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A multi-tissue human knee single-cell
atlas identifies that osteoarthritis reduces
regenerative tissue stem cells while
increasing inflammatory pain

macrophages
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Osteoarthritis (OA) affects the entire knee joint, yet cross-tissue molecular interplay remains poorly
understood. To address this, we constructed the first single-cell RNA sequencing atlas of knee OA,
profiling articular cartilage, meniscus, synovium, and subchondral bone. Our analysis revealed that
healthy synovium and meniscus harbor abundant tissue stem cells (TSCs) and immune cells, which are
significantly altered in OA. Regenerative TSCs expressing SDF1, SOX9, CD146, PDGFRB, and CD105
are reduced, while osteogenic TSCs marked by NT5E are expanded. OA cartilage has distinct
MMP13-producing detrimental chondrocytes while increasing RUNX2-producing chondrocytes and
fibroblasts. OA tissues are enriched with inflammatory (IL71B-IL6-NOS2-TNF) and pain-marker
(P2RX7)-specific macrophages, inflammatory genes expression and immune cells. Cell-cell
communication contributes to OA progression, promotes proinflammatory macrophages, and
osteogenic TSCs. By identifying these OA-specific cells and molecular interplay, and constructing the
first multi-tissue comprehensive atlas, we bridge the critical knowledge gaps and lay the foundation for

advancing targeted OA therapies.

Osteoarthritis (OA) is a chronic joint condition affecting over 520 million
adults worldwide. It causes pain, swelling, and reduced joint movements.
The annual treatment costs, both direct and indirect, are nearly $486.4
billion annually'. Our group has conducted several preclinical studies to
target OA mechanisms”™. The pathophysiology of OA includes various
biochemical’®, biomechanical”"!, metabolic'’’, and gene-regulated”
mechanisms. The cellular and molecular heterogeneity underlying human
clinical OA remains incompletely understood owing to the lack of a multi-
tissue OA atlas. Therefore, we constructed the first comprehensive single-
cell atlas of a human knee affected by OA. Our goal was to identify different

cell types and to understand their roles in OA development. We studied
cartilage, synovium, subchondral bone (SCB), and meniscal tissue. We
evaluated specific cell types, including stem cells, macrophages, and other
immune cells, which play key roles in inflammation and tissue remodeling.

Mechanical overloading or biomechanical changes' can lead to
structural tissue failure (fissuring/fibrillation),” tissue swelling'’, composi-
tional loss of glycosaminoglycans (GAG)", and derangement of the COLII
network'’. Mechanical injury also induces an inflammatory response and
elevated cytokine levels in the OA synovial fluid (e.g., IL-1B, TNF-a)"**".
Depletion of cartilage GAG diminishes its rheological and tribological
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properties”, independently contributing to the propagation of OA
pathophysiology”**’. Joint kinematic dysfunction due to trauma, obesity, or
lifelong use is one of the main risk factors of OA™. The resulting increased
mechanical stress causes injury to the principal load-bearing tissues of the
knee joint, meniscus, and cartilage™ as well as to the synovium and SCB.
Damage to even one of these tissues leads to a cascade of alterations in the
other tissues, emphasizing the interrelated nature of joint tissue degenera-
tion in OA. OA affects all knee joint tissues, including cartilage, menisci,
synovium, and subchondral bone™. Despite this inter-tissue dependence,
studies have typically focused on individual tissue types, such as cartilage”,
cartilage and meniscus™, synovium and infrapatellar fat pad®, and SCB*,
mainly omitting the underlying cross-tissue comm. Recent developments in
single-cell RNA sequencing (scRNA-seq) and genomic technologies have
provided insights into the crosstalk between cells in tissues and nearby
tissues. As OA is an entire joint disease, the analysis of knee joint tissues,
including cartilage, meniscus, synovium, and SCB, and their interaction at
the single-cell level, is of interest and may provide an understanding of knee
OA development.

A dysregulated balance between tissue degeneration and regen-
eration in the joint leads to OA pathology governed by tissue stem
cells (TSCs). TSCs are a population of resident cells within a tissue
that have two distinguishing characteristics: the ability to self-renew
over time and the ability to develop into the major cell types within
the tissue’"”. These cells are essential for maintaining tissue home-
ostasis and facilitating tissue repair after injury”’. TSCs perform
specific functions, and various types of TSCs are enriched in the
synovium, meniscus, and cartilage. Studies have identified Numerous
chondroprogenitor and stem cell markers expressed in TSCs”™.
Stem cells differentiate into chondrocytes during OA*® and have the
potential to repair cartilage repair’. The distinction between various
TSCs can help to evaluate the balance of a specific pool. TSCs
expressing regenerative factors can be categorized as regenerative
TSCs. Osteogenic TSCs express factors related to osteogenic differ-
entiation, inflammation, and OA. The TSC pool can be dysregulated
by OA, injury, or inflammation.

In this study, we constructed an atlas of human knee single-cell tran-
scriptomic profiles. We observed changes in specific stem cells, macro-
phages, and chondrocytes. We present a scRNA-seq atlas of 53 human knee
joint samples from cartilage, meniscus, synovium, and SCB cells. Integrated
analysis revealed OA-specific cell type clusters and showed how different
tissues are related. The analysis included: 1) the effect and balance of TSCs
during healthy and OA conditions; 2) Enrichment of MMP13-or catabolic
factor-expressing chondrocytes, proinflammatory macrophages expressing
quadruple positive markers (IL1B-IL6-NOS2-TNF + ), and pain markers,
such as P2RX7; and 3) identification of co-relative cellular associations for
future translation. This knee joint scRNA-seq atlas provides a detailed
examination of tissue-specific factors. This highlights the possible interac-
tions between different cells in the nearby synovial tissue. These interactions
could serve as targets for treatments aimed at reducing OA. This atlas helped
us to identify important cell types and molecular aberrations in OA. These
findings indicate possible therapeutic targets. This study is a big step toward
understanding the complex etiology of human knee OA and opens new
avenues for future research and therapeutic strategies.

Methods
Human healthy and OA knee specimens
With prior consent from the patients, samples of cartilage, meniscus,
synovium & infrapatellar fat pad (SynoFP), and SCB from healthy indivi-
duals and OA patients were collected from the NCBI Gene Expression
Omnibus (GEO) database (Fig. 1a). The sample description and corre-
sponding accession IDs show the specific characteristics of the entire knee
joint. The GEO Series (GSE) identifies the individual accession ID under
which the raw sequencing data files are publicly available (Fig. 1a).

» GSE220243. Healthy cartilage (n=6) and meniscal (n=7) samples

were obtained from the same knees. Cartilage samples were collected

from the weight-bearing medial femoral condyle (the entire meniscus).

OA cartilage samples (1 = 6) were collected from the medial femoral

condyle osteochondral slabs; meniscus samples (1 = 6) were excluded

from those with large calcium deposits™.

o The GSE169454 OA cartilage samples (1 =4) were extracted from
patients undergoing total knee arthroplasty for OA. Non-arthritic
femoral condyle cartilage specimens (1 = 3) were collected from fresh
osteochondral allograft remnants discarded after osteochondral
allograft surgical reconstructions™.

