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体内嵌合抗原受体 Ｔ细胞（ ｉｎ ｖｉｖｏ ＣＡＲＴ）

研究进展及非临床研究一般考虑
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［摘要］ 　 体外嵌合抗原受体 Ｔ细胞（ｅｘ ｖｉｖｏ ＣＡＲＴ）在改善血液系统恶性肿瘤（尤其是 Ｂ细胞恶性肿瘤）方面显示出卓越的治疗

潜力，但其广泛应用面临巨大挑战，包括体外制造工艺复杂、生产成本高昂等因素。 近年来，随着 ＲＮＡ 药物、靶向递送系统等领

域的快速发展，体内嵌合抗原受体 Ｔ细胞（ ｉｎ ｖｉｖｏ ＣＡＲＴ）作为一种创新策略应运而生。 ｉｎ ｖｉｖｏ ＣＡＲＴ通过病毒载体或脂质纳米

颗粒（ＬＮＰｓ）等靶向递送系统，将编码 ＣＡＲ的遗传物质直接导入患者体内，实现体内 Ｔ细胞工程化改造，这一策略从根本上省去

了繁琐的体外细胞操作步骤和传统的化疗预处理环节。 本研究系统梳理了 ｉｎ ｖｉｖｏ ＣＡＲＴ的技术进展与非临床研究考虑。 ｉｎ ｖｉｖｏ

ＣＡＲＴ兼具基因治疗与细胞治疗的双重属性，涉及多种递送载体，类型多样，机制复杂，其非临床研究可遵循基于风险、个案处理

的原则，在现有相关技术指导原则框架下，合理设计并开展非临床研究，以获取科学规范的试验数据来支持开展临床试验和批准

上市。
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　 　 近年来，随着生物技术的发展，免疫治疗领域发

