miR-425 2 48 1) B R 1 5 5K 01 B 1 [ UR
(phosphatase and tensin homolog, PTEN) mRNA [
3'UTR, il PTEN #35%, [ PI3K/Akt i %,
0] 40 L 98 T 3 MSC-MV i i %5 % HGF mRNA
5 PI3K-Akt-mTOR MU HTIA T8 B, WG I A=
R AN S P R A0 R R B TR Y S AL
B A R, miR-126 5 9 48 T BE 8 i S
PI3K/Akt it R A il N B2 4 i 95 7215 miR-21-5p
VU AT [e] B ) G2 T3 [ PTEN I PD-4, FHLIKT 2
ST AT S P>,
232 MSC-EV #4k 56 T 374

BRACT & — ot . LS Ab B SRR o
i AR IE AR T A ST 2, &AL
il 32 AL B K A% Ll . —J2 SLCTA11-GSH-
GPX4 i [ 58, AR MO AR B A Ak 1 5
IR

MSC-EV 2 Z oy AN R BT, &A% i 4
PER o #8453 F /KT L 3 B AR 41 A P kDT
BUF B MEESRAET- B (WS AR K% 7
B 1T AR D H kst S Ak P 4 (glutathione per-
oxidase 4, GPX4) [J3Rik, HIMSC-EV —J7 1 Al LA
UG BRI 1 0E Nef2 5 S g, A2
HE Nrf2 TS DY i 21 28 0 AU -1 il GPX4 19 3R
ik WRE LR AR B LA LA K 3 T SOD Al GSH Y 7
T, AR AR M AR TN U S R T
Y, 5 —J7 1, MSC-EV A il 1 4432 miR-125b-
Sp H4ZH ) i Keapl mRNA ik, Bk Keapl
XFNref2 (A EIE i JH GPX4 1 3Rk,
BT b A B R RE 1
2.3.3 MSC-EV % 2m it & = 49 %)

FET ] LI o T 53 52 453 40 M K 97 70 240 e P J%

Yy, T BRI AR B ORI A AL, [R5 | A&
RAEJ N, GSDMD (1) 224 fiff & Caspase-1 F1 11 il &
FET-BIHLE] . MSCs-Exo i it T 1 caspase-1 i1k |
GSDMD ) #I Fl IL-18/IL-18 BE i, & FEMHI AT
EOR (I S AR TR e R (A S
miRNA PHAEISERL, : miR-22-3p B NLRP3
RAE/IMA . miR-214-3p 454 caspase-1 mRNA [F#A%
HFIK | miR-16-5p 5 7E# )] GSDMD™ ., {531
EHYZ, NLRP3 RAE/IMEVE A FLE caspase-1 FFAiE
HEIL-1B FNIL-18 7 b A SR R E AW, Frfk
ToEE P IEEE A G, "L, ADSC-Exo
RERA A0 LPS 5 T T3 R A I 1 7 L Je
FEARAET A CEE H (f435 NLRP3 il GSDMD A bifi
iRk FEIRKF, IS, BMSC-Exo il i
TR yes HHOCHE 15 p-iE A I Z M AH BAE R,
PE R A SR, IR AR SMIEIRE S AT
PUR

2.3.4 MSC-EVAY wp g %

I W A2 — v B R A PR T 1 2 S5 4 [ i
FBEARALE], 724000 o fL FAS S vh BT Z FhE
L Enps kAT . PR AL RE I DL AN T
PR g AR Z ] (R B3

MIRTF O 0 1 R, #5 FloR IR MSC-Exo
Y AT DA o e S P A O v R PEAE .
hucMSC-Exo 1% j# miR-451 ¥ [5] T 4 TSC1 %3k,
fif 5k TSC1 X mTOR il #1745, AT il 5
W AT A W, 820 NLRP3 S /IMAIE TS M AiE R A
TR, BMSC-Exo Ml i i3 miR-384-5p H ##4F
JHT Beclin-1 mRNA 3'UTR, ] [ WA 12 %,
i 3t B 1w S B A0 A 5

TETBENE, AW AL L #EE I8
RN o — 5T, ARt EAT I v v s 2R R
TR GG RAE RN ; 75—, bRz 4ifrh
mTOR P77 T 20 [ W30 1 nT B3 i NF-xB 555
TR LPS 35 S 1Y ALIY, R[] 41 g 2 19 L 2 AS [f]
40995 L AT 0/ 2 2 PR A AT I AR AR AL
B, hucMSC-Exo H1 5 3R 35 ) miR-377-3p (%
IR BT A A0 A AR Y 3 A ) 3B A
mTOR & & W) 1 (178 45 #H ¢ HL 1 HUH mTORC1 Xf
Rz AR B E R, AR SRR AR DG ER 1 1 e
3- 11/ Beclin-1 & 35 I I8 DLk 42 il 2 I iz 98 AEDY,



6 ZHKRFFR(EF R)

%514

XS LR AR T R SE T A MEAE Y ALLIR YT 3R
WIS, T L FE 40 L I A B S R R R A B Y
RS
24 MEVMERSHFSENE

A W R e 515 ALI/ARDS 1Y 8 2 UK 2
— . BAWFFEIEW MSC-EV A AU BE W5 I /b 4 4
M LR 8% 20 T AR s B 1Y) e
2.4.1 ¥R EE m 5L T4t

LPS |8 E W5 40 o AE THP-1 408 )i, 40
HWERE ISR, MRS, YAt —
A B BE R IR Exo A0, HN B Ao 1Y A3k
ORI RE 3G 3R, %A F T g e SRR SR AR
WHES S, MSC &5 35 A 5 09 v 40 i 1
BEAT R, EER (ATPABEEFIHIF) Al 5¢ 4
T FLG W3 A4 M A WV A 52 0, UE B MSC-EV
A 38 o s SR R R 5 I A0 e P R AR AL i R AL
PE s HAT D AR