* GSE255460 cartilage samples were collected from eight patients with
OA who underwent total knee arthroplasty and three non-OA who
underwent above-knee amputation with no prior history of joint injury
or disease™.

* GSE216651 SynoFP samples were obtained from three individuals with
end-stage knee OA who underwent total knee arthroplasty. Non-OA
SynoFP biopsies were obtained from three patients who underwent
excision of bone tumors surrounding the knee joint or from organ
transplant donors™.

» GSE196678 SCB samples were isolated from the medial and lateral
tibial plateaus of two patients with OA undergoing total knee arthro-
plasty. Patients were divided into two groups: non-OA (n = 2) from the
lateral tibial plateau and OA (1 = 2) from the medial side™.

Briefly, all healthy samples from the cartilage, meniscus, SynoFP,
and SCB were processed individually for quality control and doublets
and integrated using the harmony integration method in Seurat.
Similarly, all OA samples were processed and subjected to CellChat"
and pseudotime trajectory analysis (Fig. 1b, c). Finally, for comparative
analysis, both preprocessed healthy and OA samples were integrated and
subjected to clustering, cell identity, and cell type proportion analysis
(Fig. 1d). This was followed by extraction of macrophages and TSCs for
downstream analyses. As shown in Fig. 1b and ¢, 130012 cells from healthy
and 195742 cells from OA cells were retained after quality control and
preprocessing. The total number of cells retained from each tissue type was
analyzed (Fig. 1b, c).

Quality control and preprocessing

Individual files of Healthy and OA patients and single-cell RN A sequencing
(scRNA-seq) for knee joint cartilage, meniscus, SynoFP, and SCB were
downloaded from NCBI GEO and processed independently. The zipped
files contained a count matrix, features (genes), and barcode files, which
were imported into R studio and converted to a Seurat object using the
CreateSeuratObject function in the Seurat R package (v5.1.0)*' with no initial
cutoffs. Further details regarding sample characterization and categoriza-
tion are described.

To filter out low-quality cells, we eliminated cells with less than 3000
RNA counts, 400 genes (features) detected, and more than 10% of the reads
originated from mitochondrial genes. The retained high-quality cells were
further normalized using the default LogNormalize method and a scale
factor of 10,000 within NormalizeData function of Seurat. Clustering was
performed with 20 Principal Components (PCs) at a resolution of 0.5, using
2000 variable features found using FindVariableFeatures with the “vst”
selection method. The criteria for selecting PCs were defined using elbow
plots. Next, DoubletFinder R package (v2.0.4) was used to eliminate doublet
cells®. After quality control and preprocessing 130012 cells from healthy
and 195742 cells from OA cells were retained.

Data Integration and cluster identification

All the individually processed files were combined into a single Seurat object.
The combined files were subjected to data integration using
Harmonylntegration" method within IntegrateLayers function of Seurat™.
For downstream processing, 20 PCs were used for harmony clustering at a
0.5 resolution. Healthy samples were combined to determine the cellular
and molecular landscapes. The OA samples were combined to understand
the cellular and molecular landscapes. Both Healthy and OA samples were
integrated to identify common and unique molecular events.
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a

Knee Tissue Type accession ID Total Age (years) Gender (M/F) Trait Grading System Grade Species
Sample
(n)
Cartilage GSE220243 6 20-56 5M/2F non-OA  Outerbridge Oor1 Human
GSE220243 6 61-86 2M/4F OA Outerbridge 4 Human
GSE169454 & Undisclosed Undisclosed non-OA NA NA Human
GSE169454 4 Undisclosed Undisclosed OA Kellgren-Lawrence 3 or 4 Human
GSE255460 3 46-55 2M/1F non-OA  Outerbridge Undisclosed Human
GSE255460 8 51-75 4M/4F OA Outerbridge Undisclosed Human
Meniscus GSE220243 7 20-56 5M/2F non-OA  Outerbridge Oor1 Human
GSE220243 6 61-86 2M/4F OA Outerbridge 4 Human
Synovium & Fat pad GSE216651 3 21-37 2M/1F non-OA  Undisclosed Undisclosed Human
GSE216651 3 64-82 3F OA Undisclosed Undisclosed Human
Subchondral bone GSE196678 2 72-74 2F non-OA  NA NA Human
GSE196678 2 72-74 2F OA KSS score 54-58 Human
b Human c Human
Healthy Knee OA Knee
Subchondral ‘ Cartilage ar ‘
bone ' i \\ PN 4,’,’ L TN N/
/* — )—P Synovium o —
Meniscus ) ' k o)
Post-QC Total (n=130012 cells) Post-QC Total (n=195742 cells)
Cartilage (n=58624 cells) Cartilage (n=128938 cells)
Meniscus (n=48328 cells) Meniscus (n=35287 cells)
Synovium & fat pad (n=14873 cells) Synovium and fat pad (n=23731 cells)
Subchondral bone (n=8187 cells) Subchondral bone (n=7786 cells)
CellChat CellChat
Pseudotime Trajectory Pseudotime Trajectory
d ¢ Detection OA-specific unique

Cell clustering

A

7 chondrocytes.

Cluster Identification

[

All markers analysis

Combined Healthy
and OA samples

Extraction and characterization of
tissue stem cells.

J .

Cell type identification

Fig. 1 | Sample characteristics and study overview. a Characteristic details of
scRNA-seq samples used in this study. b Anatomy of the healthy human knee and
the number of cells retained post-QC using standard Seurat and doubletFinder.

Extraction and characterization of
inflammatory macrophages.

¢ Anatomy of OA knee and the number of cells retained post-QC. d Overview of
healthy and OA sample integration followed by downstream analyses.

Differential marker analysis, cell type identification, and gene set
enrichment analysis (GSEA)

The JoinLayers function was used to merge all integrated layers. We per-
formed differential expression analysis using FindAllMarkers function to
identify the differentially expressed marker genes in each harmony cluster,
as well as the markers of all four tissues. The Wilcoxon rank-sum test

(Wilcox) was used to perform the analysis with logfc.threshold of 0.25, and
the singleR (v2.8.0) and celldex (v1.16.0) R packages were used to identify
the cell types. HumanPrimaryCellAtlasData from Celldex was considered
for this study because it includes almost all cell types, including stem and
immune cells***. TSCs and Macrophages were extracted using a subset
function of Base R for downstream analyses. GSEA (v4.4.0) was performed
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to investigate the highly enriched gene sets within each tissue type under
normal and OA conditions.

Cell type proportion analysis

To evaluate the cell-type distribution across situations, cell metadata from the
integrated Seurat object were extracted. Cell type proportions were computed
by categorizing cells according to the identified cell types and experimental
conditions and then normalized to obtain relative frequencies. A stacked bar
plot was created using ggplot2 to show the proportion of each cell type per
condition. Custom color mapping ensured that cell types were consistently
represented across all samples. This technique allowed the detection of dif-
ferences in cellular composition between healthy and OA conditions.