生了重大变革，在这其中，ＣＡＲＴ 因其在血液系统恶

性肿瘤治疗中取得的变革性成功而广受关注
［１］
。 目

前获批上市的 ＣＡＲＴ药物均为体外细胞产品（ｅｘ ｖｉｖｏ

ＣＡＲＴ），涉及从患者体内采集 Ｔ细胞、体外基因工程

改造、扩增以及最终回输等多个步骤，整个过程耗时

较长且需要高度专业化的设施
［２，３］
。 此外，患者在接

受 ＣＡＲＴ 治疗前还需要进行淋巴清除化疗，这不仅

增加了治疗复杂性，还带来了额外的副作用
［４］
。 这

些因素共同导致患者等待治疗时间延长，治疗成本高

昂，极大地限制了该技术的可及性。 因此，该领域一

·９０４·



２０２５ 年第 ４２ 卷第 ６ 期

直在不断创新，以克服这些局限，充分发挥 ＣＡＲＴ 的

潜力。

从 ｅｘ ｖｉｖｏ ＣＡＲＴ开发中获得的关键经验，推动

了体内嵌合抗原受体 Ｔ细胞（ ｉｎ ｖｉｖｏ ＣＡＲＴ）的研发

进程。 ｉｎ ｖｉｖｏ ＣＡＲＴ 通过递送编码 ＣＡＲ 的核酸直

接对机体免疫细胞进行 ＣＡＲ工程改造，可简化和标

准化复杂的体外 ＣＡＲＴ细胞制造过程，省去了限制

可及性的物流环节，避免了基于化疗的清淋预处

理，从而为充分释放 ＣＡＲ 技术的潜力（包括应用于

安全性要求更高的适应证）提供了可能。 随着 ｉｎ ｖｉ

ｖｏ ＣＡＲＴ技术平台的不断创新和突破，并在临床研

究中显示出良好疗效，我国在此新兴领域迅速跟

进，已有多家企业进行了研发布局，数个产品向监

管机构递交了临床试验申请前沟通交流。 此类产

品以基因产品形式进行给药，体内的药效作用物质

为基因修饰细胞，且涉及病毒、纳米脂质体等多种

类型载体，其非临床药理学、药代动力学以及安全

性研究与常规基因治疗药物和细胞治疗药物相比

更为复杂，这给 ｉｎ ｖｉｖｏ ＣＡＲＴ 的开发带来了挑战。

本研究基于对此类产品研发现状的调研和梳理分

析，提出非临床研究的一般考虑，旨在抛砖引玉，引

发研究者对此领域非临床研究的若干思考，为未来

相关的科学研究与讨论提供思路。

１　 ｉｎ ｖｉｖｏ ＣＡＲＴ研究进展

ｉｎ ｖｉｖｏ ＣＡＲＴ源于 ＲＮＡ药物、纳米技术、病毒学

和 ＣＡＲ疗法等多个领域的交叉融合。 目前，两种 ｉｎ

ｖｉｖｏ ＣＡＲＴ技术平台正处于临床转化阶段：一种是基

于工程化病毒载体的平台，可实现载荷在基因组中的

整合，在需要较高药效以实现临床疗效的适应证中可

能具有优势；另一种是基于脂质纳米颗粒（ＬＮＰｓ）载

体的平台，可实现载荷的瞬时表达，这在安全性要求

更高的适应证中可能具有优势。

１ １　 工程化病毒载体

病毒载体作为 ｉｎ ｖｉｖｏ ＣＡＲＴ 的核心技术之一，

主要通过工程化慢病毒、γ逆转录病毒或腺相关病毒

载体实现 ＣＡＲ基因在患者 Ｔ细胞内的精准递送。 早

期研究发现，利用靶向 ＣＤ８ 的慢病毒载体在小鼠模

型中成功生成 ＣＡＲＴ 细胞，证实了体内定向 Ｔ 细胞

基因转导的可行性
［５］
。 这些工作奠定了病毒载体的

核心机制———通过修饰病毒包膜（如尼帕病毒糖蛋

白或 ＶＳＶＧ蛋白）实现 Ｔ细胞特异性靶向，避免非目