ALK 5 1, MSC-EV nlad i I8 1 =
A5 AR B SR BT A TGP o P = A RE
I, S5 HFEAER PR Y B, MSC-
EV #5471 miR-145 REHE L [0 45 5 2 25T 2540 G 2R
F1 1R Y 3'-UTR X IR ICH mRNA FI8E (1 3Rk
K, Bk 2 25T 25 M 5GBS 1 =% C,
iz, X — A S EUR R R
MR YE A =4 By, et (=M B, 21k
1 3458 L Mg 4 B e B A
242 HABRIBERS

B T BE5R AR AR ], MSC-EV ik B B %Y
PURTETEME, 750N SRR T MSC-EV
HAEAH T EWEM (hyaluronic acid, HA) ,
o B A A T I R 65 R A0 A, DT Ok /L e v A
e R A P R S, I ELBE 1k e RS T AN O
T, AR VIHLE MR ANE R, Hite 4k
AW REMEFE . —Jrfl, MSC-EV #H biim
BEIEVERY miRNA; 53— 7T, MSC-EV 4 & #5717
PO RN F TR B R EEE A 3, FTLLES
1B BE 5 1 R IR A R R,
3 Exo IL#EALERR 544

M R E BT A PRSP FAL BE AT 4 5 MSC B3R
JERCR . R MSC BTG HEAT TREAL IR ) ) B

A2 R TR EAE 08 (i HAS 3 B I i A AR AS RN
KA SR A s P RE Sy, it — R MSC 4y
W Z BRI EH B BV, fefg k3 MSC % {4k
RITRICR .

3.1 FEARLAAETALIE

LPS f& TLR4 i FE ZE M ALiA Z —, LPS Filkh 3
FIMSC/r LM EV HAF R MER R & &,
LPS-EV 7E S AE TNl . fee i1y . bRt by
JEIAEHT, HEEKIL-1B. TNF-a. S0 L
-1 SR AT A, fEdEE mELA ) M2 B
Tk, (EIERT b R 20 B e, K 52 i R B 2
K A, SoRAFEEV A, LPS-EV ] %
U/ v R AT R, E — T R kB
TLR4 B 7% )5, MSC ' IncRNA-p21 %35 % I
P, HAEH miR-181 /9 “E4E”, IR miR-181
XPUTERAE ST LA Bm ], # ] NLRP3 R AE /)
A, DTk /D il v 20 A 8 T . TLR3 sl 7 23R
L i — 28 M 7 152 79 Ak #LJ5 19 MSC-EV 75 & 21
AH N B B0 5 R0 S B 928 49 A Y, SR, X
LPS fitkb ¥ 5 MSC-EV EAE R I fe A TE S, f1
R, HLPS filgb#EAY MSCH#5hm T CD3' T
R, JFES T Thl FITh17 40060, LUAKARE R
YL IL-6 FKF, R e R FAL, —H)E
PR 1) fiE 2% S 1Al MSC 40 i it 8 U8 R il &%
2551k, MGREAdrfE (Qn1 h LPS) ATRES
SRR FR, mAEASK R (40124 h LPS) B
fill BT AR FHAIT,

5% I, ity Ak 3L 1 N [ 7 5 35 I 4 A v 1 2
TR EV HUT AR IR B RN, %A
B30 Z AR B Ras AHOCEE 1 S R R4t
JR—-1. AL AME 5 UR T TR 12 FNEE O B Y
T A2 3E MSC AT AE (0 EV P72 AR 6 I g i b 341
SO/ 105 19 i i oA I A S 572 Y P R v G
REAR AT A i L i 76 B 34 JRE AN (1 A R, b B
W 0 o 1) M1 PR A, (EL X M2 89 400 it G B i
SO, ABAT T B — 2 I 5 T AU
R 1A P g RS B R B T AR 1k

TNF-o 5 TH0 & y & RAF A5 b H 2 A2
KT, HOUEH G 0E dE e )iy . 40
B ACHEH M FRIL . SARLIEV L, TNF-o/
TRy B HF BV 3% AL TNF-a, IL-1B /K
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FIHETHIL-10 %35, JEHMIME-SEEN (&
Fbr&d), BN /R E N (M7
FRa&W) KV, ZEE T B b 50 2 M I 4 43405
Je 2T Ak, VB F nT B i 2R 1Y) miRNA 3%
AT, WP EV | miR-7704 ik B i, H
LA ) B RS S AT 9 0 3 88 (miyeloid dif-
ferentiation primary response protein 88, MyDS88) ,
T MyD88/ 5k T RV S B TR 7 1 45 5l
B, TR ML W 20 6 S A R RO 1 A A G
wH (iFFA AL AGE . SOD2), 4EHFiE
WA, B g M2 B A, A, AT
P& y %S hueMSC, H: Exo # i HUC-MSC
B I 2 R AR 40 i R NF-xB p65 Fl1 NLRP3 1Y %
TRPY, PR RE S N S AR AR T, JE R I A
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