CellChat analysis

CellChat (v2.1.2) was run on the RNA data slot and separately on healthy and
OA samples**”. Overexpressed genes were identified using default para-
meters of identifyOverExpressedGenes function. Communication prob-
abilities were computed using trim = 0.1, type = triMean, and other default
parameters of computeCommunProb function. Communications were fil-
tered to include those with at least 100 cells. The two cell-chat objects were
merged to compare their interaction occurrences and strengths. Compute-
CommunProbPathway function detects actively communicating signaling
pathways. Data were visualized in a chord diagram, heatmaps, and scatter
plots using the corresponding functional commands of the CellChat package.

Pseudotime trajectory analysis

Pseudo-trajectories of chondrocytes and TSCs were constructed using
Monocle3*. The Seurat object was converted to a monocle3 cell_data_set
object using as.cell_data_set function and preprocessed; 20 PCs were
retained using the PCA method. Dimensionality reduction was performed
using the UMAP method and was clustered using the cluster_ cell function.
The learn_graph function was used to learn and build the trajectory.
Order_cells and pseudotime functions were used to order cells at pseudo-
time. Root nodes were selected from the TSCs cluster, considering chon-
droprogenitor cells as part of the TSCs.

NicheNet analysis

NicheNet analysis was performed in R to predict ligand-receptor interac-
tions between the sender and receiver cell types. Single-cell RNA-seq data
from healthy and OA patients were combined to identify sender (fibroblasts,
chondrocytes, tissue stem cells, and macrophages) and receiver (macro-
phages and tissue stem cells) populations. The nichenetr package (version
2.2.0)* was used, which included ligand-receptor and signaling networks.
Expressed genes were filtered using a minimum expression threshold
(expression in at least 5% of cells) and differentially expressed genes in
recipient cells were identified (p_val_adj<0.05 avg log2FC>0.25).
Potential ligands from sender cells were ranked according to their regulatory
potential for target genes. Visualization and downstream interpretation
were conducted using built-in functions.

Data visualization

Uniform Manifold Approximation and Projection (UMAP) was used to
visualize single-cell data. Violine plots, heatmaps, feature plots, and bar plots
were generated using vinplot (Seurat), netAnalysis_signalingRole_heatmap
(CellChat), Featureplot (Seurat), and ggplot2 functions, respectively.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results

Cellular and molecular landscape of healthy human knee at
single-cell resolution

We used scRNA-seq to explore the cellular and molecular features of the
human knee joint. This helps us understand how different tissues contribute

to their normal functions. Healthy cartilage, meniscus, SynoFP, and SCB
were combined and grouped together. We then analyzed cell identity using
the HumanPrimaryCellAtlas database in celldex using SingleR R package
(Fig. 2a; Figure. Sla, b). UMAP shows all the identified cell types, and
Supplementary Data 1 shows the proportion of each cell type (Fig. 2a). The
chondrocyte population was dominant and contributed to ~99.6% of the
healthy cartilage samples, whereas the TSCs population contributed only
~0.4% of the total cell population (Fig. 2b; Figure. S1b). The chondrocyte
population was also enriched in the meniscus, contributing ~85.3%, along
with ~9.5% of TSCs and a small proportion of endothelial cells (EC)
(~2.7%), smooth muscle cells (SMC) ( ~ 1.3%), fibroblasts ( ~ 0.5%), and
immune cells (including ~0.7% macrophages). However, the proportion of
chondrocytes was low in the SynoFP group (approximately 15%) and nearly
absent in the SCB group (0.3%).

The TSCs pool was notably higher in SynoFP. This accounted for
approximately 42.2% of the total cell population. The breakdown included
~15.7% ECs, ~13.1% macrophages, ~5% monocytes, ~5.4% SMCs, ~1.5%
synovial fibroblasts, and a small number of other immune cells. In SCB, T
cells make up about 48.9% and NK cells about 36.1%. Together, these cells
accounted for nearly 85% of all the cells. Other immune cells included
macrophages (2.8%), monocytes (2.7%), TSCs (1.7%), and others. Overall,
these data suggest that chondrocytes are predominant in the cartilage and
meniscus, TSCs largely reside in SynoFP and the meniscus, and SynoFP and
SCB are the major reservoirs of immune cells in healthy human knees.

To identify signaling and communication, CellChat analysis was per-
formed, which revealed active communication among all four tissues. The
cartilage was the major sender and receiver of the signals, followed by the
meniscus and SynoFP. SCB was mainly a receiver of signals from the
remaining three tissues (Fig. 2c). Analysis of cell types showed that MSCs,
fibroblasts, SMCs, chondrocytes, and TSCs were the major senders of the
signals, whereas MSCs, macrophages, monocytes, dendritic cells (DCs), and
T cells were the major receivers (Fig. 2d, ). Approximately 85 signaling
pathways actively send and receive signals. The most active top 10 signaling
pathways were COLLAGEN, MIF, MHC-I, MHC-II, FN1, CD99, LAMI-
NIN, APP, CypA, and CXCL (Fig. 2f, Figure. S1d).

Pseudotime trajectory analysis which determines the origin and
terminal differentiation state of chondrocytes™, was performed by extract-
ing TSCs and chondrocytes from the total cell population (Fig. 2g). Using
TSCs clusters as a root node, we performed an analysis and visualized them
on UMAP (Fig. 2h). All four tissues contributed to the TSCs and chon-
drocyte populations; however, the contribution of SCB was negligible
(Figure. Sle). Cluster 8 had the lowest Pseudotime since it mostly consists of
TSCs and is considered a root node, whereas Cluster 5 and Cluster 0 had the
highest Pseudotime, suggesting the terminally differentiated chondrocyte
population, primarily residing in the cartilage (Fig. 2i; Fig. S1b, e).

Cellular and molecular landscape of the human knee during OA at
single-cell resolution

To evaluate changes in cellular homeostasis during OA, samples were
subjected to clustering and cell type identification (Fig. 3a; Figure. S2a, b).
Supplementary Data 2 lists the proportion of each cell type. OA cartilage had
more than ~99% chondrocyte population, ~0.1% TSCs, 0.4% macrophages,
and 0.1% monocytes (Fig. 3b; Fig. S2¢). In the OA meniscus, the population
comprised approximately 82.6% chondrocytes, 6.8% TSCs, 3.9% macro-
phages, 2.8% ECs, 1.2% SMCs, 0.8% monocytes, and 0.3% fibroblasts. OA
synovium contains ~37.5% chondrocytes and 16.4% TSCs. Interestingly, the
synovium had a higher number of macrophages (~13.7%), fibroblasts
(~7.7%), and monocytes (~1.8%), suggesting increased fibrosis and
inflammation in knee OA. In SCB, NK cells (~32.6%) and T cells (~50.6%)
contribute to ~83.2% of the total cell population, along with a small pro-
portion of TSCs (~2%), macrophages (~1.3%), monocytes (~3.3%), chon-
drocytes (~1%), and other immune cells. Overall, the chondrocyte
population significantly increased in the OA synovium. In contrast, the
number of TSCs in the OA synovium and meniscus was reduced. Macro-
phage infiltration increases in the meniscus and synovium. Monocyte
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infiltration was elevated, whereas ECs infiltration was reduced in the
synovium.