标细胞摄取，从而提高转导效率和安全性
［６］
。 关键

进展包括消除天然受体结合、引入高亲和力结合剂以

及优化融合元件，以促进基因组整合和持久 ＣＡＲ

表达。

近年来，病毒载体技术显著优化，聚焦于提高

靶向性、稳定性和可控性。 工程化策略包括：采用

ＣＤ３、ＣＤ８ 或 ＣＤ４ 特异性结合策略实现 Ｔ 细胞亚群

选择性转导；整合“不要吃我”信号（如 ＣＤ４７）减少

巨噬细胞对载体的消耗；以及开发新型假型化包膜

以增强血清稳定性
［７］
。 多家公司已推动病毒载体

平台 进 入 临 床 阶 段： Ｉｎｔｅｒｉｕｓ ＢｉｏＴｈｅｒａｐｅｕｔｉｃｓ 的

ＩＮＴ２１０４（靶向 ＣＤ７ 的慢病毒载体）在非人灵长类

动物和人源化小鼠模型中显示出特异性 Ｔ 细胞转

导和 Ｂ 细胞耗竭，并于 ２０２４ 年启动 Ｉ 期试验
［８１０］
；

Ｕｍｏｊａ Ｂｉｏｐｈａｒｍａ 的 ＶｉｖｏＶｅｃ 平台通过共刺激配体

（如 ＣＤ８０ ／ ＣＤ５８）与抗 ＣＤ３ ｓｃＦｖ 融合，模拟抗原呈

递细胞功能，在非人灵长类动物中实现高达 ６５％的

ＣＡＲＴ生成
［１１，１２］

；ＥｓｏＢｉｏｔｅｃ 的靶向 ＴＣＲαβ 的慢病

毒载体在多发性骨髓瘤患者中诱导快速完全缓解，

初步显示了临床疗效
［１３］
。 这些进展凸显了病毒载

体的高效靶向基因转导特性。

尽管病毒载体研究进展迅速，但仍面临诸多挑

战：规模化生产存在巨大的技术难度；整合型载荷可

能导致 ＣＡＲＴ 细胞过度扩增或持续存在，引发细胞

因子释放综合征（ＣＲＳ）、神经毒性（ ＩＣＡＮＳ）或迟发性

毒性；需长期监测致癌性风险；针对某些病毒成分的

免疫原性也可能影响该类产品的应用和重复给药。

未来优化方向包括：开发细胞谱系特异性启动子或自

杀开关以增强可控性；探索双特异性靶向策略（如

ＣＤ３ ／ ＣＤ８ 组合）提高精准度；以及结合基因编辑技术

（如 ＣＲＩＳＰＲ）实现更安全的基因组整合。

１ ２　 ＬＮＰ载体

ＬＮＰ载体通过脂质纳米颗粒递送 ＲＮＡ 载荷，实

现免疫细胞的瞬时工程化，从而克服传统 ｅｘ ｖｉｖｏ

ＣＡＲＴ在制造复杂性、可扩展性和安全性方面的局

限。 该平台的核心优势在于其非整合特性，允许通过

重复给药精确控制 ＣＡＲ 表达水平，避免基因组插入

风险，并适用于安全性要求高的适应证，如自身免疫

性疾病。 近年来，借助 ＣＯＶＩＤ１９ 疫情期间 ｍＲＮＡ

ＬＮＰ疫苗的技术积累，ＬＮＰ 载体在脂质设计、靶向策

略和载荷优化方面取得显著进展，例如通过可电离脂

质的改进降低免疫原性，并利用抗体功能化实现细胞

选择性递送，为体内免疫工程提供了高度模块化

工具
［１４］
。

在研究进展方面，基于 ＬＮＰ 载体的体内 ＣＡＲＴ

细胞工程平台可根据其递送系统的靶向策略分为两

大类：一类依赖脂质纳米颗粒（ＬＮＰｓ）的天然组织和

·０１４·
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细胞嗜性，另一类则为靶向修饰的 ＬＮＰ（ ｔＬＮＰｓ），依