CellChat analysis showed that OA cartilage was a major sender and
receiver of signals, followed by the meniscus and synovium, whereas the

SCB was mainly a receiver of signals from the remaining three tissues
(Fig. 3¢). Unlike in healthy tissues, the number of interactions increased
between cartilage and SynoFP and meniscus and synoFP, suggesting active
immune signaling during OA. Strong intercellular interactions were

Communications Biology | (2025)8:1146


www.nature.com/commsbio

https://doi.org/10.1038/s42003-025-08586-8

Article

100
a Cell Identity
® B el
* BM S MSC
« Rearore 7
10 VP NK_cell =
® DC Osteoblasts 2
© Endothelial_cells © Pre-B_cell_ CD34- <
« o Enivoblast @ ProBcel CD3+ 2
A Pro-Myelocyte 5 50
% NP ® Smooth_muscle_cells &
s © HSC CD34+  © T cels &
=y
MEP
25
5

-0

Communication
(Between Cell types)

Cell Proportion

Communication
(Between Tissues)

- Cell Type
i . B_cell . Monocyte
| EN B vsc
Chondrocytes [l Newrons
cup NK_cell
M oc Osteoblasts

I Endotnetial_cets Il Pre-5_cell cD34-

] emtvroviast [l Pro-s_cen_onass
W rorovests Pro-Myelocyte

P Smooth_muscle_cells SC BOR
B sscopaes [l Tcers )

W acrophage

MEP

W issue_stem_cels

Signaling pathways in human knee osteoarthritis
Outgoing signaling pattern Incoming signaling pattern

I
1
I T R I TR ]
COLLAGEN - l -
N - o= B=® F -
i = m = = n -
= l - - L) -
€099 oo -
omn | [ 5 — . |
MHC-1 ween - o . L] - =
coxcL = - - - -
of -
— = - L] - 1 - = - 1 -
o - -
aGPTL | /e - | | - =l
VISFATIN -~ - - I: = g -
e[/ e |
Posiagandn /"5 - L] - o | | -
o - -
= | - & o= =
S - =
% mm L - l - l -
ook - - -
= -8 = - _— g I - -
o i - <
= - - ] £
o | | H - = :. = =
o - - " c
< " mn = - RE - " = I8
oo i 7]
= - H - —- ] -. = l - - - I: o
- = u = =
i - = - - - - - %
- . b - om - - g 4
- L} 0
e g — - - - =i
= - - =
sano . - -
- L - - - -
= - - - -
= m By B oem - -
< o~ -
=] o
g2 =" - - = - B "= -
5 o - -
g Macrophage L [ ] -
S 'y - - - —
5 Count A - - -
£ —_—_— b £ s - . = -
= o ©500 = - - ™ -
£ el S5 Pre-8,cel CDY- FIbI’Ob]E:(S ©1000 = - - - - -
8 10 e - - -
S ©1500 brres
e ‘Smooth_muscle_ — ) . o —— ) o T, noeR
£ 3 Tolatarongo 2 Tos H T02 Ly oe200858 et
. Chondrocytes i t8FS38388238838 §33%338% 8FS5838es 30030528833 33%8%
s s 8 8 g858 8
e © o o §0 [8303§3¢2 288840 o §O0 J8508£38258.2888 150
g Ezg 98 5 $2928F 5 £ TEE 98 5 £:239%9%388r¢
®5_cell H 358 J5 = i333% + H 358 J5 2 $ 33338 %
H £5L a§ 88872 9 s £5E a8 2 88812 °©
. = PET 5 3 £ oo 0§
-8 % £ TTe g @ £ TTec @
g Fro-B8_cel CoS4+ & 2p 5 & & o6 5 8
i g F g8 g F
I3 &
3 0 20
Outgoing interaction strength i T 1 ——— [—— 1]
s
9 h $s S —
3
£ 8 =<}
9 I
12 — - - -
i 5
& 14 - — [
2P o9 13 - —
E . {
ol ol o do - — - mm - -
H " cluster % pseuf:ume 2- —
H ® Cchondrocytes H 4
' ' ® Tissue_stem_cells '? 12 15
i 3 s
8 s 5
s
4 27
0 ‘i 6
1"
10
5
— . . C 16
UMAP_1 UMAP_1 15

Fig. 3 | Cellular and molecular landscape during human knee OA. a UMAP
representation of total cell types during OA condition identified by SingleR.

b Proportion of each cell type in the human knee with OA; here, the chondrocytes
predominantly resided in cartilage and meniscus, TSCs in SynoFP and meniscus,
and immune cells in SynoFP, subchondral bone and meniscus. ¢ Chord diagram
showing communication between all four tissue types. d Chord diagram showing
communications between different cell types. e Scatter plot showing outgoing and
incoming interaction strength for different cell types; cell types with molecularly

10
Pseudotime

significant differences are shown in the broad letter. f Heatmap representation of
active signaling pathways in the healthy human knee with outgoing and incoming
signaling pattern; the top signaling pathways are highlighted in the red rectangle,
whereas OA-specific active signaling pathways are highlighted with the blue rec-
tangle. g UMAP highlighted the location of chondrocytes and TSCs for pseudotime
trajectory analysis. h UMAP visualization of pseudotime trajectory analysis; here,
the root node was selected from the TSCs cluster. i Horizontal box plot showing
pseudotime for individual harmony clusters.
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observed between cell types (Fig. 3d; Fig. S2d). MSCs, fibroblasts, SMCs,
chondrocytes, TSCs, neurons, fibroblasts, and macrophages were the major
senders of these signals, whereas MSCs, macrophages, neurons, and TSCs
were major receivers (Fig. 3e). OA promotes intricate processes, such as
cartilage degradation, inflammation, and pain, which are influenced by
specific signaling pathways™ . The top 10 most active signaling pathways
in OA were COLLAGEN, FN1, MIF, LAMININ, APP, MHC-II, CD99,
CypA, MHC-], and CXCL (Fig. 3f). Additional pathways, such as pros-
taglandins, MK, VISFATIN, ANGPTL, and THBS, were highly active in OA
(Fig. 3f; Fig. S2d).

Pseudotime trajectory analysis identified terminally differentiated
chondrocytes increased in cartilage as well as meniscus since both these
tissues contributed to the highest Pseudotime clusters 1 and 3 (Fig. 3g-i;
Fig. S2e). Thus, the reduced TSCs population in meniscus and synovium
OA compared to the healthy knee joint shows a transition to terminally
differentiated chondrocytes, which contributes to fibrosis or osteogenic
transition in OA. While these data reveal major cellular abnormalities in the
synovium and meniscus during OA, they do not establish the synovium as
the primary cause of OA. To understand the spatiotemporal roots of OA
pathogenesis, in-depth investigation of different tissues and disease phases is
required. Our findings do not indicate that synovial TSCs migrate into
cartilage tissue. Rather, the observed continuity in the pseudotime trajectory
implies a common transcriptional and presumably developmental program
among the TSCs found in the synovium, meniscus, and cartilage. Instead of
demonstrating direct migration events, this genetic or molecular linkage
shows that these cells have a shared progenitor lineage or similar differ-
entiation potential.

MMP13-producing detrimental chondrocytes and synovial
fibroblasts were expanded in OA

To detect unique cellular and molecular OA-specific variations, healthy and
OA knee scRNA-seq samples were integrated and subjected to harmony
integration following standard Seurat processing (Figure. S3a). Cell type
detection using singleR revealed variability in the population of major cell
types, such as chondrocytes, TSCs, macrophages, and most importantly,
expansion of synovial fibroblasts in OA (Fig. 4a, Fig. S3b, ¢). To correlate
with the individual analyses described above, a stacked bar plot was gen-
erated, and the cell proportions in both sample types were compared
(Figure. S3d). Clustering was performed at a resolution of 0.5 and generated
nearly 27 cell clusters with clusters 3, 10, 18, 19, and 21 expanded, whereas
major cluster 1 was depleted in the OA samples (Fig. 4d). All marker
analyses were performed to determine the molecular identity of these
clusters (Supplementary Data 3).

OA-depleted Cluster 1 expressed genes such as CYTLI, CLEC3A,
S100B, and FRZB, which are effector chondrocyte (EC) markers* (Sup-
plementary Data 3). These EC also produce WISP3”, CTGF*, CYR61%,
GREM1”, and WIF1%, which play roles in chondrocyte protection, angio-
genesis, and ECM remodeling (Supplementary Data 3).

OA-specific chondrocyte cluster 3 (Fig. 4b), which is absent in healthy
samples, contains specific detrimental chondrocytes (DCs) that promote
cartilage/ECM  degeneration, chondrocyte-to-osteoblast transition, and
inflammation-related factors. DCs were enriched in MMP13"', TNFRSF11B
(osteoprotegerin)®’, LCN2***, MMPI®, MMP3%, ELF3*%, WNT7B®, and
NOS2” (Fig. 4c) and are referred to as MMP13-producing DCs (MDCs).
Next, we confirmed that MDCs primarily produce OA-specific markers
(Fig. 4d; Fig. S3e, f). MDCs specifically produced CCL20 and LAMB3, which
are important factors for inflaimmatory pain and cartilage damage,
respectively’””" (Fig. 4e).

Cluster 18 was exclusively present in OA samples and was molecularly
aligned with the previously described pathogenic chondrocyte subpopula-
tion owing to the higher expression of POSTN and ZEBI*. 1t highly
expressed genes, such as NELL1"*”, LRRCI5™, and COL3A1”, which play a
role in OA progression via osteogenesis, fibrosis, and ECM degeneration
(Supplementary Data 3). Cluster 18 also expressed RUNX2, ASPN, and
OGN, which promote mineralization and osteoblasts (Fig. 4f). Cluster 18

expressing genes showed negligible expression in the MDCs. Thus, cluster
18 and MDCs may contribute to the worsening of the disease pathology in
human knee OA.

Cluster 10 showed slightly elevated levels of OA-expressing CHI3LI,
CHI3L2, MTIG, MTIH, and MTIE regulatory chondrocyte markers
(RegC)™. Cluster 19 comprised chondrocytes highly expressing IL107,
TMA4SF1”7, CHADL”, MIA”, MT1G*, and COL2A1, which are associated
with cartilage protection, matrix proteoglycan synthesis, and reversal of
calcification and degeneration. Therefore, clusters 10 and 19 appear to
expand because of a compensatory response to protect the knee joint from
degenerative effects of OA.

Overall, MMP13 expressing DCs and cluster 18 expressing factors may
play a role in specific pathologies and mechanisms of OA development,
whereas restoring cluster 1 and 19 factors may reverse OA. In addition,
expansion of the fibroblast population may result in fibrosis in the synovial
region, adding a layer to the pathophysiology of OA®".

Synovium and meniscus are the primary residences for TSCs that
are depleted in OA

The TSC population was significantly reduced in the SynoFP and meniscal
groups. In the meniscus, the TSCs proportion decreased from ~9.5% to
~6.8%, and SynoFP from ~42.2% to ~16.4%, which can also be correlated
with the expansion of the differentiated chondrocyte population in SynoFP
(from ~15% to ~37.5%) during OA (Fig. 5a). For further analysis, we
extracted TSCs from the total cell clusters and generated UMAP cells to
visualize the reduced regenerative (chondrogenic factor production) and
increased osteogenic TSCs in OA (Fig. 5b). As TSCs primarily reside in the
meniscus and SynoFP, we generated UMAP to observe the different TSCs
contributing to the different TSC subtypes (Fig. 5¢). TSCs decreased by
36.45% in the meniscus and 37.77% in SynoFP compared with their
respective healthy controls (Fig. 5d). We observed a reduction in the number
of regenerative TSCs producing CXCLI2 (SDF1), SOX9, ACAN, MCAM
(CD146), PDGFRB, BMPRIB, ENG (CD105/Endoglin), and NGFR (Fig. 5e
and Fig. S$4a, b). Previously identified chondroprogenitor and stem cell
markers that express TSCs have also been affected™ . These TSCs were
SDF1 + *, CD146 + %, CD105 + **° (Fig, 5f-h).

Interestingly, osteogenic TSCs expressing ALCAM, NT5E (CD73),
NGF, and BDNF increased in OA. NT5E (CD73) is known to increase in OA
(Fig. 5e)**. Comparative analysis of knee joint tissue compartments
revealed that the meniscus and synovium are the primary residences of
tissue stem cells, which are significantly depleted during OA, contributing to
the worst pathological outcome.

Elevated levels of IL1B-IL6-NOS2-TNF and pain markers P2RX7-
producing macrophages contribute to OA pathophysiology

We hypothesized that OA promotes the infiltration of proinflammatory
cells, which initiates a vicious cycle of cytokine production, leading to knee
joint inflammation and pain. Integration of healthy and OA samples
revealed an expansion of the macrophage population in cluster 13 in OA
samples (Fig. 4a, b). Within this macrophage population, we identified seven
different subpopulations of macrophages at a resolution of 0.5 and labeled
them as macrophage clusters MC1-MC7 (Fig. 6a). MC1 and MC2 were the
largest clusters, with MC2 being largely expanded during OA, whereas MC3
and MC4 were exclusively present in OA samples (Fig. 6a).