赖细胞选择性靶向抗体，精确导向 Ｔ 细胞亚群，增强

递送特异性和效率。 Ｍｙｅｌｏｉｄ Ｔｈｅｒａｐｅｕｔｉｃｓ 利用髓系

细胞嗜性 ＬＮＰ递送 ＣＡＲ ｍＲＮＡ
［１５］
，其候选产品 ＭＴ

３０２（靶向 ＴＲＯＰ２）和 ＭＴ３０３ （靶向 ＧＰＣ３）已进入 Ｉ

期临床试验，初步数据显示具有一定抗肿瘤活性，及

可控的细胞因子释放综合征；Ｃａｐｓｔａｎ Ｔｈｅｒａｐｅｕｔｉｃｓ 则

开发了靶向 ＬＮＰ（ ｔＬＮＰ），通过抗 ＣＤ８ 抗体实现 Ｔ 细

胞特异性工程化，在非人灵长类动物中实现深度 Ｂ

细胞耗竭、初始 Ｂ 细胞重新填充，并计划应用于自身

免疫性疾病
［１６，１７］

；Ｏｒｎａ Ｔｈｅｒａｐｅｕｔｉｃｓ创新性地采用环

状 ＲＮＡ载荷（抗 ＣＤ２０ 和抗 ＣＤ１９ ＣＡＲ），结合免疫嗜

性 ＬＮＰ，在啮齿类和非人灵长类动物模型中实现单次

给药后持久的 Ｂ 细胞耗竭
［１８，１９］

。 这些进展凸显了

ＬＮＰ载体在协同利用多种免疫细胞（如 Ｔ 细胞、髓系

细胞、自然杀伤细胞）方面的灵活性，以及通过高通

量筛选和人工智能优化脂质组合提升递送效率的

趋势。

ＬＮＰ载体应用前景广阔，但其临床转化仍面临挑

战，包括制剂的免疫原性、急性输注反应风险以及非

靶细胞转导可能导致的脱靶毒性等。 未来发展方向

需聚焦于进一步优化脂质配方以支持重复给药，同时

增强组织特异性，并探索载荷多样化（如联合递送免

疫调节因子）以提升载体安全性。

２　 总体考虑

ｉｎ ｖｉｖｏ ＣＡＲＴ通过递送遗传物质至体内细胞，在

体生成 ＣＡＲＴ，属于基因治疗药物；从药效作用物质

和作用机制来看，其通过体内生成的基因修饰细胞发

挥治疗作用。 ｉｎ ｖｉｖｏ ＣＡＲＴ 兼具基因治疗药物和细

胞治疗药物双重属性，其非临床研究除了关注基因治

疗和细胞治疗属性外，还应特别关注其独特的“体内

生成”属性所带来的新挑战。 因此在参考国家药品

监督管理局药品审评中心发布的《基因治疗产品非

临床研究与评价技术指导原则（试行）》《细胞治疗产

品研究与评价技术指导原则（试行）》《基因修饰细胞

治疗产品非临床研究技术指导原则（试行）》等指导

原则的同时，应遵循“基于风险”和“个案处理”的原

则，科学合理设计、开展非临床研究，以探索药物的靶

向基因转导药理作用，充分暴露其在靶毒性、脱靶毒

性以及与递送载体相关的风险，从而保障受试者

安全。

３　 非临床研究内容

３ １　 动物种属

通常，ｉｎ ｖｉｖｏ ＣＡＲＴ需考虑采用相关动物种属开

展非临床研究。 选择相关动物种属时应考虑产品到

达靶部位或靶细胞的可行性 ／易感性，动物靶细胞的

生物分布或生物学功能与人的相似性，荷载基因及其

表达产物或转导产物的生物学功能与人的相似性。

通常，此类产品的病毒载体靶向膜蛋白、ＬＮＰ 偶联的

靶向抗体、以及所荷载的基因可能具有种属特异性。

若产品具有高度人特异性，无相关动物种属时，可能

需要考虑采用人源化动物和 ／或采用替代产品开展非

临床研究。 免疫缺陷小鼠（如 ＮＳＧ，ＮＣＧ）通过植入

人免疫细胞（ＰＢＭＣ）或干细胞（ＣＤ３４
＋
）建立人源化

动物模型，在此类模型中可采用临床拟用样品开展非

临床研究，但该模型存在移植物抗宿主病（ＧｖＨＤ）、

免疫系统不完整等问题；食蟹猴与人在生理、代谢和

免疫系统具有一定的相似性，具备完整的免疫系统，

有助于更全面地评估靶向 ／脱靶风险和免疫原性 ／免

疫毒性，但在此类模型中需采用替代产品开展试验，

不能充分代表临床拟用样品，因而可能无法充分暴露

其毒性风险，其毒性耐受剂量不适合作为拟定临床起

始剂量的依据。 鉴于动物试验开展存在困难，多个在

研产品采用了药理、生物分布和毒性研究一体化

设计。

３ ２　 药理学

在研 ｉｎ ｖｉｖｏ ＣＡＲＴ产品均开展了包括体外和体

内药理 ／药效学试验在内的概念验证研究。 体外试验

一般会围绕基因转导特异性、基因转导效率、ＣＡＲ 的

特异选择性、功能活性等开展。 靶向递送方面，Ｉｎｔｅｒｉ

ｕｓ ＢｉｏＴｈｅｒａｐｅｕｔｉｃｓ 公司的候选药物 ＩＮＴ２１０４ 采用靶

向 ＣＤ７ 的慢病毒载体，旨在递送 ＣＡＲ２０ 转基因（编

码抗 ＣＤ２０ ＣＡＲ 构建体），用于治疗 Ｂ 细胞恶性肿

瘤
［８１０］
，ＩＮＴ２１０４ 处理人外周血单个核细胞后，采用

数字 ＰＣＲ 等技术证实载体可成功转导 ＣＤ４
＋
和

ＣＤ８
＋
Ｔ 细胞，且转导效率与体外制备的传统 ＣＡＲＴ

细胞相当，验证了其递送系统的效率；ＥｓｏＢｉｏｔｅｃ ／深圳

普瑞金联合开发的 ＥＳＯＴ０１ 为基于慢病毒载体的抗

ＢＣＭＡ ＣＡＲ 产品，用于治疗多发性骨髓瘤，将 ＥＳＯ

Ｔ０１ 处理的免疫细胞与多发性骨髓瘤细胞系共培养

后，可见剂量依赖性的肿瘤细胞杀伤作用，并与细胞

毒性因子（如颗粒酶 Ｂ）的释放相关，初步证明了其

功能性
［１３］
。 Ｕｍｏｊａ Ｂｉｏｐｈａｒｍａ的 ＶｉｖｏＶｅｃ系统研究则

更进一步，不仅验证了 ＣＡＲＴ 细胞对肿瘤细胞的杀

伤能力，还特别设计了连续再刺激试验，即反复多次

将 ＣＡＲＴ细胞与新鲜肿瘤细胞共培养，结果显示，与

缺乏共刺激信号的对照组（仅含 ａｎｔｉＣＤ３ ｓｃＦｖ）相

比，含有 ＣＤ８０ ／ ＣＤ５８ 共刺激分子的 ＶｉｖｏＶｅｃ 系统所

·１１４·



２０２５ 年第 ４２ 卷第 ６ 期

产生的 ＣＡＲＴ 细胞能够持续抑制肿瘤生长，表现出

更强的持久性
［１１，１２］

。

体内试验则重点关注 ＣＡＲＴ 细胞的生成效率、

扩增动力学、功能活性、持久性以及安全性指标等。

通过检测外周血和组织中 ＣＡＲ表达细胞的百分比及

绝对数量，以评估 Ｔ 细胞生成效率；通过监测靶细胞

（如 Ｂ细胞）耗竭程度、肿瘤负荷变化（通过影像学或

生物标志物）和细胞因子释放（如 ＩＬ６、ＩＦＮγ）来验

证功能活性；通过长期观察 ＣＡＲＴ 细胞的持续存在

与记忆表型形成来考察持久性。 尽管人源化小鼠非

常适合作为体内 ＣＡＲ 递送的概念验证模型，但大型

动物模型（如 ＮＨＰｓ）被证明对临床转化至关重要，非

人灵长类动物模型在指导平台、产品和给药方案优化

方面发挥了关键作用
［１１，２０，２１］

。 复旦大学开发的荷载

环装 ＲＮＡ的 ｉｎ ｖｉｖｏ ＣＡＲ 产品，分别在 ＢＡＬＢ ／ ｃ 小鼠

（ＯＶＡ诱导哮喘模型）、ＢＡＬＢ ／ ｃ 或 Ｃ５７ＢＬ ／ ６ 小鼠（表

达人 ＨＥＲ２ 的 ＭＣ３８ＨＥＲ２、ＣＴ２６ＨＥＲ２ 等同种移植

瘤模型）、ＭＲＬ ／ ＭｐＪＦａｓｌｐｒ 小鼠（系统性红斑狼疮模

型）、１７ 月龄衰老小鼠和食蟹猴中进行了概念验证研

究。 研究者分别构建了抗人 ＣＤ１９ ＣＡＲ（ ｃｉｒｃＲＮＡ
ｈ

ＣＤ１９ＣＡＲ
）、 抗鼠 ＣＤ１９ ＣＡＲ （ ｃｉｒｃＲＮＡ

ｍＣＤ１９ＣＡＲ
） 和抗

ＨＥＲ２ ＣＡＲ，在小鼠中使用了上述 ３ 种 ＣＡＲ，而在食

蟹猴中则使用了抗人 ＣＤ１９ ＣＡＲ。 在小鼠中， ｃｉｒ

ｃＲＮＡＣＡＲ可抑制肿瘤生长，改善哮喘相关指标，并

逆转衰老表型，在食蟹猴中，ｃｉｒｃＲＮＡＣＡＲ 可导致 Ｂ

细胞耗竭，并持续约 ４０ ～ ５０ ｄ
［２２，２３］

。 Ｕｍｏｊａ Ｂｉｏｐｈａｒ

ｍａ开发的 ＶｉｖｏＶｅｃ 为表面工程化慢病毒载体平台，

其载体系统可表达多结构域融合蛋白（抗 ＣＤ３ ｓｃＦｖ、

ＣＤ８０ 和 ＣＤ５８），从而实现靶向 Ｔ 细胞的高特异性，

ＶｉｖｏＶｅｃ载体携带抗 ＣＤ１９ ＣＡＲ 在人源化小鼠（ＮＳＧ