To determine the levels of pro- and anti-inflammatory macrophages
under healthy and OA conditions, we analyzed the levels of proin-
flammatory M1 (CD86 and TNF) and anti-inflammatory M2 (CD163 and
MRCI)-type macrophages. We found that CD86- and TNEF-producing
macrophages were expanded in the OA samples, whereas CD163- and
MRC1-expressing macrophages were significantly depleted (Fig. 6b). Fea-
ture plot analysis revealed that MC1 mostly expressed M2 macrophage
markers whereas MC2 and MC3 mostly expressed M1 macrophage markers
(Figure. S5a, b). Next, we analyzed the expression of the proinflammatory
OA-causing markers IL1B, IL6, TNF, and NOS2 within each macrophage
cluster (Fig. 6¢). Interestingly, IL1B and TNF were highly expressed in OA-
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specific macrophages, MC2 and MCI, suggesting an ILIB -+ TNF+
inflammatory macrophage population, irrespective of their M1 and M2
status. These IL1B+ and TNF+ macrophages may serve as prognostic or
diagnostic biomarkers of OA pathophysiology.

Notably, we discovered that MC3, a unique OA-specific macrophage
cluster, was the only cluster that expressed all four proinflammatory genes:
IL1B, NOS2, IL6,and TNF (Fig. 6¢, Fig. S5a, €). Next, we extracted MC3 from
the total macrophage clusters and confirmed the significantly upregulated
expression of these genes in OA (Fig. 6d and e). These quadruple-positive
macrophage subpopulations (ILIB+ IL6 + NOS2+ TNF + ) of inflam-
matory macrophages worsen the disease outcome in terms of joint
inflammation and pain in patients with OA.

Finally, we analyzed the expression of classic pain marker genes in
total macrophages to understand the association between OA macrophages
and joint pain. As expected, P2RX7-, CSFIR-, AIF1-, and PTGS2 (COX2)-
producing macrophages were highly expanded in OA samples (Fig. 6f).
However, two well-studied OA pain markers, PIEZO2 and TACRI,
were not expressed by macrophages. Thus, we conclude that clinical
knee OA inflammation and pain arise due to the accumulation of
dual- and quadruple-positive proinflammatory macrophages, which need
to be functionally characterized in a large cohort of clinical samples in
the future.

Intercellular crosstalk enhances joint inflammation and osteo-
genic transition in human knee OA

To evaluate the signaling events contributing to OA, we performed
NicheNet analysis by considering macrophages as a receiver, whereas
fibroblasts, tissue stem cells, and chondrocytes were the sender of signals.
Here, we screened the top 30 ligands secreted by sender cell types that were
received by macrophages (Fig. 7a). We found that synovial fibroblast-
specific complement factor D (CFD) and LGALS3 (galectin-3) are impor-
tant pro-inflammatory ligands because of their potential to bind
macrophage-expressed receptors (Fig. 7b, ¢). CFD was among the top 20
ligands produced during OA (Fig. S6a). CED, a serine protease, triggers an
alternative complement pathway, resulting in the production of C3a and
C5a. These molecules recruit and stimulate macrophages, enabling them to
produce pro-inflammatory cytokines, such as TNFa and IL-1p¥.
Therefore, increased CFD expression may be correlated with macrophage-
driven synovitis and cartilage matrix degradation. Similarly, LGALS3 pro-
duced by synovial fibroblasts promotes macrophage activation and survival
via galectin-3-mediated binding to glycosylated surface receptors, thereby
enhancing ILIB, TNFA, MMPI, MMP3, and MMPI13 production’”.
Together, CFD and LGALS3 in fibroblasts create a pro-inflammatory
microenvironment that perpetuates macrophage activation and OA
progression.

TIMP1, aligand secreted by chondrocytes (Fig. 7b), particularly MDCs
(Fig. 7d), binds to the CD63/integrin p1 complex on the surface of mac-
rophages (Fig. 7c, e). This activates intracellular signaling cascades such as
PI3K/AKT and ERK/FAK, promoting cell survival and resistance to
apoptosis™. This extended survival may be a factor in the accumulation of
pro-inflammatory macrophages in the OA joint environment, which in turn
attracts and stimulates additional immune cells.

We then switched TSCs as receivers, whereas fibroblasts, macrophages,
and chondrocytes were the senders of the signals. The top 30 factors released
by the sender, which were received by the TSCs, were screened (Fig. 71).
Interestingly, chondrocytes released ligands such as MELTF and BMP2,
whereas fibroblasts released FBLN2, COL6A3, and LGALS3BP, which
transition TSCs to osteogenic early osteogenic and quiescent states, even-
tually contributing to OA (Fig. 7g, h). In addition, MELTF and BMP2 were
among the top 20 ligands produced by all OA cell types (Fig. S6b).

Fibroblast-released CSF1 may cause TSCs to transition into macro-
phages (Fig. 7g and h). Additionally, C1QB released by macrophages could
induce the activation, differentiation, and migration of neural stem cells
within the TSCs population and most likely contribute to the perception of
OA pain™” (Fig. 7g, h).

High TGF-p1 levels induce abnormal bone growth, poor bone quality,
and disease severity, along with increased angiogenesis””**. In several animal
models of OA, degenerative changes in the SCB are reduced and articular
cartilage degradation is decreased when TGF-f1 activity is inhibited””. To
evaluate whether the SCB receives TGFB1 signals from the other three
tissues, we performed NicheNet analysis, which focused on ligand receptor
activity between the SCB and SynoFP/Meniscus/Cartilage. We found that
cartilage produced the ligand TGFB1 (Fig. 7i), more specifically by MDCs
(Fig. 7d), and was predicted to be received by SCB via the TGFBR1 receptor
(Fig. 7j). Other highly produced ligands, such as GNAS by Meniscus, B2M,
SERPINGI, TIMP2 by SynoFP, and CD55 by cartilage could also elicit OA
severity through aberrant activity of SCB; however, this requires further
investigation. Taken together, these data suggest that SCB plays an active
role in the development and progression of OA.

Synovium and meniscus are an epicenter for immune activity in
human knee

To understand the effect of dual- and quadruple-positive proinflammatory
macrophages and inflammatory changes in OA, we performed individual
tissue-specific (i.e., Cartilage, Meniscus, SynoFP, and SCB) immune cell
infiltration and gene expression analyses, and all marker analyses were
performed (Supplementary Data 4). Gene analysis showed that LEFTY2,
WISP2, IL6, IGF1, and COLIAI were abundantly expressed in the normal
meniscus compared to the other three tissue types (Fig. 8a). In the OA
meniscus, major histocompatibility complex (MHC) class I antigen genes
HLA.A, HLA.B, and HLA.C were increased along with elevated expression
of other key immune response genes, such as WISP2, IL6, or CXCL6, with a
higher fold change (Fig. 8b). The normal synovium showed the expression
of CD163, an immunosuppressive M2 type macrophage, which was absent
in the OA synovium (Fig. 8c, d). Moreover, the OA synovium highly
expresses pain and inflammatory genes such as PI16, CCL14, CD248, C3,
and CCL3L1 (Fig. 8d).

Next, we applied GSEA with tissue-specific markers and all-marker
analysis. This helped us to evaluate the networks and pathways activated in
OA. The OA cartilage had a higher enrichment of bone mineralization,
cartilage development, ossification, and osteoblast differentiation, which are
associated with OA pathology (Fig. 8e). OA synovium showed significant
enrichment of activation of the immune response, adaptive immune
response, antigen presentation via MHC class II, and activation of the
complement pathway (Fig. 8f). Taken together, the expression of tissue-
specific genes, inflammatory cells, and macrophages in the meniscus and
synovium of the human knee significantly contributes to OA development
and progression.

Discussion

Although OA is a whole joint disease, the contribution of tissue-specific cells
to disease onset and transcriptional changes is unknown. An atlas was
constructed by integrating single-cell RNA sequencing profiles of human
knee cartilage, meniscus, synovium, and SCB. This revealed clear differences
between healthy knees and those with OA. We found that TSCs and
immune signaling are active during OA. Terminally differentiated chon-
drocytes in OA have a transcriptomic association with TSCs residing in the
synovium and meniscus, which were identified using pseudotime trajectory
analysis. Our findings highlight that synovium may be a hotspot for
degenerative and regenerative events. TSCs, multi-tissue interactions, and
inflammation may affect cartilage integrity.

TSCs primarily reside in the synovium, and regenerative TSCs are
depleted in OA. This dynamic change reduced regeneration and increased
degeneration. Regenerative TSCs™ ™ express markers such as CXCLI2
(SDF1), SOX9, ACAN, MCAM (CD146), PDGFRB, BMPRIB, ENG
(CD105/Endoglin), and NGFR. SDFl-expressing TSCs are explicitly
depleted in the meniscus, and studies have shown that SDF1 is required for
chondroprogenitor cell migration during post-injury tissue repair in the
meniscus”. MCAM+ (CD146 + ) stem cells have previously shown a more
significant migration potential towards degenerated intervertebral disks™.
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CD105 promotes chondrogenesis in synovium-derived MSCs****. Osteo-
genic TSCs expressing ALCAM, NT5E (CD73), NGF, and BDNF expanded
in OA. ALCAM+ cells can differentiate into osteoblasts, adipocytes,
chondrocytes, and stromal cells, which support osteoclastogenesis, hema-
topoiesis, and angiogenesis”. NT5E is a marker of resting chondrocytes®

synovium may contribute to fibrosis in knees with OA.

Prior interaction potential

Prior interaction potential

15
10
05
00

and is up-regulated in OA**. In addition, expanded fibroblasts in the OA

OA-specific MDCs are enriched with degradative factors such as
LCN2%, TNFRSF11B%”, MMP1, MMP3, MMP13, NOS2, WNT7B%, and
ELF3"**, They play a significant role in extracellular matrix destruction,
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Fig. 7 | Intercellular crosstalk enhances joint inflammation and osteogenic
transition during OA. a Ligand activity plot for top 30 ligands produced by senders
(chondrocytes, TSCs, and fibroblasts), whose receptors were expressed by macro-
phage. b Bubble plot shows the expression of ligands in individual sender. Arrow
indicates the significant genes described in the results section. ¢ Heatmap shows the
interaction potential of ligand produced by senders and receptors expressed by
macrophage. d Expression of ligands produced by OA specific chondrocyte clusters,
which interact with the receptors expressed by macrophage. Arrow indicates sig-
nificant gene TIMPI specifically expressed by MDCs. e Interaction potential of top
30ligands produced by OA specific chondrocyte clusters with receptors expressed by

macrophage. Here, TIMPI from MDCs shows interaction potential with CD63 of
macrophage. f Ligand activity plot for top 30 ligands produced by senders (chon-
drocytes, macrophage, and fibroblasts), whose receptors were expressed by TSCs.
g Expression levels of ligands in individual sender. Arrow indicates the significant
genes described in the results section. h Interaction potential of ligand produced by
senders and receptors expressed by TSCs. i Expression levels of ligands in individual
sender tissue. Arrow indicates the significant genes described in the results section.
j Interaction potential of ligand produced by senders and receptors expres-

sed by SCB.

bone remodeling, and cartilage degradation. OA-specific cluster 18 was
enriched with RUNX2”, ASPN, and OGN, which are markers of miner-
alization and osteoblast characteristics™ that contribute to stiffness. OA-
specific MDCs were enriched in CCL20 and other markers associated with
inflammation and pain. In the presence of CCL20, cartilage released more
MMP-1, MMP-13, PGE2, GAG fragments, and IL-6, whereas collagen type
II mRNA expression was inhibited”.

Many factors such as long-term injury and mechanical changes can
cause OA. However, our analysis revealed a significant increase in inflam-
mation- and pain-related macrophages in patients with OA. A unique dual
positive (IL1B and TNF) and quadruple positive (IL1B, TNF, IL6, and
NOS2) macrophage subpopulation could play a significant role in pro-
moting inflammatory changes are not known yet. Traditionally, macro-
phage classification in OA has been based on the M1/M2 paradigm, in
which M1 macrophages are pro-inflammatory and M2 macrophages are
anti-inflammatory. However, this binary framework may not adequately
represent the complexity of macrophage phenotypes in OA patients. It has
been anticipated that macrophage polarization can go beyond the typical
binary state'”. Our discovery of a quadruple-positive macrophage sub-
population, which is defined by the co-expression of markers IL1B, IL6,
TNF, and NOS2, represents an important advancement beyond the tradi-
tional M1/M2 categorization. These cells have a particular inflammatory
gene expression profile and are almost entirely absent in healthy non-OA
knee joints, indicating disease-specific traits. Their exclusive emergence in
the OA environment suggests a potentially important role in disease
pathophysiology, making them previously unidentified contributors to OA
progression. Therefore, this finding not only broadens our understanding of
macrophage heterogeneity in OA but also opens new avenues for targeted
therapeutic intervention.

Additionally, the OA meniscus highly expressed well-characterized
immune response genes including HLA.A, HLA.B, HLA.C, WISP2, IL6, and
CXCL6. The OA synovium also expresses pain and inflammatory genes,
such as PI16, CCL14, CD248, C3, and CCL3LI. The OA synovium also
showed higher enrichment of activation of the immune response, antigen
presentation, and complement activation compared to the cartilage,
meniscus, and SCB during OA.

The structural integrity and homeostasis of the ECM are maintained in
healthy joints through signaling pathways, such as COLLAGEN, ENI,
LAMININ, and THBS, which support cartilage resilience and joint lubri-
cation. However, in OA, dysregulation of these pathways leads to matrix
breakdown and chondrocyte apoptosis, which accelerates cartilage
degradation'”™'**. The MHC-I and MHC-II pathways, which are normally
associated with immune surveillance and tolerance, require further inves-
tigation in the setting of OA because of abnormal antigen presentation and
persistent immunological activation. MIF and CXCL chemokines, which
assist in controlling immune cell trafficking in healthy tissues, may become
pro-inflammatory in OA, activating synovial macrophages and inducing
cartilage catabolism'®™'*. It has been previously demonstrated that CD99
contributes to leukocyte infiltration during inflammatory events and that
blocking CD99 reduces inflammation'”. However, its role in OA requires
further evaluation. CypA and VISFATIN, involved in redox balance and
metabolic regulation under physiological conditions, promote oxidative
stress and inflammation in OA and correlate with cartilage degradation
biomarkers™"”""!, ANGPTL and MK (midkine), which are involved in

tissue repair, become pathogenic by stimulating synovial angiogenesis and
inflammation'"*""". Finally, prostaglandin signaling is essential for normal
knee function, and imbalance in prostaglandin production or signaling can
lead to inflammatory OA™. Thus, when these physiological pathways that
promote joint function are persistently active or unbalanced, they become
the pathological drivers of OA.