ＭＨＣ Ⅰ ／Ⅱ ＫＯ 小鼠植入 ＰＢＭＣ）移植瘤模型中可实

现肿瘤完全清除以及生存期延长；在食蟹猴中，Ｖｉ

ｖｏＶｅｃ 载体采用抗 ＮＨＰ ＣＤ３ ｓｃＦｖ 替代抗人 ＣＤ３

ｓｃＦｖ，保留 ＣＤ８０ 和 ＣＤ５８ 的人源胞外结构域（人和

ＮＨＰ序列高度同源），并选择靶向 ＮＨＰ 与人类交叉

反应表位的抗 ＣＤ２０ ＣＡＲ，结果显示，ＶｉｖｏＶｅｃ 载体携

带抗 ＣＤ２０ ＣＡＲ在食蟹猴中可生成 ＣＡＲＴ 细胞（占

循环 Ｔ 细胞的 ６５％ ），并导致 Ｂ 细胞完全耗竭，持

续达 ７６ ｄ
［１１，１２］

。

３ ３　 药代动力学

３ ３ １ 　 生物分布

ｉｎ ｖｉｖｏ ＣＡＲＴ的生物分布研究旨在确定载体和

转基因细胞在体内的分布模式，包括靶向器官、组织

或细胞类型，以及潜在的脱靶分布，这有助于评估其

靶向特异性、安全性和有效性。 在研产品的生物分布

研究包括独立开展，以及结合药理学和 ／或毒理学试

验开展等不同形式。 ＶｉｖｏＶｅｃ平台首个研发项目 ＵＢ

ＶＶ１１１ 编码靶向 ＣＤ１９ 的 ＣＡＲ，同时携带雷帕霉素激

活的细胞因子受体（ＲＡＣＲ），研究者开展了一系列生

物分布试验。 ＮＨＰ 淋巴结（ ＩＮ）和静脉注射（ ＩＶ）给

予替代产品，ＩＮ 给药后，血液中未检测到载体 ＲＮＡ，

ＩＶ给药后，血液中的载体 ＲＮＡ 迅速达到峰值浓度

（约在注射后 ５ ｍｉｎ），２ ｈ 后，不足峰值的 ５％ 。 在表

达 ＬＤＬＲ（ＶｉｖｏＶｅｃ 载体潜在结合配体）的组织（肝、

肾上腺、肺、肾、结肠）中分离人原代细胞，未见荷载

基因转导。 在犬中采用与犬 Ｔ 淋巴细胞无靶向结合

的受试物进行了 ＩＮ或 ＩＶ给药 ８ 周生物分布试验，以

探索脱靶基因转导。 结果显示，ＩＮ 和 ＩＶ 给药，病毒

载体转导仅限于免疫器官的免疫细胞，未观察到其他

组织的非特异转导；且 ８ 周时任何器官均未观察到可

量化的荷载基因转导。 在 ＣＤ３４ ＋人源化 ＮＳＧ 小鼠

１３ 周毒理学试验中整合了生物分布研究，ＵＢＶＶ１１１

载体基因组整合呈剂量依赖性，且随时间减少，肝脏

和脾脏中载体含量最高，转导细胞主要为免疫细胞，

包括小鼠巨噬细胞或人 Ｔ细胞
［２４，２５］

。

３ ３ ２ 　 脱落

尽管目前 ｉｎ ｖｉｖｏ ＣＡＲＴ 多使用复制缺陷型病

毒，但研究者仍在生物分布等非临床研究中对病毒的

脱落进行了检测。 如非人源化 ＮＳＧ小鼠静脉（ ＩＶ）或

腹膜内（ ＩＰ）注射给予 ＵＢＶＶ１１１ 后的各时间点，在粪

便中均未检测到载体 ＲＮＡ基因组
［２５］
。

３ ４　 安全性

３ ４ １ 　 安全药理学

已上市 ＣＡＲＴ产品的主要毒性反应包括免疫效

应细胞相关神经毒性综合征（ ＩＣＡＮＳ）。 另外，此类产

品所采用的载体也可能对重要生理功能（如心血管、

呼吸和中枢神经系统）具有非预期影响。 因此可基

于产品特点、临床适应证等考虑开展安全药理学研

究。 Ｃａｐｓｔａｎ Ｔｈｅｒａｐｅｕｔｉｃｓ 在介绍其靶向 ＬＮＰｓ （ ｔＬ

ＮＰｓ）平台的安全性时
［１６，１７］

，特别强调食蟹猴静脉注

射 ｔＬＮＰｓ制剂后，未观察到中枢神经系统症状或癫痫

发作。

３ ４ ２ 　 一般毒理学

现有研究显示，ｉｎ ｖｉｖｏ ＣＡＲＴ的一般毒性反应主

要为靶向免疫反应放大导致的毒性反应，脱靶免疫反

应导致的毒性反应，脱靶基因转导导致的毒性反应以

及递送载体相关的生物安全性、免疫原性 ／免疫毒性、

组织趋向毒性等。 ｉｎ ｖｉｖｏ ＣＡＲＴ 可根据产品类型和
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临床适应证参考 ＩＣＨ Ｓ９、ＩＣＨ Ｍ３、《基因治疗产品非