The limitation of this study is that, although we generated the first
scRNA-seq atlas to identify key genes, cell types, and therapeutic under-
standing of OA pathogenesis, the inclusion of a state-specific and pro-
gressive OA-grade multi-tissue analysis will provide detailed information on
OA progression and severity. OA disproportionately affects underserved
populations'*""” and females. The detailed temporal and spatial appearance
of RNA from the time of inciting injury through the initiation and pro-
gression of OA pathophysiology, its proteomics profile, and actual tissue
changes need to be determined. Future studies should involve well-
controlled clinical cohorts with large age- and sex-matched cohorts of
samples, and standardized tissue extraction procedures. The discovery of
quadruple-positive macrophages in this study is intriguing. However,
in vitro and in vivo validation is required to validate their potential as
predictive or diagnostic biomarkers of knee OA. While our findings indicate
significant cellular abnormalities in the synovium and meniscus during OA,
they do not establish the synovium as the primary etiology of OA. Tran-
scriptional changes identified in specific cell types may be reactive to the OA
microenvironment, such as inflammation or mechanical stress, rather than
initiating processes. Nonetheless, the probability of initiating events cannot
be ruled out, and will require experimental validation in the future. More-
over, co-culture experiments, ligand-receptor blocking studies, and
experimental validation of TSC subtypes would provide more mechanistic
insights into communication events between macrophages, MDCs, synovial
fibroblasts, and TSCs during OA progression.

In conclusion, the synovium and meniscus are the most damaged
compartments, and synovium regeneration could have potential ther-
apeutic opportunities considering highly dysregulated homeostasis. Atala et.
al. showed that the synovial environment causes cartilage deterioration and
regeneration'"*. OA pain may be a consequence of resident TSCs depletion
and proinflammatory changes in the synovium and meniscus. Moreover,
dual- and quadruple-positive macrophages could serve as prognostic
markers for identifying pre- and post-treatment OA severity. The tran-
scriptional changes observed in specific cell populations may represent
reactive responses to the OA microenvironment, such as inflammation or
mechanical stress, rather than the initiation of events. Nonetheless, the
possibility of initiating events cannot be ruled out and requires experimental
validation in the future. Our findings also demonstrate that SCB plays an
active role in OA. We found that TGFB1, which is mostly produced by
cartilage cells, specifically MDCs, can signal SCB via the TGFBR1 receptor,
indicating a potentially essential mechanism in disease progression. Other
signals from the meniscus and synovial tissues may potentially influence
SCB behavior and contribute to OA; however, further research is required to
completely understand their impact.

As there are no FDA-approved drugs, our study suggests that future
clinical trials should focus on synovium and meniscus regeneration. This is
important for the design of OA disease-modifying drugs. Our analysis also
emphasized the heterogeneity within the meniscus and bone compart-
ments, revealing distinct cellular niches that may influence disease

Communications Biology | (2025)8:1146

13


www.nature.com/commsbio

https://doi.org/10.1038/s42003-025-08586-8

Article

a Normal Meniscus b OA Meniscus
LEFTY2 ) HLAA L J
WISP2 0 HLA.B ®
THY1 L) HLA.C Q
COLBA1 ® HLAE PY
e —0 FTLP3 PY
GFl —mm8M8M @ MATR3 — ¢
TRIMY9 — @ wsp2 — o
COLIAl — @ 6 — @
CDHI3 —— @ FAMABA — @
ADAMTS2  ——m————@ CXCL6 — @
0 2 4 6 0 5 10 15
Avg_log2FC Avg_log2FC
c Normal Synovium/fatpad d OA Synovium/fatpad
S100A8 9] PI16 ®
CD163 L ] IGHG4 L ]
LCN6 ® F10 °
c1aB ® cCL14 ®
S100A9 @ CD248 ®
Lyz L ) COL22A1 °
C1QA ¢} c3 ®
CCL14 @ MMP28 °
CLEC7A ® ccLaL1 ®
VEGFD @ CD34 ®
0 2 4 6 8 0.0 25 50 75
Avg_log2FC Avg_log2FC
e OA Cartilage f OA Synovium/fatpad

Enrichment plot: GOBP_BONE_MINERALIZATION Enrichment plot: GOBP_CARTILAGE_DEVELOPMENT

NES =4, 79 NES =2.76 g WA
591 pvalue < 0 0001 \\J\\ \ £99 pvalue < 0.0001 G

1l

Enrichment plot:
GOBP_OSTEOBLAST_DIFFERENTIATION

H\I\ i

Enrichment plot: GOBP_OSSIFICATION

L

£ L o

: ~_ SN

g £ o) |

. \\,\ X ;n \ \\

£ NES=154 \ el INEs=154 "\
E°% pvalue<00001 W 5 =0.03 VAN

’M\IH\IIHHIHH\HHI\ AL EJ“MHHHHHH [N

Fig. 8 | Meniscus and synovium are hubs for inflammatory immune activity
during knee OA. a The expression of top marker genes expressed specifically in
normal meniscus compared to other knee tissues in normal condition. Adjusted p
value for the genes is below 0.0001. b The expression of top marker genes, specifically
immune response genes, expressed highly in OA meniscus compared to other knee
tissues in OA condition. Adjusted p value for the genes is below 0.0001. ¢ The
expression of top marker genes expressed specifically in normal synovium & fatpad
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compared to other knee tissues in normal condition. Adjusted p value for the genes is
below 0.0001. d The expression of top marker genes, specifically pain and inflam-
mation genes, expressed highly in OA synovium & fatpad compared to other knee
tissues in OA condition. Adjusted p value for the genes is below 0.0001. e GSEA
shows enrichment of gene sets related to cartilage damage in the OA cartilage.

f Higher enrichment of immune response, antigen presentation, and complement
activation in the OA synovium & fatpad. NES: Normalized Enrichment Score.

outcomes. Understanding the role of these niches in OA pathogenesis could
lead to more targeted and effective treatment.

This atlas is a key resource of the scientific community. It offers new
insights into cellular and molecular heterogeneity during healthy knee joint
homeostasis and OA. In addition, it opens new possibilities for the devel-
opment of targeted therapies to stop or reverse disease progression. Future
studies should expand these findings. It is necessary to explore the complex
cell activity in the OA joint. In addition, these insights should lead to
clinical use.

Data availability

The human knee OA single-cell RNA-seq data used in this study are pub-
licly available under the following accession ID: cartilage (GSE220243,
GSE169454, and GSE255460); meniscus (GSE220243); synovium and IPFP
(GSE216651); and SCB (GSE196678).
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