临床研究与评价技术指导原则（试行）》等相关指导

原则开展一般毒理学试验。 此类产品的体内存续以

及药效作用持久，设计试验时需考虑 ＣＡＲ
＋
细胞的药

代动力学指标，以充分评价毒性反应持续时间和

可逆性。

如前述相关动物种属内容，此类产品通常需采用

人源化动物或替代产品开展一般毒性试验。 人源化

小鼠和非人灵长类动物各有优缺点，对于此类高风险

产品，有研究者通过多项研究对毒性风险进行了

评估。

若产品采用了全新的病毒载体，需考虑生物安全

性，在开发早期可关注国家出台的一系列生物安全法

规和政策。 如涉及到全新的辅料（如 ＬＮＰ 新组分），

可考虑参考辅料的相关指导原则对新组分的毒性风

险进行研究。

ＵＢＶＶ１１１ 在 ＣＤ３４ ＋人源化 ＮＳＧ小鼠中采用临

床拟用样品开展了单次腹腔或静脉给药观察 １３ 周的

ＧＬＰ毒理学试验，同时在猴和犬中开展的生物分布研

究中，同时进行了一定的安全性观察，为毒性风险评

估提供了多方证据
［２５］
。 Ｃａｐｓｔａｎ 公司开发的负载抗

ＣＤ１９ ＣＡＲ的 ｔＬＮＰｓ 制剂采用食蟹猴开展了安全性

研究。 由于抗 ＣＤ１９ ＣＡＲ 对食蟹猴 Ｂ 细胞缺乏交叉

反应性，选择了抗 ＣＤ２０ ＣＡＲ 作为替代产品（ＣＤ８

Ｌ２８９ｔＬＮＰＣＤ２０）
［１６，１７］

。 ＥＳＯＴ０１ 采用荷瘤（多发性

骨髓瘤细胞 ＮＣＩＨ９２９）人源化（移植人 ＣＤ３４
＋
造血

干细胞）小鼠开展了体内研究，该研究为一体化试验

设计，整合了药理学（抗肿瘤活性）、药代动力学

（ＣＡＲＴ细胞扩增和分布）和毒理学（细胞因子释放

等）评估
［１３］
。

３ ４ ３ 　 免疫原性和免疫毒性

基于病毒载体和 ＬＮＰ载体的 ｉｎ ｖｉｖｏ ＣＡＲＴ均具

有潜在免疫原性。 对于病毒载体，多种因素可影响其

免疫原性，包括病毒载体本身的成分、表达产物以及

宿主的预存抗体等，在早期产品设计中尽量降低免疫

原性以减少对 ｉｎ ｖｉｖｏ ＣＡＲＴ 有效性和安全性的影

响。 如 ＩＮＴ２１０４ 通过对 ＶＳＶＧ蛋白进行工程化改造

（氨基酸替换减少脱靶结合）以增强其在血液中的稳

定性
［８，９］
，ＶｉｖｏＶｅｃ 颗粒采用 Ｃｏｃａｌ 融合病毒糖蛋白

（假型 ／伪型化）以抵抗人血清的灭活作用，从而提高

体内稳定性
［１１，１２］

。 对于 ＬＮＰ载体，因外源 ＲＮＡ本身

和 ＬＮＰ均有可能诱导机体的固有免疫反应，同时该

方法为瞬时工程化，可能需要重复给药以实现足够暴

露，因此产品的免疫原性可能成为限制因素，有产品

通过环化 ＲＮＡ（ ｃｉｒｃＲＮＡ）以降低免疫原性并延长体

内的表达持续时间
［２２，２６］

。 总之， ｉｎ ｖｉｖｏ ＣＡＲＴ 在非

临床安全性研究中进行全面的免疫原性评估至关重

要，因为这直接关系到产品的安全性、有效性和临床

转化潜力。

ｅｘ ｖｉｖｏ ＣＡＲＴ已累积大量临床数据，治疗相关

不良事件主要为免疫毒性反应，包括细胞因子释放

综合征（ＣＲＳ）、免疫效应细胞相关神经毒性综合征

（ ＩＣＡＮＳ）、免疫效应细胞相关噬血细胞综合征样综

合征（ ＩＥＣＨＳ）、中性粒细胞减少症，以及与低丙种

球蛋白血症相关的 Ｂ 细胞耗竭，这些毒性主要源于

ＣＡＲＴ 细胞在体内的过度激活、非特异性靶向或长

期作用。 而 ｉｎ ｖｉｖｏ ＣＡＲＴ 通过直接在体内递送编

码 ＣＡＲ的基因而生成 ＣＡＲＴ 细胞，其安全性风险

更为复杂：一方面，病毒载体的 ＣＡＲ 序列在基因组

中永久整合，可能出现 ＣＡＲＴ 细胞活化、扩增和再

扩增，引发免疫过度激活；另一方面，瞬时表达特性

（如 ＬＮＰ平台）虽可能降低长期毒性，但重复给药或

高剂量下仍可能诱发急性炎症反应。 因此，开展系

统的免疫毒性研究至关重要，通过早期识别 ＣＲＳ 和

神经毒性等信号，从而为临床试验设计提供安全性

依据。 Ｋｅｌｏｎｉａ Ｔｈｅｒａｐｅｕｔｉｃｓ 开发的 ＫＬＮ１０１０ 采用

ＣＤ３ 靶向慢病毒载体，编码全人源抗 ＢＣＭＡ ＣＡＲ，

非临床安全性研究数据显示，未见 ＣＲＳ 或神经毒

性
［２７，２８］

；Ｃａｐｓｔａｎ Ｔｈｅｒａｐｅｕｔｉｃｓ 的 ｔＬＮＰｓ 制剂在食蟹

猴中虽未引起中枢神经系统症状或癫痫，却观察到

１ 例 ＩＥＣＨＳ，提示即使短期 ＣＡＲ 表达也可能触发

全身性免疫反应。

３ ４ ４ 　 遗传毒性

已有文献报道，采用整合病毒载体的 ｅｘ ｖｉｖｏ

ＣＡＲＴ具有整合插入突变导致的致癌性风险
［２９３１］

，

而对于 ｉｎ ｖｉｖｏ ＣＡＲＴ，由于体内环境更为复杂，比如

载体（如慢病毒）整合可能影响非靶细胞（如造血干

细胞）等，因此研究者通常会将遗传毒性研究作为评

估 ｉｎ ｖｉｖｏ ＣＡＲＴ 安全性的核心环节。 比如 ＵＢ

ＶＶ１１１ 在非临床研究中开展了遗传毒性风险评估。

结果显示，ＵＢＶＶ１１１ 的载体拷贝数（ＶＣＮ）较低，平

均每个 ＣＡＲＴ细胞仅 １ ７７ 个拷贝，且整合插入位点

分布类似于已上市的慢病毒载体 ｅｘ ｖｉｖｏ ＣＡＲＴ，表现

为低频整合于重复基因组区域，并倾向于内含子区域

（而非启动子或外显子）。 对于采用非整合病毒载体

（如腺相关病毒载体、ＬＮＰ 载体）的 ｉｎ ｖｉｖｏ ＣＡＲＴ 因

非整合特性可能具有较低的遗传毒性风险，但仍需考

虑可能导致遗传毒性风险的因素（如环状 ＲＮＡ，ＬＮＰ

·３１４·
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脂质成分等），必要时需考虑开展相应的遗传毒性试

验。

３ ４ ５ 　 致癌性

通常，需根据产品特征、临床适应证考虑评估

致癌性风险。 当标准致癌性试验不可行时，可考虑

采用体外、体内等多种证据对其致癌性风险进行综

合评估。 证据可来自于如下数据：载体整合特性；

靶向 ／脱靶转导特；药物靶点和药理作用通路与肿

瘤发生发展的相关性；非临床和临床研究的长期监

测数据；生产体系中可能存在的潜在致癌风险；ＡＩ

预测等。

３ ４ ６ 　 生殖毒性

ｉｎ ｖｉｖｏ ＣＡＲＴ产品需根据产品特性、作用机制、

临床适应症和拟用人群、一般毒理学试验中的发现、

生物分布等信息考虑评估潜在的生殖和发育毒性风

险。 病毒载体产品需关注生殖系传递风险，当其在性

腺持续存在时，需考虑进一步研究其在生殖细胞（例

如卵母细胞、精子）的暴露水平，如有暴露，开展生殖

系传递试验。 基于 ＬＮＰ载体的产品虽基因整合风险

低，但仍需评估 ＬＮＰ的组织嗜性所引起的潜在生殖 ／

发育毒性风险。

３ ４ ７ 　 制剂安全性

ｉｎ ｖｉｖｏ ＣＡＲＴ需基于给药途径，采用终产品制剂

开展合适的制剂安全性研究。

３ ４ ８ 　 平台技术产品研发的考虑

ｉｎ ｖｉｖｏ ＣＡＲＴ的研发中可能涉及相同递送载体

的平台技术，目前监管机构虽常收到关于此类平台技

术的沟通交流申请，但其界定标准非常严格，需基于

载体特性、生产工艺、质量属性，并结合同一平台下其

他产品的开发进程，进行药学、药理毒理、临床等多专

业的综合评估。 目前，鉴于 ｉｎ ｖｉｖｏ ＣＡＲＴ 采用同平

台技术荷载不同的 ＣＡＲ 基因，ＣＡＲ 相关“在靶”和

“脱靶”风险差异较大，笔者认为此类产品可能不适

合基于平台技术进行监管。 然而，同一平台技术产品

可能在载体生物分布、安全性等方面实现一定程度上

的研究数据共享。

４　 结语与展望

ｉｎ ｖｉｖｏ ＣＡＲＴ 作为新兴技术，通过病毒载体或

ＬＮＰ载体平台实现体内免疫细胞工程化，有望克服传

统 ｅｘ ｖｉｖｏ ＣＡＲＴ在制造复杂性、可扩展性和安全性

方面的局限，然而其“体内生成”的特性也带来远比

传统产品更加复杂的研究与评价挑战，因此，开展系

统且严谨的非临床研究将有助于推动该技术从概念

走向临床应用。 ｉｎ ｖｉｖｏ ＣＡＲＴ 兼具基因治疗和细胞

治疗产品双重属性，同时涉及到不同类型的递送载

体，应遵循“基于风险”、和“个案处理”的原则开展科

学合理的非临床研究，以评价药理 ／药效作用，毒性风

险特征，以及与药物暴露 ／生物分布之间的关系，随着

医药创新的不断发展，未来预计会出现更多新型递送

载体，更多类型的靶向识别技术，以及更广泛的适应

证拓展。 本研究中的相关考虑仅代表研究者当前的

认识。 研究者和监管方应紧跟研究进展，共同探索合

理的非临床研究与评价策略，在积极促进药物研发的

同时，切实保障用药安全有效。
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ｒｉｓｋｓ ａｎｄ ｃａｕｓａｌｉｔｉｅｓ［Ｊ］ ． Ｂｌｏｏｄ， ２０２４， １４４（２４）： ２４７３２４８１．

［３０］ 　 Ｈａｍｉｌｔｏｎ ＭＰ， Ｓｕｇｉｏ Ｔ， Ｎｏｏｒｄｅｎｂｏｓ Ｔ， ｅｔ ａｌ． Ｒｉｓｋ ｏｆ ｓｅｃｏｎｄ ｔｕｍｏｒｓ ａｎｄ Ｔ

ｃｅｌｌ ｌｙｍｐｈｏｍａ ａｆｔｅｒ ＣＡＲ Ｔｃｅｌｌ ｔｈｅｒａｐｙ［ Ｊ］ ． Ｎ Ｅｎｇｌ Ｊ Ｍｅｄ， ２０２４， ３９０

（２２）： ２０４７２０６０．

［３１］ 　 Ｒｕｅｌｌａ Ｍ， Ｊｕｎｅ ＣＨ． ＣＡＲ Ｔｃｅｌｌ ｒｅｓｉｓｔａｎｃｅ ｔｏ ｏｎｃｏｇｅｎｉｃ ｔｒａｎｓｆｏｒｍａｔｉｏｎ［Ｊ］ ．

Ｂｌｏｏｄ Ｃａｎｃｅｒ Ｄｉｓｃｏｖ， ２０２４， ５（４）： ２２９２３３．

［３２］ 　 Ｘｉａｏ Ｔ， Ｚｈａ Ｇ， Ｓｈｉ Ｌ， ｅｔ ａｌ． Ａｎ ｖｉｖｏ ＣＡＲ Ｔ ｐｒｏｄｕｃｅｒ （ＨＮ２３０１） ｆｏｒ ａｕｔｏ

ｉｍｍｕｎｅ ｄｉｓｅａｓｅ ｅｎａｂｌｅｓ Ｂ ｃｅｌｌ ｄｅｐｌｅｔｉｏｎ ｉｎ ＮＨＰ ｔｉｓｓｕｅｓ ａｎｄ ｐｅｒｆｏｒｍｓ ｔｈｅｒａ

ｐｅｕｔｉｃ ｅｆｆｅｃｔ ｉｎ ａｎ ＳＬＥ ｍｏｕｓｅ ｍｏｄｅｌ［ＥＢ ／ ＯＬ］ ． （２０２５０５１３） ［２０２５１０

２５］ ． ｈｔｔｐｓ： ／ ／ ｗｗｗ． ｓｃｉｅｎｃｅｄｉｒｅｃｔ． ｃｏｍ ／ ｊｏｕｒｎａｌ ／ ｍｏｌｅｃｕｌａｒｔｈｅｒａｐｙ ／ ｖｏｌ ／ ３３ ／

ｉｓｓｕｅ ／ ４ ／ ｓｕｐｐｌ ／ Ｓ１．

［３３］ 　 Ｗａｎｇ Ｑ， Ｘｉａｏ Ｚ， Ｚｈｅｎｇ Ｘ， ｅｔ ａｌ． Ｉｎ ｖｉｖｏ ＣＤ１９ ＣＡＲ Ｔｃｅｌｌ ｔｈｅｒａｐｙ ｆｏｒ ｒｅ

ｆｒａｃｔｏｒｙ ｓｙｓｔｅｍｉｃ ｌｕｐｕｓ ｅｒｙｔｈｅｍａｔｏｓｕｓ［Ｊ］ ． Ｎ Ｅｎｇｌ Ｊ Ｍｅｄ， ２０２５， ３９３（１５）：

１５４２１５４４．

［３４］ 　 Ｍｕｒａｒｏ ＰＡ， Ｍａｒｔｉｎ Ｒ， Ｍａｎｃａｒｄｉ ＧＬ， ｅｔ ａｌ． Ａｕｔｏｌｏｇｏｕｓ ｈａｅｍａｔｏｐｏｉｅｔｉｃ ｓｔｅｍ

ｃｅｌｌ ｔｒａｎｓｐｌａｎｔａｔｉｏｎ ｆｏｒ ｔｒｅａｔｍｅｎｔ ｏｆ ｍｕｌｔｉｐｌｅ ｓｃｌｅｒｏｓｉｓ［ Ｊ］ ． Ｎａｔ Ｒｅｖ Ｎｅｕｒｏｌ，

２０１７， １３（７）： ３９１４０５．

（编辑：郭述金　 收稿日期：２０２５１０２６）
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